Rosanne M Guijt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7186668/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Inexpensive portable capillary electrophoresis instrument for Monitoring Zinc(II) in remote areas. Journal of Chromatography A, 2022, 1668, 462895.	1.8	20
2	An improved nucleic acid sequence-based amplification method mediated by T4 gene 32 protein. PLoS ONE, 2022, 17, e0265391.	1.1	6
3	Novel Boundary Lubrication Mechanisms from Molecular Pillows of Lubricin Brush-Coated Graphene Oxide Nanosheets. Langmuir, 2022, 38, 5351-5360.	1.6	2
4	3D Printing: An Alternative Microfabrication Approach with Unprecedented Opportunities in Design. Analytical Chemistry, 2021, 93, 350-366.	3.2	69
5	Scalable 3D printing method for the manufacture of single-material fluidic devices with integrated filter for point of collection colourimetric analysis. Analytica Chimica Acta, 2021, 1151, 238101.	2.6	13
6	Amplification-free electrochemiluminescence molecular beacon-based microRNA sensing using a mobile phone for detection. Sensors and Actuators B: Chemical, 2021, 330, 129261.	4.0	29
7	Facile fabrication of micro-/nanostructured, superhydrophobic membranes with adjustable porosity by 3D printing. Journal of Materials Chemistry A, 2021, 9, 21379-21386.	5.2	30
8	Antifouling Strategies for Electrochemical Biosensing: Mechanisms and Performance toward Point of Care Based Diagnostic Applications. ACS Sensors, 2021, 6, 1482-1507.	4.0	113
9	Hyphenated sample preparation-electrospray and nano-electrospray ionization mass spectrometry for biofluid analysis. Journal of Chromatography A, 2021, 1646, 462086.	1.8	5
10	3D printing for the integration of porous materials into miniaturised fluidic devices: A review. Analytica Chimica Acta, 2021, 1185, 338796.	2.6	28
11	Perspective - what constitutes a quality analytical paper: Microfluidics and Flow analysis. Talanta Open, 2021, 4, 100055.	1.7	2
12	Blood apheresis technologies $\hat{a} \in $ a critical review on challenges towards efficient blood separation and treatment. Materials Advances, 2021, 2, 7210-7236.	2.6	8
13	Lubricin (PRG4) reduces fouling susceptibility and improves sensitivity of carbon-based electrodes. Electrochimica Acta, 2020, 333, 135574.	2.6	19
14	One step multi-material 3D printing for the fabrication of a photometric detector flow cell. Analytica Chimica Acta, 2020, 1097, 127-134.	2.6	34
15	A review on the sources, occurrence and health risks of per-/poly-fluoroalkyl substances (PFAS) arising from the manufacture and disposal of electric and electronic products. Journal of Water Process Engineering, 2020, 38, 101683.	2.6	74
16	The influence of electrolyte concentration on nanofractures fabricated in a 3Dâ€printed microfluidic device by controlled dielectric breakdown. Electrophoresis, 2020, 41, 2007-2014.	1.3	2
17	Inâ€ S yringe Electrokinetic Protein Removal from Biological Samples prior to Electrospray Ionization Mass Spectrometry. Angewandte Chemie, 2020, 132, 23362-23368.	1.6	0
18	In‣yringe Electrokinetic Protein Removal from Biological Samples prior to Electrospray Ionization Mass Spectrometry. Angewandte Chemie - International Edition, 2020, 59, 23162-23168.	7.2	4

#	Article	IF	CITATIONS
19	Rapid Additive Manufacturing of 3D Geometric Structures via Dual-Wavelength Polymerization. ACS Macro Letters, 2020, 9, 1409-1414.	2.3	10
20	A Simple Electrochemical Swab Assay for the Rapid Quantification of Clonazepam in Unprocessed Saliva Enabled by Lubricin Antifouling Coatings. ChemElectroChem, 2020, 7, 2851-2858.	1.7	22
21	Colour tuning and enhancement of gel-based electrochemiluminescence devices utilising Ru(ii) and Ir(iii) complexes. Chemical Communications, 2019, 55, 11474-11477.	2.2	20
22	Increasing the functionalities of 3D printed microchemical devices by single material, multimaterial, and print-pause-print 3D printing. Lab on A Chip, 2019, 19, 35-49.	3.1	135
23	In-Syringe Electrokinetic Ampholytes Focusing Coupled with Electrospray Ionization Mass Spectrometry. Analytical Chemistry, 2019, 91, 8259-8266.	3.2	4
24	Inâ€Transit Electroextraction of Smallâ€Molecule Pharmaceuticals from Blood. Angewandte Chemie - International Edition, 2019, 58, 3790-3794.	7.2	10
25	Multimaterial 3D Printed Fluidic Device for Measuring Pharmaceuticals in Biological Fluids. Analytical Chemistry, 2019, 91, 1758-1763.	3.2	61
26	Recent trends in capillary and micro-chip electrophoretic instrumentation for field-analysis. Trends in Environmental Analytical Chemistry, 2018, 18, 1-10.	5.3	38
27	Academic parenting: work–family conflict and strategies across child age, disciplines and career level. Studies in Higher Education, 2018, 43, 625-643.	2.9	23
28	Miniaturised total chemical-analysis systems (μTAS) that periodically convert chemical into electronic information. Sensors and Actuators B: Chemical, 2018, 273, 1334-1345.	4.0	20
29	The role of gratitude in enhancing the relationship between doctoral research students and their supervisors. Teaching in Higher Education, 2017, 22, 621-638.	1.7	25
30	3D printed LED based on-capillary detector housing with integrated slit. Analytica Chimica Acta, 2017, 965, 131-136.	2.6	49
31	Comparing Microfluidic Performance of Three-Dimensional (3D) Printing Platforms. Analytical Chemistry, 2017, 89, 3858-3866.	3.2	300
32	Microfluidic Device for Studying Traumatic Brain Injury. Neuromethods, 2017, , 145-156.	0.2	4
33	Isotachophoretic Fluorescence in Situ Hybridization of Intact Bacterial Cells. Analytical Chemistry, 2017, 89, 6513-6520.	3.2	20
34	Electrophoretic separations on paper: Past, present, and future-A review. Analytica Chimica Acta, 2017, 985, 7-23.	2.6	37
35	One-Step Fabrication of a Microfluidic Device with an Integrated Membrane and Embedded Reagents by Multimaterial 3D Printing. Analytical Chemistry, 2017, 89, 4701-4707.	3.2	106
36	Using Printing Orientation for Tuning Fluidic Behavior in Microfluidic Chips Made by Fused Deposition Modeling 3D Printing. Analytical Chemistry, 2017, 89, 12805-12811.	3.2	66

Rosanne M Guijt

#	Article	IF	CITATIONS
37	Time-Resolved Pharmacological Studies using Automated, On-line Monitoring of Five Parallel Suspension Cultures. Scientific Reports, 2017, 7, 10337.	1.6	9
38	Van de Graaff generator for capillary electrophoresis. Journal of Chromatography A, 2017, 1517, 195-202.	1.8	5
39	Lab on a Chip – Future Technology for Characterizing Biotechnology Products. , 2017, , 849-859.		0
40	Mild and repetitive very mild axonal stretch injury triggers cystoskeletal mislocalization and growth cone collapse. PLoS ONE, 2017, 12, e0176997.	1.1	25
41	Nanoporous Membranes for Microfluidic Concentration Prior to Electrophoretic Separation of Proteins in Urine. Analytical Chemistry, 2016, 88, 8257-8263.	3.2	42
42	Capillary electrophoresis for automated on-line monitoring of suspension cultures: Correlating cell density, nutrients and metabolites in near real-time. Analytica Chimica Acta, 2016, 920, 94-101.	2.6	21
43	3D printed microfluidic devices: enablers and barriers. Lab on A Chip, 2016, 16, 1993-2013.	3.1	816
44	Salinity effects on chloroplast PSII performance in glycophytes and halophytes. Functional Plant Biology, 2016, 43, 1003.	1.1	30
45	Potassium retention in leaf mesophyll as an element of salinity tissue tolerance in halophytes. Plant Physiology and Biochemistry, 2016, 109, 346-354.	2.8	58
46	Plant leaves as templates for soft lithography. RSC Advances, 2016, 6, 22469-22475.	1.7	42
47	Direct electrokinetic injection of inorganic cations from whole fruits and vegetables for capillary electrophoresis analysis. Journal of Chromatography A, 2016, 1428, 346-351.	1.8	5
48	Electrokinetic Size and Mobility Traps for Onâ€site Therapeutic Drug Monitoring. Angewandte Chemie - International Edition, 2015, 54, 7359-7362.	7.2	11
49	Flow injection analysis of organic peroxide explosives using acid degradation and chemiluminescent detection of released hydrogen peroxide. Talanta, 2015, 143, 191-197.	2.9	14
50	Versatile electrophoresisâ€based selfâ€ŧest platform. Electrophoresis, 2015, 36, 644-645.	1.3	1
51	Micellar electrokinetic chromatography of organic and peroxide-based explosives. Analytica Chimica Acta, 2015, 876, 91-97.	2.6	7
52	Counter-pressure-assisted ITP with electrokinetic injection under field-amplified conditions for bacterial analysis. Analytical and Bioanalytical Chemistry, 2015, 407, 6995-7002.	1.9	9
53	Direct coupling of a free-flow isotachophoresis (FFITP) device with electrospray ionization mass spectrometry (ESI-MS). Lab on A Chip, 2015, 15, 3495-3502.	3.1	21
54	Electrokinetics for sample preparation of biological molecules in biological samples using microfluidic systems. Bioanalysis, 2014, 6, 1961-1974.	0.6	13

#	Article	IF	CITATIONS
55	Ion transport in broad bean leaf mesophyll under saline conditions. Planta, 2014, 240, 729-743.	1.6	22
56	Evaluation of potential cationic probes for the detection of proline and betaine. Electrophoresis, 2014, 35, 3379-3386.	1.3	4
57	Capillary electrophoresis for the analysis of paralytic shellfish poisoning toxins in shellfish: Comparison of detection methods. Electrophoresis, 2014, 35, 1496-1503.	1.3	28
58	Microfluidic culture platform for studying neuronal response to mild to very mild axonal stretch injury. Biomicrofluidics, 2014, 8, 044110.	1.2	28
59	Droplet Microfluidics for Postcolumn Reactions in Capillary Electrophoresis. Analytical Chemistry, 2014, 86, 11811-11818.	3.2	18
60	Polymeric Microchip for the Simultaneous Determination of Anions and Cations by Hydrodynamic Injection Using a Dual-Channel Sequential Injection Microchip Electrophoresis System. Analytical Chemistry, 2014, 86, 3380-3388.	3.2	40
61	Transient isotachophoresis-capillary zone electrophoresis with contactless conductivity and ultraviolet detection for the analysis of paralytic shellfish toxins in mussel samples. Journal of Chromatography A, 2014, 1364, 295-302.	1.8	27
62	On-line sequential injection-capillary electrophoresis for near-real-time monitoring of extracellular lactate in cell culture flasks. Journal of Chromatography A, 2014, 1323, 157-162.	1.8	27
63	Cost-Effective Three-Dimensional Printing of Visibly Transparent Microchips within Minutes. Analytical Chemistry, 2014, 86, 3124-3130.	3.2	436
64	Stainless Steel Pinholes for Fast Fabrication of High-Performance Microchip Electrophoresis Devices by CO ₂ Laser Ablation. Analytical Chemistry, 2013, 85, 10051-10056.	3.2	19
65	On-line simultaneous and rapid separation of anions and cations from a single sample using dual-capillary sequential injection-capillary electrophoresis. Analytica Chimica Acta, 2013, 781, 80-87.	2.6	58
66	Analytical isotachophoresis of lactate in human serum using dry film photoresist microfluidic chips compatible with a commercially available field-deployable instrument platform. Analytica Chimica Acta, 2013, 803, 135-142.	2.6	16
67	Porous layer open tubular monolith capillary column: switching-off the reaction kinetics as the governing factor in their preparation by using an immiscible liquid-controlled polymerization. RSC Advances, 2013, 3, 24927.	1.7	5
68	Tuneable nanochannel formation for sample-in/answer-out devices. Chemical Communications, 2013, 49, 2816.	2.2	11
69	Exploring chip-capillary electrophoresis-laser-induced fluorescence field-deployable platform flexibility: Separations of fluorescent dyes by chip-based non-aqueous capillary electrophoresis. Journal of Chromatography A, 2013, 1286, 216-221.	1.8	25
70	Microfluidic isotachophoresis: A review. Electrophoresis, 2013, 34, 1493-1509.	1.3	71
71	Capillary electrophoresis for monitoring bioprocesses. Electrophoresis, 2013, 34, 1465-1482.	1.3	22
72	Inâ€plane alloy electrodes for capacitively coupled contactless conductivity detection in poly(methylmethacrylate) electrophoretic chips. Electrophoresis, 2013, 34, 2980-2987.	1.3	24

#	Article	IF	CITATIONS
73	Isotachophoresis on a chip with indirect fluorescence detection as a field deployable system for analysis of carboxylic acids. Electrophoresis, 2012, 33, 3166-3172.	1.3	14
74	Electric field gradient focusing using a variable width polyaniline electrode. Electrophoresis, 2012, 33, 3254-3258.	1.3	6
75	Lab-on-a-Chip device with laser-patterned polymer electrodes for high voltage application and contactless conductivity detection. Chemical Communications, 2012, 48, 9287.	2.2	21
76	Separation of carboxylic acids in human serum by isotachophoresis using a commercial field-deployable analytical platform combined with in-house glass microfluidic chips. Analytica Chimica Acta, 2012, 755, 115-120.	2.6	14
77	Dual wavelength excitation fluorescence detector for capillary electrophoresis using a pulsed bi-colour light emitting diode. Analyst, The, 2011, 136, 2234.	1.7	12
78	Lab on a Chip – Future Technology for Characterizing Biotechnology Products. , 2011, , 753-764.		2
79	Microfluidic chips for capillary electrophoresis with integrated electrodes for capacitively coupled conductivity detection based on printed circuit board technology. Sensors and Actuators B: Chemical, 2011, 159, 307-313.	4.0	50
80	Pressure-assisted electrokinetic supercharging for the enhancement of non-steroidal anti-inflammatory drugs. Journal of Chromatography A, 2011, 1218, 6750-6755.	1.8	25
81	UV initiated formation of polymer monoliths in glass and polymer microreactors. Sensors and Actuators B: Chemical, 2011, 155, 388-396.	4.0	35
82	Electrokinetic superchargingâ€electrospray ionisationâ€mass spectrometry for separation and onâ€line preconcentration of hypolipidaemic drugs in water samples. Electrophoresis, 2010, 31, 1184-1193.	1.3	44
83	Strategies for the on-line preconcentration and separation of hypolipidaemic drugs using micellar electrokinetic chromatography. Journal of Chromatography A, 2010, 1217, 386-393.	1.8	29
84	Manufacturing and application of a fully polymeric electrophoresis chip with integrated polyaniline electrodes. Lab on A Chip, 2010, 10, 1869.	3.1	16
85	Photolithographic patterning of conducting polyaniline films via flash welding. Synthetic Metals, 2010, 160, 1405-1409.	2.1	13
86	Recent advances in enhancing the sensitivity of electrophoresis and electrochromatography in capillaries and microchips (2006–2008). Electrophoresis, 2009, 30, 230-248.	1.3	121
87	Determination of the surface heatâ€ŧransfer coefficient in CE. Electrophoresis, 2009, 30, 910-920.	1.3	8
88	Dry film microchips for miniaturised separations. Electrophoresis, 2009, 30, 4219-4224.	1.3	17
89	Supported palladium catalysis using a heteroleptic 2-methylthiomethylpyridine–N,S–donor motif for Mizoroki–Heck and Suzuki–Miyaura coupling, including continuous organic monolith in capillary microscale flow-through mode. Tetrahedron, 2009, 65, 7474-7481.	1.0	42
90	Palladium-mediated organic synthesis using porous polymer monolith formed in situ as a continuous catalyst support structure for application in microfluidic devices. Tetrahedron, 2009, 65, 1450-1454.	1.0	74

Rosanne M Guijt

#	Article	IF	CITATIONS
91	Counter-flow electrokinetic supercharging for the determination of non-steroidal anti-inflammatory drugs in water samples. Journal of Chromatography A, 2009, 1216, 3380-3386.	1.8	49
92	Identification of inorganic ions in postâ€blast explosive residues using portable CE instrumentation and capacitively coupled contactless conductivity detection. Electrophoresis, 2008, 29, 4593-4602.	1.3	96
93	High intensity light emitting diode array as an alternative exposure source for the fabrication of electrophoretic microfluidic devices. Journal of Chromatography A, 2008, 1213, 3-7.	1.8	13
94	Electrokinetic supercharging for on-line preconcentration of seven non-steroidal anti-inflammatory drugs in water samples. Journal of Chromatography A, 2008, 1189, 278-284.	1.8	50
95	Identification of homemade inorganic explosives by ion chromatographic analysis of post-blast residues. Journal of Chromatography A, 2008, 1182, 205-214.	1.8	86
96	Microfluidic Devices for Flow-Through Supported Palladium Catalysis on Porous Organic Monolith. Australian Journal of Chemistry, 2008, 61, 630.	0.5	16
97	Maskless photolithography using UV LEDs. Lab on A Chip, 2008, 8, 1402.	3.1	51
98	Identification of Inorganic Improvised Explosive Devices by Analysis of Postblast Residues Using Portable Capillary Electrophoresis Instrumentation and Indirect Photometric Detection with a Light-Emitting Diode. Analytical Chemistry, 2007, 79, 7005-7013.	3.2	125
99	Reliable electrophoretic mobilities free from Joule heating effects using CE. Electrophoresis, 2007, 28, 3759-3766.	1.3	23
100	Temperature Profiles and Heat Dissipation in Capillary Electrophoresis. Analytical Chemistry, 2006, 78, 2684-2693.	3.2	33
101	Macroporous monolith supports for continuous flow capillary microreactors. Tetrahedron Letters, 2006, 47, 9321-9324.	0.7	49
102	Variation of zeta-potential with temperature in fused-silica capillaries used for capillary electrophoresis. Electrophoresis, 2006, 27, 672-676.	1.3	38
103	Internal electrolyte temperatures for polymer and fused-silica capillaries used in capillary electrophoresis. Electrophoresis, 2005, 26, 4333-4344.	1.3	16
104	Determination of inorganic ions using microfluidic devices. Electrophoresis, 2004, 25, 3602-3624.	1.3	43
105	Conductivity detection for conventional and miniaturised capillary electrophoresis systems. Electrophoresis, 2004, 25, 4032-4057.	1.3	128
106	Miniaturized analytical assays in biotechnology. Biotechnology Advances, 2003, 21, 431-444.	6.0	5
107	Chemical and physical processes for integrated temperature control in microfluidic devices. Lab on A Chip, 2003, 3, 1.	3.1	75
108	On-Chip Contactless Four-Electrode Conductivity Detection for Capillary Electrophoresis Devices. Analytical Chemistry, 2003, 75, 306-312.	3.2	99

#	Article	IF	CITATIONS
109	Indirect Electro-Osmotic Pumping. Journal of the Association for Laboratory Automation, 2002, 7, 62-64.	2.8	5
110	Use of bioaffinity interactions in electrokinetically controlled assays on microfabricated devices. Electrophoresis, 2002, 23, 823-835.	1.3	34
111	Considerations on contactless conductivity detection in capillary electrophoresis. Electrophoresis, 2002, 23, 2888-2893.	1.3	55
112	Fabrication of a glass-implemented microcapillary electrophoresis device with integrated contactless conductivity detection. Electrophoresis, 2002, 23, 3511-3519.	1.3	64
113	New approaches for fabrication of microfluidic capillary electrophoresis devices with on-chip conductivity detection. Electrophoresis, 2001, 22, 235-241.	1.3	109
114	Capillary electrophoresis with on-chip four-electrode capacitively coupled conductivity detection for application in bioanalysis. Electrophoresis, 2001, 22, 2537-2541.	1.3	109