Ashok Kumar Nanjundan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/718703/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Progress in Solid Polymer Electrolytes for Lithiumâ€lon Batteries and Beyond. Small, 2022, 18, e2103617.	5.2	107
2	Gram-Scale production of Cu3P-Cu2O Janus nanoparticles into nitrogen and phosphorous doped porous carbon framework as bifunctional electrocatalysts for overall water splitting. Chemical Engineering Journal, 2022, 427, 130946.	6.6	88
3	Efficient lithium-ion storage using a heterostructured porous carbon framework and its <i>in situ</i> transmission electron microscopy study. Chemical Communications, 2022, 58, 863-866.	2.2	42
4	Hierarchical Porous Nitrogenâ€Doped Sprayâ€Dried Graphene for High Performance Capacitive Deionization. Advanced Energy and Sustainability Research, 2022, 3, .	2.8	7
5	Lignocellulosic plant cell wall variation influences the structure and properties of hard carbon derived from sorghum biomass. Carbon Trends, 2022, 7, 100168.	1.4	10
6	Ultra-stable sodium ion storage of biomass porous carbon derived from sugarcane. Chemical Engineering Journal, 2022, 445, 136344.	6.6	56
7	Large interspaced layered potassium niobate nanosheet arrays as an ultrastable anode for potassium ion capacitor. Energy Storage Materials, 2021, 34, 475-482.	9.5	33
8	Nanocellulose-based carbon as electrode materials for sodium-ion batteries. , 2021, , 295-312.		4
9	Sorghum biomass-derived porous carbon electrodes for capacitive deionization and energy storage. Microporous and Mesoporous Materials, 2021, 312, 110757.	2.2	63
10	An Overview of Celluloseâ€Based Nanogenerators. Advanced Materials Technologies, 2021, 6, 2001164.	3.0	31
11	Thermal Reductive Perforation of Graphene Cathode for Highâ€Performance Aluminumâ€ion Batteries. Advanced Functional Materials, 2021, 31, 2010569.	7.8	41
12	Celluloseâ€Based Nanogenerators: An Overview of Celluloseâ€Based Nanogenerators (Adv. Mater.) Tj ETQq0 0 (J rgBT ∕Ov	erlgck 10 Tf 5
13	Nitrogenization of Biomass-Derived Porous Carbon Microtubes Promotes Capacitive Deionization Performance. Bulletin of the Chemical Society of Japan, 2021, 94, 1645-1650.	2.0	19
14	KOH-Activated Hollow ZIF-8 Derived Porous Carbon: Nanoarchitectured Control for Upgraded Capacitive Deionization and Supercapacitor. ACS Applied Materials & amp; Interfaces, 2021, 13, 52034-52043.	4.0	149
15	Multi-heteroatom doped nanocarbons for high performance double carbon potassium ion capacitor. Electrochimica Acta, 2021, 389, 138717.	2.6	24

16	Programmed design of selectively-functionalized wood aerogel: Affordable and mildew-resistant solar-driven evaporator. Nano Energy, 2021, 87, 106146.	8.2	77	
17	Tunable Graphene Oxide Nanofiltration Membrane for Effective Dye/Salt Separation and Desalination.	4.0	34	

¹⁸Rational Design of Graphene Derivatives for Electrochemical Reduction of Nitrogen to Ammonia. ACS
Nano, 2021, 15, 17275-17298.7.348

#	Article	IF	CITATIONS
19	Self-assembly of nickel phosphate-based nanotubes into two-dimensional crumpled sheet-like architectures for high-performance asymmetric supercapacitors. Nano Energy, 2020, 67, 104270.	8.2	187
20	Synthesis of Uniformly Sized Mesoporous Silver Films and Their SERS Application. Journal of Physical Chemistry C, 2020, 124, 23730-23737.	1.5	47
21	Ammonia gas sensing properties of Al doped ZnO thin films. Sensors and Actuators A: Physical, 2020, 313, 112193.	2.0	34
22	Nitrogen-Doped Mesoporous Carbon Microspheres by Spray Drying-Vapor Deposition for High-Performance Supercapacitor. Frontiers in Chemistry, 2020, 8, 592904.	1.8	6
23	True Meaning of Pseudocapacitors and Their Performance Metrics: Asymmetric versus Hybrid Supercapacitors. Small, 2020, 16, e2002806.	5.2	405
24	Solid-state lithium–sulfur batteries: Advances, challenges and perspectives. Materials Today, 2020, 40, 114-131.	8.3	100
25	Potassiumâ€lon Storage in Celluloseâ€Derived Hard Carbon: The Role of Functional Groups. Batteries and Supercaps, 2020, 3, 953-960.	2.4	24
26	Sandwich-Structured Ordered Mesoporous Polydopamine/MXene Hybrids as High-Performance Anodes for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2020, 12, 14993-15001.	4.0	48
27	Graphene and molybdenum disulphide hybrids for energy applications: an update. Materials Today Advances, 2020, 6, 100053.	2.5	24
28	Uncovering giant nanowheels for magnesium ion–based batteries. Materials Today Chemistry, 2020, 16, 100221.	1.7	6
29	Synthesis of Multipleâ€Twinned Pd Nanoparticles Anchored on Graphitic Carbon Nanosheets for Use as Highlyâ€Active Multifunctional Electrocatalyst in Formic Acid and Methanol Oxidation Reactions. Advanced Materials Interfaces, 2020, 7, 2000142.	1.9	24
30	Modulating the Void Space of Nitrogenâ€Doped Hollow Mesoporous Carbon Spheres for Lithium‣ulfur Batteries. ChemNanoMat, 2020, 6, 925-929.	1.5	7
31	Ultralong storage life of Li/MnO2 primary batteries using MnO2-(CFx)n with C–F semi-ionic bond as cathode materials. Electrochimica Acta, 2019, 320, 134618.	2.6	26
32	Auto-programmed heteroarchitecturing: Self-assembling ordered mesoporous carbon between two-dimensional Ti3C2Tx MXene layers. Nano Energy, 2019, 65, 103991.	8.2	70
33	Reduced Graphene Oxide (rGO) Prepared by Metalâ€Induced Reduction of Graphite Oxide: Improved Conductive Behavior of a Poly(methyl methacrylate) (PMMA)/rGO Composite. ChemistrySelect, 2019, 4, 7954-7958.	0.7	5
34	Molecular Design Strategies for Electrochemical Behavior of Aromatic Carbonyl Compounds in Organic and Aqueous Electrolytes. Advanced Science, 2019, 6, 1900431.	5.6	95
35	Modulating Ion Diffusivity and Electrode Conductivity of Carbon Nanotube@Mesoporous Carbon Fibers for High Performance Aluminum–Selenium Batteries. Small, 2019, 15, e1904310.	5.2	33

Advanced Carbon Materials for Electrochemical Energy Storage. , 2019, , 385-418.

#	Article	IF	CITATIONS
37	Softâ€Templated Synthesis of Sheetâ€Like Nanoporous Nitrogenâ€Doped Carbons for Electrochemical Supercapacitors. ChemElectroChem, 2019, 6, 1901-1907.	1.7	7
38	Pore-tuning to boost the electrocatalytic activity of polymeric micelle-templated mesoporous Pd nanoparticles. Chemical Science, 2019, 10, 4054-4061.	3.7	175
39	Electrochemical Characteristics of Cobaltosic Oxide in Organic Electrolyte According to Bode Plots: Doubleâ€Layer Capacitance and Pseudocapacitance. ChemElectroChem, 2019, 6, 2456-2463.	1.7	17
40	Double-Layered Modified Separators as Shuttle Suppressing Interlayers for Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2019, 11, 541-549.	4.0	74
41	Carbon nanoparticle-based three-dimensional binder-free anode for rechargeable alkali-ion batteries. Materials Today Energy, 2018, 8, 29-36.	2.5	13
42	Phosphorus-Based Mesoporous Materials for Energy Storage and Conversion. Joule, 2018, 2, 2289-2306.	11.7	65
43	From an Fe ₂ P ₃ complex to FeP nanoparticles as efficient electrocatalysts for water-splitting. Chemical Science, 2018, 9, 8590-8597.	3.7	103
44	High surface area nanoporous carbon derived from high quality jute from Bangladesh. Materials Chemistry and Physics, 2018, 216, 491-495.	2.0	24
45	Encapsulation of NiCo ₂ O ₄ in nitrogen-doped reduced graphene oxide for sodium ion capacitors. Journal of Materials Chemistry A, 2018, 6, 14146-14154.	5.2	46
46	Grapheneâ€Wrapped Nanoporous Nickelâ€Cobalt Oxide Flakes for Electrochemical Supercapacitors. ChemistrySelect, 2018, 3, 8505-8510.	0.7	11
47	Pseudocapacitive behavior of the Fe ₂ O ₃ anode and its contribution to high reversible capacity in lithium ion batteries. Nanoscale, 2018, 10, 18010-18018.	2.8	58
48	Synthesis of Hollow Co–Fe Prussian Blue Analogue Cubes by using Silica Spheres as a Sacrificial Template. ChemistryOpen, 2018, 7, 599-603.	0.9	27
49	Controlled synthesis of mesoporous nitrogen-doped carbons with highly ordered two-dimensional hexagonal mesostructures and their chemical activation. Nanoscale, 2018, 10, 12398-12406.	2.8	32
50	Spinifex nanocellulose derived hard carbon anodes for high-performance sodium-ion batteries. Sustainable Energy and Fuels, 2017, 1, 1090-1097.	2.5	48
51	Porphyrin–graphene oxide frameworks for long life sodium ion batteries. Journal of Materials Chemistry A, 2017, 5, 13204-13211.	5.2	40
52	A Hybrid Mg ²⁺ /Li ⁺ Battery Based on Interlayerâ€Expanded MoS ₂ /Graphene Cathode. Advanced Energy Materials, 2017, 7, 1700317.	10.2	151
53	Capacitance-enhanced sodium-ion storage in nitrogen-rich hard carbon. Journal of Materials Chemistry A, 2017, 5, 22186-22192.	5.2	85
54	Pre-sodiated nickel cobaltite for high-performance sodium-ion capacitors. Journal of Power Sources, 2017, 362, 358-365.	4.0	30

Ashok Kumar Nanjundan

#	Article	IF	CITATIONS
55	Electrocapacitive properties of nitrogen-containing porous carbon derived from cellulose. Journal of Power Sources, 2017, 360, 634-641.	4.0	29
56	Lithium-storage Properties of Gallic Acid-Reduced Graphene Oxide and Silicon-Graphene Composites. Electrochimica Acta, 2016, 212, 473-480.	2.6	34
57	Biomass derived carbon nanoparticle as anodes for high performance sodium and lithium ion batteries. Nano Energy, 2016, 26, 346-352.	8.2	283
58	Functionalization of chemically derived graphene for improving its electrocapacitive energy storage properties. Energy and Environmental Science, 2016, 9, 1891-1930.	15.6	205
59	Sodium ion storage in reduced graphene oxide. Electrochimica Acta, 2016, 214, 319-325.	2.6	49
60	Doped graphene supercapacitors. Nanotechnology, 2015, 26, 492001.	1.3	86
61	Graphene and molybdenum disulfide hybrids: synthesis and applications. Materials Today, 2015, 18, 286-298.	8.3	145
62	Graphene supported non-precious metal-macrocycle catalysts for oxygen reduction reaction in fuel cells. Nanoscale, 2015, 7, 6991-6998.	2.8	58
63	Iron metal induced deoxygenation of graphite oxide nanosheets-insights on the capacitive properties of binder-free electrodes. RSC Advances, 2015, 5, 23367-23373.	1.7	7
64	Electrochemical supercapacitors from conducting polyaniline–graphene platforms. Chemical Communications, 2014, 50, 6298.	2.2	152
65	Nitrogen-doped reduced graphene oxide electrodes for electrochemical supercapacitors. Physical Chemistry Chemical Physics, 2014, 16, 2280.	1.3	87
66	Functionalisation of graphene surfaces with downstream plasma treatments. Carbon, 2013, 54, 283-290.	5.4	77
67	Synthesis of high quality reduced graphene oxide nanosheets free of paramagnetic metallic impurities. Journal of Materials Chemistry A, 2013, 1, 2789-2794.	5.2	93
68	Plasma-assisted simultaneous reduction and nitrogen doping of graphene oxide nanosheets. Journal of Materials Chemistry A, 2013, 1, 4431.	5.2	198
69	Nanosiliconâ€Based Thick Negative Composite Electrodes for Lithium Batteries with Graphene as Conductive Additive. Advanced Energy Materials, 2013, 3, 1351-1357.	10.2	66
70	Polyaniline-Grafted Reduced Graphene Oxide for Efficient Electrochemical Supercapacitors. ACS Nano, 2012, 6, 1715-1723.	7.3	807
71	Electrochemical supercapacitors based on a novel graphene/conjugated polymer composite system. Journal of Materials Chemistry, 2012, 22, 12268.	6.7	59
72	Highly Conducting and Flexible Few-Walled Carbon Nanotube Thin Film. ACS Nano, 2011, 5, 2324-2331.	7.3	54

#	Article	IF	CITATIONS
73	Preparation and characterization of carbon nanotube-grafted-chitosan – Natural hydroxyapatite composite for bone tissue engineering. Carbohydrate Polymers, 2011, 83, 569-577.	5.1	235
74	Immobilization of Mn-Doped ZnS Quantum Dots on Surface Functionalized Multi-Walled Carbon Nanotubes: Studies on their Optical Properties. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2011, 41, 121-126.	0.6	4
75	Facile preparation of boronic acid functionalized Fe-core/Au-shell magnetic nanoparticles for covalent immobilization of adenosine. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 370, 95-101.	2.3	24
76	Fabrication of conducting polyaniline–multiwalled carbon nanotube nanocomposites and their use as templates for loading gold nanoparticles. Polymer International, 2010, 59, 1367-1374.	1.6	14
77	Covalent functionalization of graphene oxide with polyglycerol and their use as templates for anchoring magnetic nanoparticles. Synthetic Metals, 2010, 160, 2028-2036.	2.1	114
78	FUNCTIONALIZATION OF MULTI-WALLED CARBON NANOTUBES WITH CYSTEAMINE FOR THE CONSTRUCTION OF CNT/GOLD NANOPARTICLE HYBRID NANOSTRUCTURES. Surface Review and Letters, 2009, 16, 487-492.	0.5	15
79	Surface functionalization of multiwalled carbon nanotubes with poly(3,4-propylenedioxythiophene) and preparation of its random copolymers: new hybrid materials. Colloid and Polymer Science, 2009, 287, 97-102.	1.0	25
80	Novel amino-acid-based polymer/multi-walled carbon nanotube bio-nanocomposites: highly water dispersible carbon nanotubes decorated with gold nanoparticles. Nanotechnology, 2009, 20, 225608.	1.3	28
81	Architectures of Bilayered Gold Nanoparticles on UV Cross-Linked Poly(4-vinylpyridine) Thin Films. Journal of Nanoscience and Nanotechnology, 2009, 9, 7025-8.	0.9	0
82	Preparation of poly 2-hydroxyethyl methacrylate functionalized carbon nanotubes as novel biomaterial nanocomposites. European Polymer Journal, 2008, 44, 579-586.	2.6	68
83	A facile synthesis, antibacterial, and antitubercular studies of some piperidin-4-one and tetrahydropyridine derivatives. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 6542-6548.	1.0	83
84	r-2,c-6-Bis(3-methoxyphenyl)-t-3,t-5-dimethylpiperidin-4-one. Acta Crystallographica Section E: Structure Reports Online, 2008, 64, o1631-o1631.	0.2	3
85	STUDY ON CLUSTER FORMATION OF POLY 2-HYDROXYETHYL METHACRYLATE FUNCTIONALIZED SINGLE-WALLED CARBON NANOTUBES. Surface Review and Letters, 2008, 15, 689-697.	0.5	6
86	Immobilization of Tris-(8-hydroxyquinoline) aluminum onto P4VP polymer thin films by UV irradiation cross-linking. European Polymer Journal, 2007, 43, 5034-5039.	2.6	10