
Jia-He Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7187007/publications.pdf Version: 2024-02-01

Ιιλ-Ηε \λ/ιι

#	Article	IF	CITATIONS
1	Cotton miR393-TIR1 Module Regulates Plant Defense Against Verticillium dahliae via Auxin Perception and Signaling. Frontiers in Plant Science, 2022, 13, 888703.	3.6	5
2	Cotton miR319b-Targeted TCP4-Like Enhances Plant Defense Against Verticillium dahliae by Activating GhICS1 Transcription Expression. Frontiers in Plant Science, 2022, 13, .	3.6	8
3	Growth and arthropod community characteristics of transgenic poplar 741 in an experimental forest. Industrial Crops and Products, 2021, 162, 113284.	5.2	2
4	Sandbur Drought Tolerance Reflects Phenotypic Plasticity Based on the Accumulation of Sugars, Lipids, and Flavonoid Intermediates and the Scavenging of Reactive Oxygen Species in the Root. International Journal of Molecular Sciences, 2021, 22, 12615.	4.1	4
5	A Cotton Lignin Biosynthesis Gene, GhLAC4, Fine-Tuned by ghr-miR397 Modulates Plant Resistance Against Verticillium dahliae. Frontiers in Plant Science, 2021, 12, 743795.	3.6	28
6	The Cotton miR477- <i>CBP60A</i> Module Participates in Plant Defense Against <i>Verticillium dahlia</i> . Molecular Plant-Microbe Interactions, 2020, 33, 624-636.	2.6	41
7	Overexpressing rice lesion simulating disease 1-like gene (OsLOL1) in Gossypium hirsutum promotes somatic embryogenesis and plant regeneration. Journal of Cotton Research, 2020, 3, .	2.5	2
8	Gossypium hirsutum Salt Tolerance Is Enhanced by Overexpression of G. arboreum JAZ1. Frontiers in Bioengineering and Biotechnology, 2020, 8, 157.	4.1	20
9	The ghr-miR164 and GhNAC100 modulate cotton plant resistance against Verticillium dahlia. Plant Science, 2020, 293, 110438.	3.6	39
10	Cotton plant defence against a fungal pathogen is enhanced by expanding BLADE-ON-PETIOLE1 expression beyond lateral-organ boundaries. Communications Biology, 2019, 2, 238.	4.4	20
11	Cotton WATs Modulate SA Biosynthesis and Local Lignin Deposition Participating in Plant Resistance Against Verticillium dahliae. Frontiers in Plant Science, 2019, 10, 526.	3.6	52
12	The Cotton Apoplastic Protein CRR1 Stabilizes Chitinase 28 to Facilitate Defense against the Fungal Pathogen <i>Verticillium dahliae</i> . Plant Cell, 2019, 31, 520-536.	6.6	85
13	Development of Insect-Resistant Transgenic Cotton with Chimeric TVip3A* Accumulating in Chloroplasts. Methods in Molecular Biology, 2019, 1902, 281-292.	0.9	1
14	iTRAQ-based proteomics analysis of autophagy-mediated immune responses against the vascular fungal pathogen <i>Verticillium dahliae</i> in <i>Arabidopsis</i> . Autophagy, 2018, 14, 598-618.	9.1	35
15	Double-Stranded RNAs High-Efficiently Protect Transgenic Potato from <i>Leptinotarsa decemlineata</i> by Disrupting Juvenile Hormone Biosynthesis. Journal of Agricultural and Food Chemistry, 2018, 66, 11990-11999.	5.2	20
16	Simultaneous Editing of Two Copies of Gh14-3-3d Confers Enhanced Transgene-Clean Plant Defense Against Verticillium dahliae in Allotetraploid Upland Cotton. Frontiers in Plant Science, 2018, 9, 842.	3.6	104
17	Functional characterization of a novel jasmonate ZIM-domain interactor (NINJA) from upland cotton () Tj ETQq1	1 0.78431 5.8	4 rgBT /Ove
18	iTRAQ-based proteomic analysis of defence responses triggered by the necrotrophic pathogen	24	28

18 Rhizoctonia solani in cotton. Journal of Proteomics, 2017, 152, 226-235. 2.4 28

JIA-HE WU

#	Article	IF	CITATIONS
19	Analysis of the Role of the Drought-Induced Gene DRI15 and Salinity-Induced Gene SI1 in Alternanthera philoxeroides Plasticity Using a Virus-Based Gene Silencing Tool. Frontiers in Plant Science, 2017, 8, 1579.	3.6	7
20	Functional Characterization of a Dihydroflavanol 4-Reductase from the Fiber of Upland Cotton (Gossypium hirsutum). Molecules, 2016, 21, 32.	3.8	13
21	iTRAQ Protein Profile Differential Analysis of Dormant and Germinated Grassbur Twin Seeds Reveals that Ribosomal Synthesis and Carbohydrate Metabolism Promote Germination Possibly Through the PI3K Pathway. Plant and Cell Physiology, 2016, 57, 1244-1256.	3.1	8
22	The cotton MYB108 forms a positive feedback regulation loop with CML11 and participates in the defense response against <i>Verticillium dahliae</i> infection. Journal of Experimental Botany, 2016, 67, 1935-1950.	4.8	87
23	Development of selectable marker-free transgenic potato plants expressing <i>cry3A</i> against the Colorado potato beetle (<i>Leptinotarsa decemlineata</i> Say). Pest Management Science, 2016, 72, 497-504.	3.4	15
24	Transgenic potato plants expressing cry3A gene confer resistance to Colorado potato beetle. Comptes Rendus - Biologies, 2015, 338, 443-450.	0.2	27
25	Functional characterization of an anthocyanidin reductase gene from the fibers of upland cotton (Gossypium hirsutum). Planta, 2015, 241, 1075-1089.	3.2	33
26	The mitochondrial malate dehydrogenase 1 gene GhmMDH1 is involved in plant and root growth under phosphorus deficiency conditions in cotton. Scientific Reports, 2015, 5, 10343.	3.3	42
27	The RING Finger Protein NtRCP1 Is Involved in the Floral Transition in Tobacco (Nicotiana tabacum). Journal of Genetics and Genomics, 2015, 42, 311-317.	3.9	4
28	Cotton Major Latex Protein 28 Functions as a Positive Regulator of the Ethylene Responsive Factor 6 in Defense against Verticillium dahliae. Molecular Plant, 2015, 8, 399-411.	8.3	141
29	iTRAQ Protein Profile Differential Analysis between Somatic Globular and Cotyledonary Embryos Reveals Stress, Hormone, and Respiration Involved in Increasing Plantlet Regeneration of <i>Gossypium hirsutum L</i> Journal of Proteome Research, 2015, 14, 268-278.	3.7	47
30	AtWuschel Promotes Formation of the Embryogenic Callus in Gossypium hirsutum. PLoS ONE, 2014, 9, e87502.	2.5	52
31	Os <scp>LOL</scp> 1, a <scp>C</scp> 2 <scp>C</scp> 2â€type zinc finger protein, interacts with <scp>O</scp> sb <scp>ZIP</scp> 58 to promote seed germination through the modulation of gibberellin biosynthesis in <i>Oryza sativa</i> . Plant Journal, 2014, 80, 1118-1130.	5.7	38
32	Development of Insect-Resistant Transgenic Cotton with Chimeric TVip3A Accumulating in Chloroplasts. Methods in Molecular Biology, 2013, 958, 247-258.	0.9	3
33	Development of Agrobacterium-Mediated Virus-Induced Gene Silencing and Performance Evaluation of Four Marker Genes in Gossypium barbadense. PLoS ONE, 2013, 8, e73211.	2.5	79
34	Synergistic Effects of GhSOD1 and GhCAT1 Overexpression in Cotton Chloroplasts on Enhancing Tolerance to Methyl Viologen and Salt Stresses. PLoS ONE, 2013, 8, e54002.	2.5	68
35	Evaluation of the resistance of transgenic potato plants expressing various levels of Cry3A against the Colorado potato beetle (<i>Leptinotarsa decemlineata</i> Say) in the laboratory and field. Pest Management Science, 2012, 68, 1595-1604.	3.4	26
36	Development of insect-resistant transgenic cotton with chimeric TVip3A* accumulating in chloroplasts. Transgenic Research, 2011, 20, 963-973.	2.4	32