
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7187129/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Expert perspectives on global biodiversity loss and its drivers and impacts on people. Frontiers in Ecology and the Environment, 2023, 21, 94-103.	1.9	49
2	The acquisitive–conservative axis of leaf trait variation emerges even in homogeneous environments. Annals of Botany, 2022, 129, 709-722.	1.4	18
3	Conservation needs to integrate knowledge across scales. Nature Ecology and Evolution, 2022, 6, 118-119.	3.4	40
4	Rethinking individual relationships with entities of nature. People and Nature, 2022, 4, 596-611.	1.7	9
5	Ten facts about land systems for sustainability. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	157
6	Climatic and soil factors explain the two-dimensional spectrum of global plant trait variation. Nature Ecology and Evolution, 2022, 6, 36-50.	3.4	89
7	A fabric of life view of the world. Science, 2022, 375, 1204-1204.	6.0	6
8	Herbivory, intraspecific trait variability and back to herbivory. Oikos, 2022, 2022, .	1.2	3
9	Analyzing individual drivers of global changes promotes inaccurate long-term policies in deforestation hotspots: The case of Gran Chaco. Biological Conservation, 2022, 269, 109536.	1.9	8
10	Improving landscapeâ€scale productivity estimates by integrating traitâ€based models and remotelyâ€sensed foliarâ€ŧrait and canopyâ€structural data. Ecography, 2022, 2022, .	2.1	4
11	Reply to: Restoration prioritization must be informed by marginalized people. Nature, 2022, 607, E7-E9.	13.7	5
12	Working landscapes need at least 20% native habitat. Conservation Letters, 2021, 14, e12773.	2.8	116
13	PhenoSpace: A Shiny application to visualize trait data in the phenotypic space of the global spectrum of plant form and function. Ecology and Evolution, 2021, 11, 1526-1534.	0.8	6
14	Low resilience at the early stages of recovery of the semiâ€arid Chaco forest—Evidence from a field experiment. Journal of Ecology, 2021, 109, 3246-3259.	1.9	4
15	Biodiversity and the challenge of pluralism. Nature Sustainability, 2021, 4, 567-572.	11.5	180
16	People have shaped most of terrestrial nature for at least 12,000 years. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	370
17	Botanical Monography in the Anthropocene. Trends in Plant Science, 2021, 26, 433-441.	4.3	23
18	Nature's contributions to people: Weaving plural perspectives. One Earth, 2021, 4, 910-915.	3.6	51

#	Article	IF	CITATIONS
19	Thermal differences between juveniles and adults increased over time in European forest trees. Journal of Ecology, 2021, 109, 3944-3957.	1.9	4
20	Fine-root traits in the global spectrum of plant form and function. Nature, 2021, 597, 683-687.	13.7	102
21	TRY plant trait database – enhanced coverage and open access. Global Change Biology, 2020, 26, 119-188.	4.2	1,038
22	Not a melting pot: Plant species aggregate in their nonâ€native range. Global Ecology and Biogeography, 2020, 29, 482-490.	2.7	16
23	Where does the forest come back from? Soil and litter seed banks and the juvenile bank as sources of vegetation resilience in a semiarid Neotropical forest. Journal of Vegetation Science, 2020, 31, 1017-1027.	1.1	9
24	Set ambitious goals for biodiversity and sustainability. Science, 2020, 370, 411-413.	6.0	225
25	Global priority areas for ecosystem restoration. Nature, 2020, 586, 724-729.	13.7	489
26	Working with Indigenous and local knowledge (ILK) in largeâ€scale ecological assessments: Reviewing the experience of the IPBES Global Assessment. Journal of Applied Ecology, 2020, 57, 1666-1676.	1.9	67
27	Levers and leverage points for pathways to sustainability. People and Nature, 2020, 2, 693-717.	1.7	141
28	Knowledge coâ€production with traditional herders on cattle grazing behaviour for better management of speciesâ€rich grasslands. Journal of Applied Ecology, 2020, 57, 1677-1687.	1.9	40
29	Post-fire resprouting capacity of seasonally dry forest species – Two quantitative indices. Forest Ecology and Management, 2020, 473, 118267.	1.4	15
30	The Influence of Taxonomy and Environment on Leaf Trait Variation Along Tropical Abiotic Gradients. Frontiers in Forests and Global Change, 2020, 3, .	1.0	19
31	Interactions between changing climate and biodiversity: Shaping humanity's future. Proceedings of the United States of America, 2020, 117, 6295-6296.	3.3	46
32	Global plant trait relationships extend to the climatic extremes of the tundra biome. Nature Communications, 2020, 11, 1351.	5.8	52
33	Plural valuation of nature for equity and sustainability: Insights from the Global South. Global Environmental Change, 2020, 63, 102115.	3.6	104
34	Use your power for good: plural valuation of nature – the Oaxaca statement. Global Sustainability, 2020, 3, .	1.6	62
35	Working with Indigenous, local and scientific knowledge in assessments of nature and nature's linkages with people. Current Opinion in Environmental Sustainability, 2020, 43, 8-20.	3.1	180
36	Investments' role in ecosystem degradation—Response. Science, 2020, 368, 377-377.	6.0	5

#	Article	IF	CITATIONS
37	Meta-analysis Shows That Rapid Phenotypic Change in Angiosperms in Response to Environmental Change Is Followed by Stasis. American Naturalist, 2019, 194, 840-853.	1.0	7
38	No inflation of threatened species. Science, 2019, 365, 767-767.	6.0	6
39	Assessing the utility of conserving evolutionary history. Biological Reviews, 2019, 94, 1740-1760.	4.7	65
40	Not gone with the wind: Vegetation complexity increases seed retention during windy periods in the Argentine Semiarid Chaco. Journal of Vegetation Science, 2019, 30, 542-552.	1.1	7
41	Reply to: "Global conservation of phylogenetic diversity captures more than just functional diversity― Nature Communications, 2019, 10, 858.	5.8	13
42	Informing trait-based ecology by assessing remotely sensed functional diversity across a broad tropical temperature gradient. Science Advances, 2019, 5, eaaw8114.	4.7	51
43	Pervasive human-driven decline of life on Earth points to the need for transformative change. Science, 2019, 366, .	6.0	1,213
44	Traditional plant functional groups explain variation in economic but not sizeâ€related traits across the tundra biome. Global Ecology and Biogeography, 2019, 28, 78-95.	2.7	49
45	Covariance of Sun and Shade Leaf Traits Along a Tropical Forest Elevation Gradient. Frontiers in Plant Science, 2019, 10, 1810.	1.7	23
46	Assessing nature's contributions to people. Science, 2018, 359, 270-272.	6.0	1,661
47	Structural and defensive roles of angiosperm leaf venation network reticulation across an Andes–Amazon elevation gradient. Journal of Ecology, 2018, 106, 1683-1699.	1.9	18
48	Fire effects on the soil seed bank and postâ€fire resilience of a semiâ€arid shrubland in central Argentina. Austral Ecology, 2018, 43, 46-55.	0.7	27
49	Native plant naming by high-school students of different socioeconomic status: implications for botany education. International Journal of Science Education, 2018, 40, 46-66.	1.0	13
50	Equity and sustainability in the Anthropocene: a social–ecological systems perspective on their intertwined futures. Global Sustainability, 2018, 1, .	1.6	204
51	Clobal trait–environment relationships of plant communities. Nature Ecology and Evolution, 2018, 2, 1906-1917.	3.4	397
52	Tropical forest leaves may darken in response to climate change. Nature Ecology and Evolution, 2018, 2, 1918-1924.	3.4	23
53	Plant functional trait change across a warming tundra biome. Nature, 2018, 562, 57-62.	13.7	451
54	Prioritizing phylogenetic diversity captures functional diversity unreliably. Nature Communications, 2018, 9, 2888.	5.8	144

#	Article	IF	CITATIONS
55	Forest conservation: Remember Gran Chaco. Science, 2017, 355, 465-465.	6.0	75
56	Predicting traitâ€environment relationships for venation networks along an Andesâ€Amazon elevation gradient. Ecology, 2017, 98, 1239-1255.	1.5	31
57	Valuing nature's contributions to people: the IPBES approach. Current Opinion in Environmental Sustainability, 2017, 26-27, 7-16.	3.1	1,007
58	Solar radiation and functional traits explain the decline of forest primary productivity along a tropical elevation gradient. Ecology Letters, 2017, 20, 730-740.	3.0	100
59	Urgent need to strengthen the international commitment to IPBES. Nature Ecology and Evolution, 2017, 1, 197.	3.4	4
60	Linking the influence and dependence of people on biodiversity across scales. Nature, 2017, 546, 65-72.	13.7	474
61	Can Leaf Spectroscopy Predict Leaf and Forest Traits Along a Peruvian Tropical Forest Elevation Gradient?. Journal of Geophysical Research G: Biogeosciences, 2017, 122, 2952-2965.	1.3	17
62	Assessing traitâ€based scaling theory in tropical forests spanning a broad temperature gradient. Global Ecology and Biogeography, 2017, 26, 1357-1373.	2.7	57
63	Global climatic drivers of leaf size. Science, 2017, 357, 917-921.	6.0	580
64	A novel metaâ€analytical approach to improve systematic review of rates and patterns of microevolution. Ecology and Evolution, 2017, 7, 5821-5832.	0.8	4
65	Combining ecological aspects and local knowledge for the conservation of two native mammals in the Gran Chaco. Journal of Arid Environments, 2017, 147, 54-62.	1.2	13
66	Mapping local and global variability in plant trait distributions. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E10937-E10946.	3.3	159
67	Towards a thesaurus of plant characteristics: an ecological contribution. Journal of Ecology, 2017, 105, 298-309.	1.9	114
68	A global method for calculating plant <scp>CSR</scp> ecological strategies applied across biomes worldâ€wide. Functional Ecology, 2017, 31, 444-457.	1.7	330
69	Scale dependence of canopy trait distributions along a tropical forest elevation gradient. New Phytologist, 2017, 214, 973-988.	3.5	57
70	Variation in leaf wettability traits along a tropical montane elevation gradient. New Phytologist, 2017, 214, 989-1001.	3.5	51
71	Plant community resilience in the face of fire: experimental evidence from a semiâ€arid shrubland. Austral Ecology, 2016, 41, 501-511.	0.7	12
72	Response to Vergara et al. (2015)—Fruiting phenology as a "triggering attribute―of invasion process: Do invasive species take advantage of seed dispersal service provided by native birds?. Biological Invasions, 2016, 18, 2773-2774.	1.2	1

#	Article	IF	CITATIONS
73	Socio-Environmental Systems (SES) Research: what have we learned and how can we use this information in future research programs. Current Opinion in Environmental Sustainability, 2016, 19, 160-168.	3.1	89
74	Examining variation in the leaf mass per area of dominant species across two contrasting tropical gradients in light of community assembly. Ecology and Evolution, 2016, 6, 5674-5689.	0.8	26
75	Microbial recycling of dissolved organic matter confines plant nitrogen uptake to inorganic forms in a semi-arid ecosystem. Soil Biology and Biochemistry, 2016, 101, 142-151.	4.2	23
76	Landâ€use intensification effects on functional properties in tropical plant communities. Ecological Applications, 2016, 26, 174-189.	1.8	33
77	Leaf traits of African woody savanna species across climate and soil fertility gradients: evidence for conservative versus acquisitive resourceâ€use strategies. Journal of Ecology, 2016, 104, 1357-1369.	1.9	56
78	Response to Comment on "Worldwide evidence of a unimodal relationship between productivity and plant species richness― Science, 2016, 351, 457-457.	6.0	5
79	Why protect nature? Rethinking values and the environment. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 1462-1465.	3.3	1,074
80	Altered soil carbon dynamics under different land-use regimes in subtropical seasonally-dry forests of central Argentina. Plant and Soil, 2016, 403, 375-387.	1.8	22
81	The rocky path from policy-relevant science to policy implementation — a case study from the South American Chaco. Current Opinion in Environmental Sustainability, 2016, 19, 57-66.	3.1	43
82	The global spectrum of plant form and function. Nature, 2016, 529, 167-171.	13.7	2,022
83	Leaf mechanical resistance in plant trait databases: comparing the results of two common measurement methods. Annals of Botany, 2016, 117, 209-214.	1.4	7
84	<scp>BHPMF</scp> – a hierarchical <scp>B</scp> ayesian approach to gapâ€filling and trait prediction for macroecology and functional biogeography. Global Ecology and Biogeography, 2015, 24, 1510-1521.	2.7	132
85	Land-use intensification effects on functional properties in tropical plant communities. , 2015, , 150521083605001.		0
86	The IPBES Conceptual Framework — connecting nature and people. Current Opinion in Environmental Sustainability, 2015, 14, 1-16.	3.1	1,658
87	Post-burning regeneration of the Chaco seasonally dry forest: germination response of dominant species to experimental heat shock. Oecologia, 2015, 177, 689-699.	0.9	45
88	Optimal strategies for sampling functional traits in speciesâ€rich forests. Functional Ecology, 2015, 29, 1325-1331.	1.7	19
89	A Rosetta Stone for Nature's Benefits to People. PLoS Biology, 2015, 13, e1002040.	2.6	177
90	Worldwide evidence of a unimodal relationship between productivity and plant species richness. Science, 2015, 349, 302-305.	6.0	315

#	Article	IF	CITATIONS
91	The social value of biodiversity and ecosystem services from the perspectives of different social actors. Ecology and Society, 2015, 20, .	1.0	96
92	Linking biodiversity, ecosystem services, and human well-being: three challenges for designing research for sustainability. Current Opinion in Environmental Sustainability, 2015, 14, 76-85.	3.1	559
93	Global effects of land use on local terrestrial biodiversity. Nature, 2015, 520, 45-50.	13.7	2,669
94	Does functional trait diversity predict aboveâ€ground biomass and productivity of tropical forests? Testing three alternative hypotheses. Journal of Ecology, 2015, 103, 191-201.	1.9	265
95	Of carrots and sticks. Nature Geoscience, 2014, 7, 778-779.	5.4	28
96	Which is a better predictor of plant traits: temperature or precipitation?. Journal of Vegetation Science, 2014, 25, 1167-1180.	1.1	323
97	An evolutionary perspective on leaf economics: phylogenetics of leaf mass per area in vascular plants. Ecology and Evolution, 2014, 4, 2799-2811.	0.8	53
98	Approaches to defining a planetary boundary for biodiversity. Global Environmental Change, 2014, 28, 289-297.	3.6	236
99	Large changes in carbon storage under different land-use regimes in subtropical seasonally dry forests of southern South America. Agriculture, Ecosystems and Environment, 2014, 197, 68-76.	2.5	40
100	La transposición del concepto de diversidad biológica. Un estudio sobre los libros de texto de la educación secundaria española. Ensenanza De Las Ciencias, 2014, 32, 285-302.	0.6	7
101	Contrasting functional trait syndromes underlay woody alien success in the same ecosystem. Austral Ecology, 2013, 38, 443-451.	0.7	42
102	Functional traits, the phylogeny of function, and ecosystem service vulnerability. Ecology and Evolution, 2013, 3, 2958-2975.	0.8	424
103	Plant functional diversity and carbon storage – an empirical test in semiâ€arid forest ecosystems. Journal of Ecology, 2013, 101, 18-28.	1.9	273
104	Shrub biomass estimation in the semiarid Chaco forest: a contribution to the quantification of an underrated carbon stock. Annals of Forest Science, 2013, 70, 515-524.	0.8	51
105	New handbook for standardised measurement of plant functional traits worldwide. Australian Journal of Botany, 2013, 61, 167.	0.3	2,818
106	A novel framework for linking functional diversity of plants with other trophic levels for the quantification of ecosystem services. Journal of Vegetation Science, 2013, 24, 942-948.	1.1	209
107	Ecosystem Function Measurement, Terrestrial Communities. , 2013, , 72-89.		7
108	Predictive systems ecology. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20131452.	1.2	114

#	Article	IF	CITATIONS
109	Profile of Sandra M. Diaz. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 11469-11471.	3.3	0
110	Biodiversity and ecosystem services science for a sustainable planet: the DIVERSITAS vision for 2012–20. Current Opinion in Environmental Sustainability, 2012, 4, 101-105.	3.1	62
111	Imanuel Noy-Meir—the Ecologist and the Man. Israel Journal of Ecology and Evolution, 2011, 57, 5-16.	0.2	1
112	Linking functional diversity and social actor strategies in a framework for interdisciplinary analysis of nature's benefits to society. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 895-902.	3.3	216
113	A generic structure for plant trait databases. Methods in Ecology and Evolution, 2011, 2, 202-213.	2.2	78
114	FDiversity: a software package for the integrated analysis of functional diversity. Methods in Ecology and Evolution, 2011, 2, 233-237.	2.2	210
115	Global patterns of leaf mechanical properties. Ecology Letters, 2011, 14, 301-312.	3.0	418
116	Device for the standard measurement of shoot flammability in the field. Austral Ecology, 2011, 36, 821-829.	0.7	59
117	TRY – a global database of plant traits. Global Change Biology, 2011, 17, 2905-2935.	4.2	2,002
118	Effects of arbuscular mycorrhizal colonisation on shoot and root decomposition of different plant species and species mixtures. Soil Biology and Biochemistry, 2011, 43, 466-468.	4.2	12
119	Can ecosystem properties be fully translated into service values? An economic valuation of aquatic plant services. , 2011, 21, 3083-3103.		63
120	Reply to Romero and Agrawal: Unpacking the specific links between biodiversity, ecosystem services, and social diversity is an essential first step. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, E197-E197.	3.3	2
121	Biodiversity targets after 2010. Current Opinion in Environmental Sustainability, 2010, 2, 3-8.	3.1	124
122	Towards an assessment of multiple ecosystem processes and services via functional traits. Biodiversity and Conservation, 2010, 19, 2873-2893.	1.2	759
123	Applied Vegetation Science in 2010: new opportunities for the vegetation scientists. Applied Vegetation Science, 2010, 13, 1-4.	0.9	4
124	The nature of vegetation science. Journal of Vegetation Science, 2010, 21, 1-5.	1.1	13
125	Functional traits of alien plants across contrasting climatic and landâ€use regimes: do aliens join the locals or try harder than them?. Journal of Ecology, 2010, 98, 17-27.	1.9	179
126	Stomatal vs. genome size in angiosperms: the somatic tail wagging the genomic dog?. Annals of Botany, 2010, 105, 573-584.	1.4	121

#	Article	IF	CITATIONS
127	Functional traits and the growth–mortality tradeâ€off in tropical trees. Ecology, 2010, 91, 3664-3674.	1.5	788
128	Mycorrhizal community resilience in response to experimental plant functional type removals in a woody ecosystem. Journal of Ecology, 2009, 97, 1291-1301.	1.9	46
129	A new publisher, and Editors' Award for 2008. Applied Vegetation Science, 2009, 12, 1-2.	0.9	0
130	Twentieth year of the <i>Journal of Vegetation Science</i> : the journal for all vegetation scientists. Journal of Vegetation Science, 2009, 20, 1-2.	1.1	11
131	Biodiversity in forest carbon sequestration initiatives: not just a side benefit. Current Opinion in Environmental Sustainability, 2009, 1, 55-60.	3.1	155
132	Quantifying the Contribution of Organisms to the Provision of Ecosystem Services. BioScience, 2009, 59, 223-235.	2.2	312
133	Science for managing ecosystem services: Beyond the Millennium Ecosystem Assessment. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 1305-1312.	3.3	1,736
134	Incorporating biodiversity in climate change mitigation initiatives. , 2009, , 149-166.		16
135	More than the sum of its parts? Assessing litter heterogeneity effects on the decomposition of litter mixtures through leaf chemistry. Plant and Soil, 2008, 303, 151-159.	1.8	113
136	What Drives Accelerated Land Cover Change in Central Argentina? Synergistic Consequences of Climatic, Socioeconomic, and Technological Factors. Environmental Management, 2008, 42, 181-189.	1.2	216
137	Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecology Letters, 2008, 11, 1065-1071.	3.0	1,913
138	Scaling environmental change through the communityâ€level: a traitâ€based responseâ€andâ€effect framework for plants. Global Change Biology, 2008, 14, 1125-1140.	4.2	981
139	Functional characters, texture and stress. Journal of Vegetation Science, 2008, 19, 1-2.	1.1	2
140	Facilitation and interference underlying the association between the woody invaders Pyracantha angustifolia and Ligustrum lucidum. Applied Vegetation Science, 2007, 10, 211.	0.9	2
141	Two Measurement Methods of Leaf Dry Matter Content Produce Similar Results in a Broad Range of Species. Annals of Botany, 2007, 99, 955-958.	1.4	58
142	Incorporating plant functional diversity effects in ecosystem service assessments. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 20684-20689.	3.3	1,242
143	Direct and indirect effects of climate on decomposition in native ecosystems from central Argentina. Austral Ecology, 2007, 32, 749-757.	0.7	12
144	Plant trait responses to grazing ? a global synthesis. Global Change Biology, 2007, 13, 313-341.	4.2	815

#	Article	IF	CITATIONS
145	Facilitation and interference underlying the association between the woody invaders <i>Pyracantha angustifolia</i> and <i>Ligustrum lucidum</i> . Applied Vegetation Science, 2007, 10, 211-218.	0.9	32
146	Filtering processes in the assembly of plant communities: Are species presence and abundance driven by the same traits?. Journal of Vegetation Science, 2007, 18, 911-920.	1.1	121
147	Plant Functional Types: Are We Getting Any Closer to the Holy Grail?. , 2007, , 149-164.		237
148	Filtering processes in the assembly of plant communities: Are species presence and abundance driven by the same traits?. Journal of Vegetation Science, 2007, 18, 911.	1.1	98
149	Biodiversity Loss Threatens Human Well-Being. PLoS Biology, 2006, 4, e277.	2.6	984
150	Positive interaction between invasive plants: The influence of Pyracantha angustifolia on the recruitment of native and exotic woody species. Austral Ecology, 2006, 31, 293-300.	0.7	74
151	Suites of root traits differ between annual and perennial species growing in the field. New Phytologist, 2006, 170, 357-368.	3.5	273
152	Disentangling the environment and representing vegetation science. Journal of Vegetation Science, 2006, 17, 1-3.	1.1	2
153	Foliar pH as a new plant trait: can it explain variation in foliar chemistry and carbon cycling processes among subarctic plant species and types?. Oecologia, 2006, 147, 315-326.	0.9	88
154	Plant invasions in undisturbed ecosystems: The triggering attribute approach. Journal of Vegetation Science, 2005, 16, 723-728.	1.1	50
155	How much will it cost to save grassland diversity?. Biological Conservation, 2005, 122, 263-273.	1.9	76
156	Specific Leaf Area and Dry Matter Content Estimate Thickness in Laminar Leaves. Annals of Botany, 2005, 96, 1129-1136.	1.4	374
157	GRAZING EFFECTS ON RANGELAND DIVERSITY: A SYNTHESIS OF CONTEMPORARY MODELS. , 2005, 15, 757-773.		375
158	Below-ground biomass and productivity of a grazed site and a neighbouring ungrazed exclosure in a grassland in central Argentina. Austral Ecology, 2004, 29, 201-208.	0.7	102
159	Restoration, succession and climatic change. Applied Vegetation Science, 2004, 7, 151-152.	0.9	0
160	The plant traits that drive ecosystems: Evidence from three continents. Journal of Vegetation Science, 2004, 15, 295-304.	1.1	1,198
161	Ecotones, herbivory, acceptance rate and electronic access. Journal of Vegetation Science, 2004, 15, 1-2.	1.1	0
162	The plant traits that drive ecosystems: Evidence from three continents. Journal of Vegetation Science, 2004, 15, 295.	1.1	332

#	Article	IF	CITATIONS
163	Mycorrhizal colonization mediated by species interactions in arctic tundra. Oecologia, 2003, 137, 399-404.	0.9	35
164	Leaf traits and herbivore selection in the field and in cafeteria experiments. Austral Ecology, 2003, 28, 642-650.	0.7	180
165	The mycorrhizal dependence of subordinates determines the effect of arbuscular mycorrhizal fungi on plant diversity. Ecology Letters, 2003, 6, 388-391.	3.0	101
166	Seed bank dynamics in tallâ€ŧussock grasslands along an altitudinal gradient. Journal of Vegetation Science, 2003, 14, 253-258.	1.1	61
167	Functional diversity revealed by removal experiments. Trends in Ecology and Evolution, 2003, 18, 140-146.	4.2	395
168	A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Australian Journal of Botany, 2003, 51, 335.	0.3	3,071
169	Foliar resistance to simulated extreme temperature events in contrasting plant functional and chorological types. Global Change Biology, 2002, 8, 1139-1145.	4.2	24
170	Leaf traits as indicators of resourceâ€use strategy in floras with succulent species. New Phytologist, 2002, 154, 147-157.	3.5	235
171	Does hairiness matter in Harare? Resolving controversy in global comparisons of plant trait responses to ecosystem disturbance. New Phytologist, 2002, 154, 7-9.	3.5	32
172	Does Biodiversity Matter to Terrestrial Ecosystem Processes and Services?. Global Change - the IGBP Series, 2002, , 165-167.	2.1	2
173	Range management and plant functional types , 2002, , 81-100.		6
174	Vive la différence: plant functional diversity matters to ecosystem processes. Trends in Ecology and Evolution, 2001, 16, 646-655.	4.2	2,457
175	Ecosystem Function Measurement, Terrestrial Communities. , 2001, , 321-344.		3
176	Edaphic patchiness influences grassland regeneration from the soil seed-bank in mountain grasslands of central Argentina. Austral Ecology, 2001, 26, 205-212.	0.7	41
177	Can grazing response of herbaceous plants be predicted from simple vegetative traits?. Journal of Applied Ecology, 2001, 38, 497-508.	1.9	390
178	Consequences of changing biodiversity. Nature, 2000, 405, 234-242.	13.7	3,209
179	Title is missing!. Plant and Soil, 2000, 218/2, 21-30.	1.8	322
180	Autumn leaf colours as indicators of decomposition rate in sycamore (Acer pseudoplatanus L.). Plant and Soil, 2000, 225, 33-38.	1.8	20

#	Article	IF	CITATIONS
181	Leaf structure and defence control litter decomposition rate across species and life forms in regional floras on two continents. New Phytologist, 1999, 143, 191-200.	3.5	424
182	Plant functional types and disturbance dynamics – Introduction. Journal of Vegetation Science, 1999, 10, 603-608.	1.1	89
183	Plant functional traits, ecosystem structure and landâ€use history along a climatic gradient in centralâ€western Argentina. Journal of Vegetation Science, 1999, 10, 651-660.	1.1	201
184	Seed size and shape are good predictors of seed persistence in soil in temperate mountain grasslands of Argentina. Seed Science Research, 1999, 9, 341-345.	0.8	127
185	Functional implications of trait–environment linkages in plant communities. , 1999, , 338-362.		77
186	Plant functional traits and environmental filters at a regional scale. Journal of Vegetation Science, 1998, 9, 113-122.	1.1	653
187	The impact of elevated CO 2 on plant-herbivore interactions: experimental evidence of moderating effects at the community level. Oecologia, 1998, 117, 177-186.	0.9	81
188	Floristic composition, biomass, and aboveground net plant production in grazed and protected sites in a mountain grassland of central Argentina. Acta Oecologica, 1998, 19, 97-105.	0.5	92
189	Plant functional types and ecosystem function in relation to global change. Journal of Vegetation Science, 1997, 8, 463-474.	1.1	372
190	Plant functional types and ecosystem function in relation to global change. Journal of Vegetation Science, 1997, 8, 463-474.	1.1	577
191	Effects of elevated [CO2] at the community level mediated by root symbionts. Plant and Soil, 1995, 187, 309-320.	1.8	51
192	The influence of habitat structure on arthropod diversity in Argentine semi-arid Chaco forest. Journal of Vegetation Science, 1995, 6, 349-356.	1.1	97
193	Elevated CO 2 Responsiveness, Interactions at the Community Level and Plant Functional Types. Journal of Biogeography, 1995, 22, 289.	1.4	40
194	Community structure in montane grasslands of central Argentina in relation to land use. Journal of Vegetation Science, 1994, 5, 483-488.	1.1	87
195	Grazing and the Phenology of Flowering and Fruiting in a Montane Grassland in Argentina: A Niche Approach. Oikos, 1994, 70, 287.	1.2	28
196	Evidence of a feedback mechanism limiting plant response to elevated carbon dioxide. Nature, 1993, 364, 616-617.	13.7	532
197	Morphological analysis of herbaceous communities under different grazing regimes. Journal of Vegetation Science, 1992, 3, 689-696.	1.1	146
198	The vascular flora and vegetation of granitic outcrops in the upper Cordoba mountains, Argentina. Phytocoenologia, 1990, 19, 267-281.	1.2	17

#	Article	IF	CITATIONS
199	Estudios fitosociológicos en los Pastizales de las Sierras de Córdoba, Argentina. Las comunidades de la Pampa de San Luis. Phytocoenologia, 1989, 17, 569-592.	1.2	10
200	Research priorities for maintaining biodiversity's contributions to people in LatinÂAmerica. UCL Open Environment, 0, 1, .	0.0	7