
Zhongjiang Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7186992/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effects of ultrasound on the structure and physical properties of black bean protein isolates. Food Research International, 2014, 62, 595-601.	2.9	460
2	Impact of ultrasonic treatment on an emulsion system stabilized with soybean protein isolate and lecithin: Its emulsifying property and emulsion stability. Food Hydrocolloids, 2017, 63, 727-734.	5.6	212
3	Relationship between Secondary Structure and Surface Hydrophobicity of Soybean Protein Isolate Subjected to Heat Treatment. Journal of Chemistry, 2014, 2014, 1-10.	0.9	132
4	Relationship Between Surface Hydrophobicity and Structure of Soy Protein Isolate Subjected to Different Ionic Strength. International Journal of Food Properties, 2015, 18, 1059-1074.	1.3	122
5	Effects of material characteristics on the structural characteristics and flavor substances retention of meat analogs. Food Hydrocolloids, 2020, 105, 105752.	5.6	109
6	Effects of ultrasound pre-treatment on the structure of β-conglycinin and glycinin and the antioxidant activity of their hydrolysates. Food Chemistry, 2017, 218, 165-172.	4.2	107
7	Purification and Characterization of Antioxidant Peptides from Alcalase-Hydrolyzed Soybean (<i>Glycine max</i> L.) Hydrolysate and Their Cytoprotective Effects in Human Intestinal Caco-2 Cells. Journal of Agricultural and Food Chemistry, 2019, 67, 5772-5781.	2.4	90
8	Effects of high-pressure homogenization on structural and emulsifying properties of thermally soluble aggregated kidney bean (Phaseolus vulgaris L.) proteins. Food Hydrocolloids, 2021, 119, 106835.	5.6	78
9	The investigation of protein flexibility of various soybean cultivars in relation to physicochemical and conformational properties. Food Hydrocolloids, 2020, 103, 105709.	5.6	75
10	Effect of ultrasound treatment on the wet heating Maillard reaction between mung bean [<i>Vigna radiate</i> (L.)] protein isolates and glucose and on structural and physicoâ€chemical properties of conjugates. Journal of the Science of Food and Agriculture, 2016, 96, 1532-1540.	1.7	66
11	Antioxidant activity and protective effects of Alcalase-hydrolyzed soybean hydrolysate in human intestinal epithelial Caco-2 cells. Food Research International, 2018, 111, 256-264.	2.9	63
12	Interaction of soybean protein isolate and phosphatidylcholine in nanoemulsions: A fluorescence analysis. Food Hydrocolloids, 2019, 87, 814-829.	5.6	57
13	Deciphering the characteristics of soybean oleosome-associated protein in maintaining the stability of oleosomes as affected by pH. Food Research International, 2017, 100, 551-557.	2.9	56
14	Preparation and digestibility of fish oil nanoemulsions stabilized by soybean protein isolate-phosphatidylcholine. Food Hydrocolloids, 2020, 100, 105310.	5.6	55
15	Soy protein isolates: A review of their composition, aggregation, and gelation. Comprehensive Reviews in Food Science and Food Safety, 2022, 21, 1940-1957.	5.9	53
16	Differential scanning calorimetry study—Assessing the influence of composition of vegetable oils on oxidation. Food Chemistry, 2016, 194, 601-607.	4.2	52
17	Effect of cavitation jet processing on the physicochemical properties and structural characteristics of okara dietary fiber. Food Research International, 2020, 134, 109251.	2.9	52
18	The impact of soy protein isolate-dextran conjugation on capsicum oleoresin (Capsicum annuum L.) nanoemulsions. Food Hydrocolloids, 2020, 108, 105818.	5.6	48

ZHONGJIANG WANG

#	Article	IF	CITATIONS
19	Different commercial soy protein isolates and the characteristics of Chiba tofu. Food Hydrocolloids, 2021, 110, 106115.	5.6	47
20	Secondary Structure and Subunit Composition of Soy Protein <i>In Vitro</i> Digested by Pepsin and Its Relation with Digestibility. BioMed Research International, 2016, 2016, 1-11.	0.9	37
21	Effects of ultrasound on the structural and emulsifying properties and interfacial properties of oxidized soybean protein aggregates. Ultrasonics Sonochemistry, 2022, 87, 106046.	3.8	36
22	Effect of ultrasonication on the stability and storage of a soy protein isolate-phosphatidylcholine nanoemulsions. Scientific Reports, 2020, 10, 14010.	1.6	34
23	Effects of ultrasonic pretreatment of soybean protein isolate on the binding efficiency, structural changes, and bioavailability of a protein-luteolin nanodelivery system. Ultrasonics Sonochemistry, 2022, 88, 106075.	3.8	34
24	Effect of enzymolysis and glycosylation on the curcumin nanoemulsions stabilized by β-conglycinin: Formation, stability and in vitro digestion. International Journal of Biological Macromolecules, 2020, 142, 658-667.	3.6	33
25	Application of ultrasound treatment for modulating the structural, functional and rheological properties of black bean protein isolates. International Journal of Food Science and Technology, 2020, 55, 1637-1647.	1.3	27
26	Effects of ultrasonic treatment on the structure and rehydration peculiarity of freeze-dried soy protein isolate gel. Food Structure, 2021, 28, 100169.	2.3	22
27	Structural and Functional Properties Changes of β-Conglycinin Exposed to Hydroxyl Radical-Generating Systems. Molecules, 2017, 22, 1893.	1.7	21
28	Physicochemical Properties and In Vitro Dissolution of Spiramycin Microparticles Using the Homogenate-Antisolvent Precipitation Process. Applied Sciences (Switzerland), 2017, 7, 10.	1.3	21
29	Efficient and Response Surface Optimized Aqueous Enzymatic Extraction of <i>Camellia oleifera</i> (Tea Seed) Oil Facilitated by Concurrent Calcium Chloride Addition. JAOCS, Journal of the American Oil Chemists' Society, 2018, 95, 29-37.	0.8	19
30	A Study of Structural Change during In Vitro Digestion of Heated Soy Protein Isolates. Foods, 2019, 8, 594.	1.9	19
31	Structural and Physicochemical Characteristics of Rice Bran Dietary Fiber by Cellulase and High-Pressure Homogenization. Applied Sciences (Switzerland), 2019, 9, 1270.	1.3	18
32	Structural Changes in Rice Bran Protein upon Different Extrusion Temperatures: A Raman Spectroscopy Study. Journal of Chemistry, 2016, 2016, 1-8.	0.9	16
33	Stability Mechanism of Two Soybean Protein-Phosphatidylcholine Nanoemulsion Preparation Methods from a Structural Perspective: A Raman Spectroscopy Analysis. Scientific Reports, 2019, 9, 6985.	1.6	15
34	Structural and functional properties of rice bran protein oxidized by peroxyl radicals. International Journal of Food Properties, 0, , 1-12.	1.3	13
35	Does the hydrophobic group on sn-2 position of phosphatidylcholine decide its emulsifying ability?. LWT - Food Science and Technology, 2016, 74, 255-262.	2.5	11
36	<i>In vitro</i> Simulated Digestion and Microstructure of Peppermint Oil Nanoemulsion. Journal of Oleo Science, 2019, 68, 863-871.	0.6	11

#	Article	IF	CITATIONS
37	Protective Effect of Iridoid Glycosides of the Leaves of Syringa oblata Lindl. on Dextran Sulfate Sodium-Induced Ulcerative Colitis by Inhibition of the TLR2/4/MyD88/NF- <i>ΰ</i> B Signaling Pathway. BioMed Research International, 2020, 2020, 1-13.	0.9	11
38	Effect of the interaction between myofibrillar protein and heat-induced soy protein isolates on gel properties. CYTA - Journal of Food, 0, , 1-8.	0.9	10
39	Lipase catalysis of <i>α</i> â€linolenic acidâ€rich medium†and longâ€chain triacylglycerols from perilla oil and mediumâ€chain triacylglycerols with reduced byâ€products. Journal of the Science of Food and Agriculture, 2020, 100, 4565-4574.	1.7	10
40	Green and Efficient PEG-Based Ultrasonic-Assisted Extraction of Polysaccharides from Tree Peony Pods and the Evaluation of Their Antioxidant Activity In Vitro. BioMed Research International, 2018, 2018, 1-7.	0.9	9
41	Effect of Oxidation on Quality of Chiba Tofu Produced by Soy Isolate Protein When Subjected to Storage. Foods, 2020, 9, 1877.	1.9	9
42	The effects of chloride and the antioxidant capacity of fried foods on 3-chloro-1,2-propanediol esters and glycidyl esters during long-term deep-frying. LWT - Food Science and Technology, 2021, 145, 111511.	2.5	7
43	Structural and functional properties of Maillard reaction products of protein isolate (mung) Tj ETQq1 1 0.784314	rgBT /Ove	erlgck 10 Tf
44	Effect of cavitation jet on the structural, emulsifying properties and rheological properties of soybean proteinâ€oxidised aggregates. International Journal of Food Science and Technology, 2023, 58, 343-354.	1.3	5
45	The temporal evolution mechanism of structure and function of oxidized soy protein aggregates. Food Chemistry: X, 2022, 15, 100382.	1.8	5
46	Effects of Î ³ -Irradiation on Structure and Functional Properties of Pea Fiber. Foods, 2022, 11, 1433.	1.9	4
47	Influence of Pre-/Postultrasound on Forming a Molten Globule-Like Conformation and Improving the Emulsifying Properties of Thermally Induced Soybean Protein Aggregates. ACS Food Science & Technology, 2021, 1, 1514-1522.	1.3	3
48	Improved Oxidation Stability of Camellia Oil-in-Water Emulsions Stabilized by the Mixed Monolayer of Soy Protein Isolate/Bamboo Shoot Protein Complexes. Frontiers in Nutrition, 2021, 8, 782212.	1.6	1