N Ravishankar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7186906/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Synthesis and Structure of Nanocrystalline TiO2with Lower Band Gap Showing High Photocatalytic Activity. Langmuir, 2004, 20, 2900-2907.	1.6	519
2	Ultrafine Single-Crystalline Gold Nanowire Arrays by Oriented Attachment. Advanced Materials, 2007, 19, 1854-1858.	11.1	405
3	Ultrafast Microwave-Assisted Route to Surfactant-Free Ultrafine Pt Nanoparticles on Graphene: Synergistic Co-reduction Mechanism and High Catalytic Activity. Chemistry of Materials, 2011, 23, 2772-2780.	3.2	257
4	Controlled synthesis of plate-shaped hydroxyapatite and implications for the morphology of the apatite phase in bone. Biomaterials, 2008, 29, 4855-4863.	5.7	155
5	Ferrimagnetic Nanogranular Co3O4 through Solvothermal Decomposition of Colloidally Dispersed Monolayers of α-Cobalt Hydroxide. Journal of Physical Chemistry B, 2005, 109, 11468-11472.	1.2	154
6	Highly dispersed ultrafine Pt and PtRu nanoparticles on graphene: formation mechanism and electrocatalytic activity. Nanoscale, 2011, 3, 569-571.	2.8	147
7	Controlled Attachment of Ultrafine Platinum Nanoparticles on Functionalized Carbon Nanotubes with High Electrocatalytic Activity for Methanol Oxidation. Journal of Physical Chemistry C, 2009, 113, 1466-1473.	1.5	142
8	Nanoscale ZnO/CdS heterostructures with engineered interfaces for high photocatalytic activity under solar radiation. Journal of Materials Chemistry, 2011, 21, 4209.	6.7	141
9	Mechanical properties and anisotropy in hydroxyapatite single crystals. Scripta Materialia, 2007, 57, 361-364.	2.6	134
10	Mechanistic Aspects of Shape Selection and Symmetry Breaking during Nanostructure Growth by Wet Chemical Methods. Journal of Physical Chemistry C, 2009, 113, 16866-16883.	1.5	131
11	Origin of enhanced photocatalytic activity and photoconduction in high aspect ratio ZnO nanorods. Physical Chemistry Chemical Physics, 2013, 15, 10795.	1.3	127
12	Thermally Controlled Cyclic Insertion/Ejection of Dopant Ions and Reversible Zinc Blende/Wurtzite Phase Changes in ZnS Nanostructures. Journal of the American Chemical Society, 2011, 133, 1666-1669.	6.6	96
13	Interfacial reactions in hydroxyapatite/alumina nanocomposites. Scripta Materialia, 2006, 55, 863-866.	2.6	91
14	New Insights into Selective Heterogeneous Nucleation of Metal Nanoparticles on Oxides by Microwave-Assisted Reduction: Rapid Synthesis of High-Activity Supported Catalysts. ACS Nano, 2011, 5, 8049-8061.	7.3	81
15	Influence of CeO2 morphology on the catalytic activity of CeO2–Pt hybrids for CO oxidation. Dalton Transactions, 2013, 42, 15343.	1.6	74
16	Nanoporous Pt with High Surface Area by Reaction-Limited Aggregation of Nanoparticles. Langmuir, 2009, 25, 3115-3121.	1.6	70
17	Layered Double Hydroxideâ^'CdSe Quantum Dot Composites through Colloidal Processing:Â Effect of Host Matrixâ^'Nanoparticle Interaction on Optical Behavior. Journal of Physical Chemistry B, 2006, 110, 772-776.	1.2	66
18	New Insights into Electronic and Geometric Effects in the Enhanced Photoelectrooxidation of Ethanol Using ZnO Nanorod/Ultrathin Au Nanowire Hybrids. Journal of the American Chemical Society, 2014, 136, 14445-14455.	6.6	66

#	Article	IF	CITATIONS
19	Nanocomposites of α-hydroxides of nickel and cobalt by delamination and co-stacking: Enhanced stability of α-motifs in alkaline medium and electrochemical behaviour. Journal of Power Sources, 2007, 172, 970-974.	4.0	63
20	Porous, catalytically active palladium nanostructures by tuning nanoparticle interactions in an organic medium. Nanoscale, 2011, 3, 725-730.	2.8	62
21	High-Surface Step Density on Dendritic Pd Leads to Exceptional Catalytic Activity for Formic Acid Oxidation. ACS Applied Materials & Interfaces, 2010, 2, 2965-2969.	4.0	57
22	Solution decomposition of the layered double hydroxide (LDH) of Zn with Al. Solid State Sciences, 2007, 9, 279-286.	1.5	50
23	Mechanical properties of tricalcium phosphate single crystals grown by molten salt synthesis. Acta Biomaterialia, 2008, 4, 1448-1454.	4.1	49
24	Predicting the growth of two-dimensional nanostructures. Nanotechnology, 2008, 19, 195603.	1.3	48
25	Symmetry and shape issues in nanostructure growth. Journal of Materials Chemistry, 2010, 20, 4763.	6.7	42
26	Delamination–restacking behaviour of surfactant intercalated layered hydroxy double salts, M3Zn2(OH)8(surf)2â‹2H2O [M=Ni, Co and surf=dodecyl sulphate (DS), dodecyl benzene sulphonate (DBS)]. Solid State Sciences, 2005, 7, 195-199.	1.5	41
27	Gold Nanostructures from Cube-Shaped Crystalline Intermediates. Journal of Physical Chemistry B, 2006, 110, 6595-6600.	1.2	41
28	Synthesis of Hollow Nanotubes of Zn ₂ SiO ₄ or SiO ₂ : Mechanistic Understanding and Uranium Adsorption Behavior. ACS Applied Materials & Interfaces, 2015, 7, 26430-26436.	4.0	39
29	Thermal Stability of Spherical Nanoporous Aggregates and Formation of Hollow Structures by Sintering—A Phase-Field Study. ACS Nano, 2011, 5, 2700-2706.	7.3	37
30	Microsphere Bouquets of Bismuth Telluride Nanoplates: Room-Temperature Synthesis and Thermoelectric Properties. Journal of Physical Chemistry C, 2010, 114, 1796-1799.	1.5	36
31	Insulating State and Breakdown of Fermi Liquid Description in Molecular-Scale Single-Crystalline Wires of Gold. ACS Nano, 2011, 5, 8398-8403.	7.3	36
32	Wrinkling of Atomic Planes in Ultrathin Au Nanowires. Nano Letters, 2014, 14, 4859-4866.	4.5	35
33	Nanoscale Heterostructures with Molecular-Scale Single-Crystal Metal Wires. Journal of the American Chemical Society, 2010, 132, 20-21.	6.6	34
34	Nanoporous alloy aggregates: synthesis and electrocatalytic activity. Journal of Materials Chemistry, 2011, 21, 8721.	6.7	34
35	Insights into nucleation, growth and phase selection of WO ₃ : morphology control and electrochromic properties. Journal of Materials Chemistry C, 2017, 5, 7307-7316.	2.7	34
36	Nanopatterning by solid-state dewetting on reconstructed ceramic surfaces. Applied Physics Letters, 2009, 94, .	1.5	33

#	Article	IF	CITATIONS
37	Polymer assisted hydroxyapatite microspheres suitable for biomedical application. Journal of Materials Science: Materials in Medicine, 2008, 19, 2009-2013.	1.7	32
38	Tunability of Electronic States in Ultrathin Gold Nanowires. Advanced Materials, 2013, 25, 2486-2491.	11.1	32
39	ZnO–Au nanohybrids by rapid microwave-assisted synthesis for CO oxidation. Dalton Transactions, 2012, 41, 8762.	1.6	31
40	Highly photoactive heterostructures of PbO quantum dots on TiO2. RSC Advances, 2013, 3, 20970.	1.7	31
41	Ultra-high sensitivity infra-red detection and temperature effects in a graphene–tellurium nanowire binary hybrid. Nanoscale, 2017, 9, 9284-9290.	2.8	31
42	Ultrathin Au-Alloy Nanowires at the Liquid–Liquid Interface. Nano Letters, 2018, 18, 1903-1907.	4.5	31
43	Morphology controlled synthesis of low bandgap SnSe ₂ with high photodetectivity. Nanoscale, 2019, 11, 870-877.	2.8	31
44	Surfactant intercalated α-hydroxides of cobalt and nickel and their delamination-restacking behavior in organic media. Journal of Colloid and Interface Science, 2005, 288, 629-633.	5.0	30
45	Sequential Organicâ^'Inorganic Templating and Thermoelectric Properties of High-Aspect-Ratio Single-Crystal Lead Telluride Nanorods. Chemistry of Materials, 2008, 20, 4791-4793.	3.2	30
46	Effect of calcium deficiency on the mechanical properties of hydroxyapatite crystals. Acta Materialia, 2010, 58, 4841-4848.	3.8	30
47	Insights on Defect-Mediated Heterogeneous Nucleation of Graphene on Copper. Journal of Physical Chemistry C, 2015, 119, 2513-2522.	1.5	29
48	Crumpled sheets of reduced graphene oxide as a highly sensitive, robust and versatile strain/pressure sensor. Nanoscale, 2017, 9, 9581-9588.	2.8	29
49	Ultra-sensitive graphene–bismuth telluride nano-wire hybrids for infrared detection. Nanoscale, 2019, 11, 1579-1586.	2.8	28
50	Atomic Structure of Quantum Gold Nanowires: Quantification of the Lattice Strain. ACS Nano, 2014, 8, 599-606.	7.3	26
51	Ultralow non-noble metal loaded MOF derived bi-functional electrocatalysts for the oxygen evolution and reduction reactions. Journal of Materials Chemistry A, 2021, 9, 9319-9326.	5.2	26
52	Surface diffusion driven nanoshell formation by controlled sintering of mesoporous nanoparticle aggregates. Nanoscale, 2010, 2, 1423.	2.8	25
53	Single crystalline ultrathin gold nanowires: Promising nanoscale interconnects. AIP Advances, 2013, 3, .	0.6	25
54	An early <i>in-situ</i> stress signature of the AlN-Si pre-growth interface for successful integration of nitrides with (111) Si. Applied Physics Letters, 2013, 103, .	1.5	25

#	Article	IF	CITATIONS
55	Ultrathin Au nanowires supported on rGO/TiO ₂ as an efficient photoelectrocatalyst. Journal of Materials Chemistry A, 2015, 3, 17459-17468.	5.2	25
56	Delamination of Surfactant-Intercalated Brucite-Like Hydroxy Salts of Cobalt and Copper and Solvothermal Decomposition of the Resultant Colloidal Dispersions. Langmuir, 2008, 24, 11164-11168.	1.6	23
57	Shapes of quasicrystals. Progress in Crystal Growth and Characterization of Materials, 1997, 34, 237-249.	1.8	22
58	Hybrid Solâ´´Gel Combustion Synthesis of Nanoporous Anatase. Journal of Physical Chemistry C, 2009, 113, 18204-18211.	1.5	21
59	Directed Assembly of Ultrathin Gold Nanowires over Large Area by Dielectrophoresis. Langmuir, 2015, 31, 9246-9252.	1.6	21
60	Formation of two-dimensional structures by tuning the driving force of chemical reactions: An interpretation of kinetic control. Journal of Colloid and Interface Science, 2009, 330, 211-219.	5.0	19
61	Branched titania nanotubes through anodization voltage control. Thin Solid Films, 2011, 520, 235-238.	0.8	19
62	Kinetics of titania nanotube formation by anodization of titanium films. Thin Solid Films, 2011, 519, 1821-1824.	0.8	19
63	Directed Microwaveâ€Assisted Selfâ€Assembly of Au–Graphene–Au Plasmonic Dimers for SERS Applications. Advanced Materials Interfaces, 2019, 6, 1900629.	1.9	19
64	A novel solvothermal method for nanoparticle thin films and coatings. Nanotechnology, 2007, 18, 025603.	1.3	18
65	Room Temperature Growth of Ultrathin Au Nanowires with High Areal Density over Large Areas by <i>in Situ</i> Functionalization of Substrate. Langmuir, 2014, 30, 12690-12695.	1.6	18
66	Enhanced preferential CO oxidation on Zn ₂ SnO ₄ supported Au nanoparticles: support and H ₂ effects. Journal of Materials Chemistry A, 2016, 4, 14430-14436.	5.2	18
67	Application of effective potential formalism to mechanical alloying in Ag–Cu and Cu–Fe systems. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2001, 304-306, 413-417.	2.6	17
68	Semiconductor-like Sensitivity in Metallic Ultrathin Gold Nanowire-Based Sensors. Journal of Physical Chemistry C, 2014, 118, 18676-18682.	1.5	17
69	Graphene-oxide-supported ultrathin Au nanowires: efficient electrocatalysts for borohydride oxidation. Chemical Communications, 2015, 51, 16856-16859.	2.2	17
70	Electric Field Singularity Assisted Nanopatterning. Advanced Materials, 2004, 16, 76-80.	11.1	16
71	Oriented Nanocrystal Arrays of Selectable Polymorphs by Chemical Sculpture. Chemistry of Materials, 2009, 21, 3197-3201.	3.2	16
72	Pristine, adherent ultrathin gold nanowires on substrates and between pre-defined contacts via a wet chemical route. Nanoscale, 2012, 4, 433-437.	2.8	16

#	Article	IF	CITATIONS
73	Au ₂ S _{<i>x</i>} /CdS Nanorods by Cation Exchange: Mechanistic Insights into the Competition Between Cationâ€Exchange and Metal Ion Reduction. Small, 2014, 10, 3895-3900.	5.2	16
74	Metalâ^'Dielectric Interface Toughening by Catalyzed Ring Opening in a Monolayer. Journal of Physical Chemistry Letters, 2010, 1, 336-340.	2.1	15
75	pH mediated delamination of anionic clay-like nickel–zinc hydroxysalt in water through intercalation of zwitterionic p-aminobenzoate ions. Solid State Sciences, 2006, 8, 162-167.	1.5	14
76	Suppression of the Reversible Thermal Behavior of the Layered Double Hydroxide (LDH) of Mg with Al: Stabilization of Nanoparticulate Oxides. Langmuir, 2007, 23, 7700-7706.	1.6	14
77	Effect of processing route on the bipolar contribution to the thermoelectric properties of n-type eutectic Bi22.5Sb7.5Te70 alloy. Journal of Alloys and Compounds, 2016, 682, 791-798.	2.8	14
78	Existence of Ti ²⁺ States on the Surface of Heavily Reduced SrTiO ₃ Nanocubes. Chemistry of Materials, 2017, 29, 9887-9891.	3.2	14
79	Contactâ€Barrier Free, High Mobility, Dualâ€Gated Junctionless Transistor Using Tellurium Nanowire. Advanced Functional Materials, 2021, 31, 2006278.	7.8	14
80	Directed Synthesis of Rocksalt AuCl Crystals. Journal of Physical Chemistry C, 2009, 113, 5349-5351.	1.5	13
81	Spectroscopic and kinetic insights of Pt-dispersion over microwave-synthesized GO-supported Pt-TiO 2 for CO oxidation. Molecular Catalysis, 2017, 432, 88-98.	1.0	13
82	Orientation Selection during Heterogeneous Nucleation: Implications for Heterogeneous Catalysis. Journal of Physical Chemistry C, 2017, 121, 10027-10037.	1.5	13
83	Migration of alumina grain boundaries containing a thin glass film. Acta Materialia, 2001, 49, 1963-1969.	3.8	12
84	Porous biphasic scaffolds and coatings for biomedical applications via morphology transition of nanorods. Nanotechnology, 2007, 18, 475604.	1.3	12
85	Seeing is Believing: Electron Microscopy for Investigating Nanostructures. Journal of Physical Chemistry Letters, 2010, 1, 1212-1220.	2.1	12
86	Existing and emerging strategies for the synthesis of nanoscale heterostructures. Physical Chemistry Chemical Physics, 2011, 13, 19256.	1.3	11
87	Synergistic effect of reactor chemistry and compressive stress on dislocation bending during GaN growth. Applied Physics Letters, 2013, 103, 041912.	1.5	11
88	Formation and Thermal Stability of Gold–Silica Nanohybrids: Insight into the Mechanism and Morphology by Electron Tomography. Angewandte Chemie - International Edition, 2014, 53, 3970-3974.	7.2	11
89	Designing Diameter-Modulated Heterostructure Nanowires of PbTe/Te by Controlled Dewetting. Nano Letters, 2017, 17, 7226-7233.	4.5	11
90	Glass and metals on crystalline oxides. Journal of the European Ceramic Society, 2003, 23, 2777-2785.	2.8	10

#	Article	lF	CITATIONS
91	The effects of crystallography on grain-boundary migration in alumina. Journal of Materials Science, 2006, 41, 661-674.	1.7	10
92	Delamination and solvothermal decomposition of layered zinc hydroxysalt: Formation of bimodal zinc oxide nanostructures. Solid State Sciences, 2010, 12, 1399-1403.	1.5	10
93	Ring-Opening-Induced Toughening of a Low-Permittivity Polymerâ^'Metal Interface. ACS Applied Materials & Interfaces, 2010, 2, 1275-1280.	4.0	10
94	Pristine nanomaterials: synthesis, stability and applications. Nanoscale, 2013, 5, 5215.	2.8	10
95	Bunching of Surface Steps and Facet Formation on Analumina Surface. Journal of Materials Research, 2002, 17, 98-106.	1.2	9
96	Modified electron-beam-induced deposition of metal nanostructure arrays using a parallel electron beam. Applied Physics Letters, 2008, 93, 133104.	1.5	9
97	Anionic clay–Pt metal nanoparticle composite through intercalation of hexachloroplatinate in nickel zinc hydroxysalt. Solid State Sciences, 2009, 11, 1270-1274.	1.5	9
98	Branched Copper Nanocrystal Corals by Room-Temperature Galvanic Displacement. Crystal Growth and Design, 2010, 10, 3925-3928.	1.4	9
99	Mechanistic Insights into a Nonâ€Classical Diffusion Pathway for the Formation of Hollow Intermetallics: A Route to Multicomponent Hollow Structures. Particle and Particle Systems Characterization, 2013, 30, 590-598.	1.2	9
100	Manipulation of Optoelectronic Properties and Band Structure Engineering of Ultrathin Te Nanowires by Chemical Adsorption. ACS Applied Materials & Interfaces, 2017, 9, 19462-19469.	4.0	9
101	Thermal History-Dependent Current Relaxation in hBN/MoS ₂ van der Waals Dimers. ACS Nano, 2020, 14, 5909-5916.	7.3	9
102	Functional nanoporous structures by partial sintering of nanorod assemblies. Journal Physics D: Applied Physics, 2010, 43, 455301.	1.3	8
103	Atomistic fracture energy partitioning at a metal-ceramic interface using a nanomolecular monolayer. Physical Review B, 2011, 83, .	1.1	8
104	Dirac surface plasmons in photoexcited bismuth telluride nanowires: optical pump-terahertz probe spectroscopy. Nanoscale, 2021, 13, 8283-8292.	2.8	8
105	Ultrafast dynamics of Dirac surface and bulk photocarriers in topological-insulator bismuth telluride nanocrystals using terahertz spectroscopy. Physical Review B, 2022, 105, .	1.1	8
106	Designed synthesis of a hierarchical MoSe ₂ @WSe ₂ hybrid nanostructure as a bifunctional electrocatalyst for total water-splitting. Sustainable Energy and Fuels, 2022, 6, 1708-1718.	2.5	7
107	Interstratification of trioctahedral and dioctahedral smectites through delamination and costacking. Journal of Colloid and Interface Science, 2008, 324, 80-84.	5.0	6
108	Centrosymmetric tetragonal tellurium doped calcium copper titanate and its dielectric tunability. Solid State Communications, 2016, 241, 7-13.	0.9	6

#	Article	IF	CITATIONS
109	Self-Assembled Nanostructured Tin Oxide Thin Films at the Air–Water Interface for Selective H2S Detection. ACS Applied Nano Materials, 2020, 3, 3730-3740.	2.4	6
110	Exuding Liquid from Grain Boundaries in Alumina. Journal of the American Ceramic Society, 2001, 84, 859-862.	1.9	5
111	Solution decomposition of the layered double hydroxide of Co with Fe: Phase segregation of normal and inverse spinels. Journal of Colloid and Interface Science, 2008, 325, 419-424.	5.0	5
112	Rapid synthesis of hybrids and hollow PdO nanostructures by controlled in situ dissolution of a ZnO nanorod template: insights into the formation mechanism and thermal stability. Nanoscale, 2016, 8, 1462-1469.	2.8	5
113	Dewetting of Liquids on Ceramic Surfaces at High Temperatures. Microscopy and Microanalysis, 2002, 8, 257-267.	0.2	4
114	Ordered nanostructures by site-specific heterogeneous nucleation. Philosophical Magazine Letters, 2005, 85, 523-531.	0.5	4
115	Enhancement of Raman signal from analytes on ultrathin Au and AuCu alloy nanowire network substrates. Materials Research Express, 2019, 6, 085068.	0.8	4
116	Solution Phase Synthesis of Radial-Axial Heterostructured Nanowires with Coherent Interfaces. Journal of Physical Chemistry C, 2021, 125, 3102-3109.	1.5	4
117	Unconventional properties of engineered Au–Ag nanostructures. Superconductor Science and Technology, 2022, 35, 084001.	1.8	4
118	On the Influence of Applied Fields on Spinel Formation. Materials Research Society Symposia Proceedings, 1999, 586, 151.	0.1	3
119	Class/Crystal Interfaces in Liquid-Phase Sintered Materials. Journal of Materials Science, 2000, 8, 295-304.	1.2	3
120	Application of FIB and TEM for the Characterization of Dewetting Behavior on Ceramics. Microscopy and Microanalysis, 2002, 8, 562-563.	0.2	3
121	Control of Grain Boundary Microstructures in Liquid-Phase Sintered Alumina. Materials Research Society Symposia Proceedings, 1999, 586, 59.	0.1	2
122	Monitoring Faceting on Ceramic Surfaces. Materials Research Society Symposia Proceedings, 2002, 750, 1.	0.1	2
123	Structural and Dielectric Properties of SrBi2-xPbxNb2O9â^'x/2(0 ≤ ≤2). Ferroelectrics, 2005, 324, 113-119.	0.3	2
124	In situ Microscopy: A Tool to Understand Mechanisms. Microscopy and Microanalysis, 2008, 14, 246-247.	0.2	2
125	Carrier Dynamics in Ultrathin Gold Nanowires: Role of Auger Processes. Plasmonics, 2020, 15, 1151-1158.	1.8	2
126	Mechanistic Understanding of Formation of Ultrathin Single-Crystalline Pt Nanowires. Journal of Physical Chemistry C, 0, , .	1.5	2

#	Article	IF	CITATIONS
127	Investigation of Surface Grooves from Migrating Grain Boundaries. Materials Research Society Symposia Proceedings, 2002, 750, 1.	0.1	1
128	Complementary Microscopy Techniques for Characterizing Nanostructures. Microscopy and Microanalysis, 2008, 14, 374-375.	0.2	1
129	Anion exchange method to synthesize layered materials and heterostructures. Microscopy and Microanalysis, 2021, 27, 666-668.	0.2	1
130	Glass-Crystal Boundaries in Liquid-Phase Sintered Ceramics. Materials Research Society Symposia Proceedings, 2000, 620, 1.	0.1	0
131	Grain Boundary Migration in Alumina. Materials Research Society Symposia Proceedings, 2000, 652, 1.	0.1	0
132	Exudation of Silicate Liquid from Polycrystalline Alumina. Materials Research Society Symposia Proceedings, 2000, 654, 581.	0.1	0
133	Microanalysis of AFM Tips Coated with Cerium Oxide. Microscopy and Microanalysis, 2001, 7, 1236-1237.	0.2	0
134	Understanding milling induced changes: Some results. Journal of Chemical Sciences, 2003, 115, 727-740.	0.7	0
135	Analysis of Grain Boundary Migration in Alumina. Microscopy and Microanalysis, 2003, 9, 64-65.	0.2	0
136	Nanopatterning on Reconstructed Ceramic Surfaces. Materials Research Society Symposia Proceedings, 2004, 819, N5.8.1.	0.1	0
137	Dewetting on the Surface of Rutile. Materials Research Society Symposia Proceedings, 2004, 819, N5.9.1.	0.1	0
138	Studying Trapped Grains in Alumina using SEM and EBSD. Microscopy and Microanalysis, 2006, 12, 1020-1021.	0.2	0
139	Studying alumina boundary migration using combined microscopy techniques. Journal of Physics: Conference Series, 2006, 26, 123-126.	0.3	0
140	A Study of Dewetting on (001) Rutile using AFM. Microscopy and Microanalysis, 2006, 12, 1028-1029.	0.2	0
141	Metal Nanostructures on Ceramic Surfaces for Energy Applications. Microscopy and Microanalysis, 2009, 15, 1442-1443.	0.2	0
142	Ultrathin Au-alloy nanowires: Synthesis and Stability. Microscopy and Microanalysis, 2017, 23, 1918-1919.	0.2	0
143	Morphology Controlled Low-dimensional Single-crystalline SnSe2-graphene Hybrid for near IR Photodetection. Microscopy and Microanalysis, 2020, 26, 2338-2340.	0.2	0
144	Mechanistic Studies of Growth of Ultrathin Pt and Alloy Nanowires. Microscopy and Microanalysis, 2020, 26, 2400-2401.	0.2	0

#	Article	IF	CITATIONS
145	Axial-Radial Heterostructures of Telluride Nanowire. Microscopy and Microanalysis, 2020, 26, 2834-2836.	0.2	0
146	Designing complex radial heterostructures of Te/Bi ₂ Te ₃ and Te/Bi _{2-x } Pb _x Te ₃ nanowires: fundamental mechanistic insights into nanowire growth and evolution. Nanotechnology, 2021, 32, 105601.	1.3	0
147	Tuning Catalytic Activity in Ultrathin Bimetallic Nanowires via Surface Segregation: Some Insights. Journal of Physical Chemistry Letters, 2022, 13, 770-776.	2.1	Ο