Simone L Portalupi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7187101/publications.pdf Version: 2024-02-01

SIMONE L PORTALURI

#	Article	IF	CITATIONS
1	Thin-film InGaAs metamorphic buffer for telecom C-band InAs quantum dots and optical resonators on GaAs platform. Nanophotonics, 2022, 11, 1109-1116.	2.9	20
2	Optical charge injection and coherent control of a quantum-dot spin-qubit emitting at telecom wavelengths. Nature Communications, 2022, 13, 748.	5.8	19
3	Integrated Optoelectronic Devices Using Labâ€Onâ€Fiber Technology. Advanced Materials Technologies, 2022, 7, .	3.0	8
4	Quantum Dot Single-Photon Emission Coupled into Single-Mode Fibers with 3D Printed Micro-Objectives. , 2021, , .		0
5	3D printed micro-optics for quantum technology: Optimised coupling of single quantum dot emission into a single-mode fibre. Light Advanced Manufacturing, 2021, 2, 103.	2.2	26
6	Delaying two-photon Fock states in hot cesium vapor using single photons generated on demand from a semiconductor quantum dot. Physical Review B, 2021, 103, .	1.1	0
7	Efficient and stable fiber-to-chip coupling enabling the injection of telecom quantum dot photons into a silicon photonic chip. , 2021, , .		Ο
8	Investigation of Resonance Fluorescence in the Telecom C-Band from In(Ga)As Quantum Dots. , 2021, , .		0
9	Resonance fluorescence of single In(Ga)As quantum dots emitting in the telecom C-band. Applied Physics Letters, 2021, 118, .	1.5	19
10	Highly Polarized Single Photons from Strain-Induced Quasi-1D Localized Excitons in WSe ₂ . Nano Letters, 2021, 21, 7175-7182.	4.5	33
11	Bright Purcell Enhanced Single-Photon Source in the Telecom O-Band Based on a Quantum Dot in a Circular Bragg Grating. Nano Letters, 2021, 21, 7740-7745.	4.5	39
12	Achieving stable fiber coupling of quantum dot telecom C-band single-photons to an SOI photonic device. Applied Physics Letters, 2021, 119, .	1.5	8
13	Ultra-Efficient Silicon-on-Insulator Grating Couplers With Backside Metal Mirrors. IEEE Journal of Selected Topics in Quantum Electronics, 2020, 26, 1-6.	1.9	31
14	Controllable Delay and Polarization Routing of Single Photons. Advanced Quantum Technologies, 2020, 3, 1900057.	1.8	5
15	Perspective of self-assembled InGaAs quantum-dots for multi-source quantum implementations. Applied Physics Letters, 2020, 117, 030501.	1.5	18
16	Quantum dot single-photon emission coupled into single-mode fibers with 3D printed micro-objectives. APL Photonics, 2020, 5, .	3.0	35
17	Characterization of spectral diffusion by slow-light photon-correlation spectroscopy. Physical Review B, 2020, 101, .	1.1	9
18	Purcell-enhanced single-photon emission from a strain-tunable quantum dot in a cavity-waveguide device. Applied Physics Letters, 2020, 117, .	1.5	16

SIMONE L PORTALUPI

#	Article	IF	CITATIONS
19	Quantum dot-based broadband optical antenna for efficient extraction of single photons in the telecom O-band. Optics Express, 2020, 28, 19457.	1.7	16
20	Realization of a tunable fiber-based double cavity system. Physical Review B, 2020, 102, .	1.1	5
21	Coherence and indistinguishability of highly pure single photons from non-resonantly and resonantly excited telecom C-band quantum dots. Applied Physics Letters, 2019, 115, .	1.5	48
22	Semiconductor Quantum Dots for Integrated Quantum Photonics. Advanced Quantum Technologies, 2019, 2, 1900020.	1.8	45
23	Highly indistinguishable single photons from incoherently excited quantum dots. Physical Review B, 2019, 100, .	1.1	39
24	Semiconductor Quantum Dots for Integrated Quantum Photonics (Adv. Quantum Technol. 9/2019). Advanced Quantum Technologies, 2019, 2, 1970053.	1.8	3
25	Tuning emission energy and fine structure splitting in quantum dots emitting in the telecom O-band. AIP Advances, 2019, 9, .	0.6	7
26	Deterministic fabrication of circular Bragg gratings coupled to single quantum emitters via the combination of <i>in-situ</i> optical lithography and electron-beam lithography. Journal of Applied Physics, 2019, 125, .	1.1	27
27	Single-photon light-emitting diodes based on preselected quantum dots using a deterministic lithography technique. Applied Physics Letters, 2019, 114, .	1.5	8
28	InAs quantum dots grown on metamorphic buffers as non-classical light sources at telecom C-band: a review. Semiconductor Science and Technology, 2019, 34, 053001.	1.0	47
29	Two-photon interference in the telecom C-band after frequency conversion of photons from remote quantum emitters. Nature Nanotechnology, 2019, 14, 23-26.	15.6	82
30	Faraday Filtering on the Cs-D1-Line for Quantum Hybrid Systems. IEEE Photonics Technology Letters, 2018, 30, 2083-2086.	1.3	4
31	Fully On-Chip Single-Photon Hanbury-Brown and Twiss Experiment on a Monolithic Semiconductor–Superconductor Platform. Nano Letters, 2018, 18, 6892-6897.	4.5	61
32	Structural and optical properties of InAs/(In)GaAs/GaAs quantum dots with single-photon emission in the telecom C-band up to 77 K. Physical Review B, 2018, 98, .	1.1	41
33	Overcoming correlation fluctuations in two-photon interference experiments with differently bright and independently blinking remote quantum emitters. Physical Review B, 2018, 97, .	1.1	15
34	Pure single-photon emission from In(Ga)As QDs in a tunable fiber-based external mirror microcavity. Quantum Science and Technology, 2018, 3, 034009.	2.6	10
35	Two-photon interference in an atom–quantum dot hybrid system. Optica, 2018, 5, 367.	4.8	29
36	Deterministic integration and optical characterization of telecom O-band quantum dots embedded into wet-chemically etched Gaussian-shaped microlenses. Applied Physics Letters, 2018, 113, .	1.5	33

SIMONE L PORTALUPI

#	Article	IF	CITATIONS
37	Single-photon and polarization-entangled photon emission from InAs quantum dots in the telecom C-band. , 2018, , .		1
38	Bragg grating cavities embedded into nano-photonic waveguides for Purcell enhanced quantum dot emission. Optics Express, 2018, 26, 30614.	1.7	16
39	Combining in-situ lithography with 3D printed solid immersion lenses for single quantum dot spectroscopy. Scientific Reports, 2017, 7, 39916.	1.6	57
40	Temperature-dependent properties of single long-wavelength InGaAs quantum dots embedded in a strain reducing layer. Journal of Applied Physics, 2017, 121, 184302.	1.1	18
41	Polarization-entangled photons from an InGaAs-based quantum dot emitting in the telecom C-band. Applied Physics Letters, 2017, 111, .	1.5	60
42	Single-photon emission at 1.55 <i>μ</i> m from MOVPE-grown InAs quantum dots on InGaAs/GaAs metamorphic buffers. Applied Physics Letters, 2017, 111, .	1.5	95
43	Resonantly Excited Quantum Dots: Superior Non-classical Light Sources for Quantum Information. Nano-optics and Nanophotonics, 2017, , 77-121.	0.2	0
44	Low-noise quantum frequency down-conversion of indistinguishable photons. Optics Express, 2016, 24, 22250.	1.7	27
45	Simultaneous Faraday filtering of the Mollow triplet sidebands with the Cs-D1 clock transition. Nature Communications, 2016, 7, 13632.	5.8	43
46	Generation, guiding and splitting of triggered single photons from a resonantly excited quantum dot in a photonic circuit. Optics Express, 2016, 24, 3089.	1.7	30
47	Spatial and Fourier-space distribution of confined optical Tamm modes. New Journal of Physics, 2016, 18, 083018.	1.2	3
48	Cavity-enhanced simultaneous dressing of quantum dot exciton and biexciton states. Physical Review B, 2016, 93, .	1.1	36
49	Probing different regimes of strong field light–matter interaction with semiconductor quantum dots and few cavity photons. New Journal of Physics, 2016, 18, 123031.	1.2	9
50	Near-optimal single-photon sources in the solid state. Nature Photonics, 2016, 10, 340-345.	15.6	858
51	Confined Visible Optical Tamm States. Journal of Electronic Materials, 2016, 45, 2307-2310.	1.0	2
52	Cavity-enhanced two-photon interference using remote quantum dot sources. Physical Review B, 2015, 92, .	1.1	60
53	On-chip beamsplitter operation on single photons from quasi-resonantly excited quantum dots embedded in GaAs rib waveguides. Applied Physics Letters, 2015, 107, .	1.5	30
54	Bright Phonon-Tuned Single-Photon Source. Nano Letters, 2015, 15, 6290-6294.	4.5	34

#	Article	IF	CITATIONS
55	Quantum dot based quantum optics. , 2015, , .		0
56	Toward a quantum network based on semiconductor quantum dots. , 2014, , .		0
57	Deterministic and electrically tunable bright single-photon source. Nature Communications, 2014, 5, 3240.	5.8	110
58	Influence of the Purcell effect on the purity of bright single photon sources. Applied Physics Letters, 2013, 103, .	1.5	16
59	Entangling Quantum-Logic Gate Operated with an Ultrabright Semiconductor Single-Photon Source. Physical Review Letters, 2013, 110, 250501.	2.9	44
60	Room temperature allâ€silicon photonic crystal nanocavity light emitting diode at subâ€bandgap wavelengths. Laser and Photonics Reviews, 2013, 7, 114-121.	4.4	67
61	Novel Dispersion-Adapted Photonic Crystal Cavity With Improved Disorder Stability. IEEE Journal of Quantum Electronics, 2012, 48, 1177-1183.	1.0	32
62	Novel photonic crystal nanocavity design with high tolerance to disorder. , 2012, , .		0
63	Enhancement of room temperature sub-bandgap light emission from silicon photonic crystal nanocavity by Purcell effect. Physica B: Condensed Matter, 2012, 407, 4027-4031.	1.3	17
64	Enhancing Optical Functionalities of Silicon with Photonic Crystal Nanocavities. , 2012, , .		0
65	Deliberate versus intrinsic disorder in photonic crystal nanocavities investigated by resonant light scattering. Physical Review B, 2011, 84, .	1.1	39
66	Light generation in silicon photonic crystal cavities. , 2011, , .		0
67	Room-temperature emission at telecom wavelengths from silicon photonic crystal nanocavities. Applied Physics Letters, 2011, 98, 201106.	1.5	60
68	Enhanced Light Emission from Silicon using Photonic Crystal Nanocavities. , 2011, , .		0
69	Planar photonic crystal cavities with far-field optimization for high coupling efficiency and quality factor. Optics Express, 2010, 18, 16064.	1.7	139
70	Light scattering and Fano resonances in high-Q photonic crystal nanocavities. Applied Physics Letters, 2009, 94, .	1.5	250