
Fei Zheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7186665/publications.pdf Version: 2024-02-01

FEI ZHENC

#	Article	IF	CITATIONS
1	Universal passivation strategy to slot-die printed SnO2 for hysteresis-free efficient flexible perovskite solar module. Nature Communications, 2018, 9, 4609.	5.8	596
2	Triggering the Passivation Effect of Potassium Doping in Mixedâ€Cation Mixedâ€Halide Perovskite by Light Illumination. Advanced Energy Materials, 2019, 9, 1901016.	10.2	109
3	Dual Förster resonance energy transfer effects in non-fullerene ternary organic solar cells with the third component embedded in the donor and acceptor. Journal of Materials Chemistry A, 2017, 5, 12120-12130.	5.2	102
4	Charge transfer from poly(3-hexylthiophene) to graphene oxide and reduced graphene oxide. RSC Advances, 2015, 5, 89515-89520.	1.7	89
5	LiTFSlâ€Free Spiroâ€OMeTADâ€Based Perovskite Solar Cells with Power Conversion Efficiencies Exceeding 19%. Advanced Energy Materials, 2019, 9, 1901519.	10.2	85
6	Crystallisation control of drop-cast quasi-2D/3D perovskite layers for efficient solar cells. Communications Materials, 2020, 1, .	2.9	66
7	Förster Resonance Energy Transfer and Energy Cascade in Broadband Photodetectors with Ternary Polymer Bulk Heterojunction. Journal of Physical Chemistry C, 2015, 119, 21913-21920.	1.5	61
8	Improving the Compatibility of Donor Polymers in Efficient Ternary Organic Solar Cells via Post-Additive Soaking Treatment. ACS Applied Materials & Interfaces, 2017, 9, 618-627.	4.0	51
9	Surface modification <i>via</i> self-assembling large cations for improved performance and modulated hysteresis of perovskite solar cells. Journal of Materials Chemistry A, 2019, 7, 6793-6800.	5.2	48
10	Slow Response of Carrier Dynamics in Perovskite Interface upon Illumination. ACS Applied Materials & Interfaces, 2018, 10, 31452-31461.	4.0	47
11	Revealing the Role of Methylammonium Chloride for Improving the Performance of 2D Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 25980-25990.	4.0	47
12	Transient Energy Reservoir in 2D Perovskites. Advanced Optical Materials, 2019, 7, 1900971.	3.6	46
13	An Obvious Improvement in the Performance of Ternary Organic Solar Cells with "Guest―Donor Present at the "Host―Donor/Acceptor Interface. ACS Applied Materials & Interfaces, 2016, 8, 23212-23221.	4.0	44
14	The optical properties of Cs ₄ PbBr ₆ –CsPbBr ₃ perovskite composites. Nanoscale, 2019, 11, 14676-14683.	2.8	40
15	Millimeterâ€Sized Clusters of Triple Cation Perovskite Enables Highly Efficient and Reproducible Rollâ€toâ€Roll Fabricated Inverted Perovskite Solar Cells. Advanced Functional Materials, 2022, 32, .	7.8	36
16	Functionalized Graphene Oxide Enables a High-Performance Bulk Heterojunction Organic Solar Cell with a Thick Active Layer. Journal of Physical Chemistry Letters, 2018, 9, 6238-6248.	2.1	34
17	Homogeneous phase separation in polymer:fullerene bulk heterojunction organic solar cells. Organic Electronics, 2015, 25, 266-274.	1.4	33
18	Poly(3-hexylthiophene) coated graphene oxide for improved performance of bulk heterojunction polymer solar cells. Organic Electronics, 2017, 44, 149-158.	1.4	23

Fei Zheng

#	Article	IF	CITATIONS
19	Purified dispersions of graphene in a nonpolar solvent via solvothermal reduction of graphene oxide. Chemical Communications, 2015, 51, 3824-3827.	2.2	18
20	Effects of Processing Solvent on the Photophysics and Nanomorphology of Poly(3-butyl-thiophene) Nanowires:PCBM Blends. Journal of Physical Chemistry Letters, 2016, 7, 1872-1879.	2.1	17
21	A Biomimetic Supramolecular Approach for Charge Transfer between Donor and Acceptor Chromophores with Aggregationâ€Induced Emission. Chemistry - A European Journal, 2018, 24, 14668-14678.	1.7	17
22	Femtosecond laser processing induced low loss waveguides in multicomponent glasses. Optical Materials Express, 2017, 7, 3580.	1.6	16
23	Molecular packing correlated fluorescence in TIPS-pentacene films. Organic Electronics, 2017, 49, 340-346.	1.4	15
24	A sandwich-like structural model revealed for quasi-2D perovskite films. Journal of Materials Chemistry C, 2021, 9, 5362-5372.	2.7	14
25	The structure and optical properties of regio-regular poly(3-hexylthiophene) and carboxylic multi-walled carbon nanotubes composite films. Journal Physics D: Applied Physics, 2014, 47, 505502.	1.3	12
26	Improved compatibility of DDAB-functionalized graphene oxide with a conjugated polymer by isocyanate treatment. RSC Advances, 2017, 7, 17633-17639.	1.7	12
27	Optimizing the Crystallinity and Phase Separation of PTB7:PC ₇₁ BM Films by Modified Graphene Oxide. Journal of Physical Chemistry C, 2018, 122, 2572-2581.	1.5	12
28	Structural and optical properties of conjugated polymer and carbon-based non-fullerene material blend films for photovoltaic applications. Optical Materials Express, 2017, 7, 687.	1.6	10
29	Charge transfer dynamics in poly(3-hexylthiophene): nanodiamond blend films. Diamond and Related Materials, 2016, 64, 8-12.	1.8	9
30	Laser-induced crystallization and conformation control of poly(3-hexylthiophene) for improving the performance of organic solar cells. Organic Electronics, 2017, 49, 157-164.	1.4	8
31	Effect of alkyl side-chain length on the photophysical, morphology and photoresponse properties of poly(3-alkylthiophene). Journal Physics D: Applied Physics, 2015, 48, 485501.	1.3	6
32	Quantifying phase separation and interfacial area in organic photovoltaic bulk heterojunction processed with solvent additives. Chemical Physics, 2015, 457, 7-12.	0.9	5
33	Performance Enhancement in Polymer-Based Organic Optoelectronic Devices Enabled By Discontinuous Metal Interlayer. IEEE Journal of Photovoltaics, 2016, 6, 1522-1529.	1.5	4
34	Highly efficient radiative recombination in intrinsically zero-dimensional perovskite micro-crystals prepared by thermally-assisted solution-phase synthesis. RSC Advances, 2020, 10, 43579-43584.	1.7	4
35	Brownian Treeâ€Shaped Dendrites in Quasiâ€2D Perovskite Films and Their Impact on Photovoltaic Performance. Advanced Materials Interfaces, 0, , 2102231.	1.9	4
36	Efficient photoinduced charge transfer in chemically-linked organic-metal Ag-P3HT nanocomposites. Optical Materials Express, 2016, 6, 3063.	1.6	3

Fei Zheng

#	Article	IF	CITATIONS
37	Impact of solvent additive on exciton dissociation in P3HT : EP-PDI blend film via controlling morphology. Journal Physics D: Applied Physics, 2016, 49, 255502.	1.3	3
38	Reduced graphene oxide assisted charge separation and serving as transport pathways in planar perovskite photodetector. Organic Electronics, 2020, 81, 105663.	1.4	3
39	Perovskites: Triggering the Passivation Effect of Potassium Doping in Mixedâ€Cation Mixedâ€Halide Perovskite by Light Illumination (Adv. Energy Mater. 24/2019). Advanced Energy Materials, 2019, 9, 1970093.	10.2	1
40	Phase Separation in Poly(alkylthiophene): PCBM Bulk Heterojunctions Probed with Morphology, Optical Response and Aggregates Size. Energy and Environment Focus, 2014, 3, 375-382.	0.3	0
41	Brownian Treeâ€Shaped Dendrites in Quasiâ€2D Perovskite Films and Their Impact on Photovoltaic Performance (Adv. Mater. Interfaces 13/2022). Advanced Materials Interfaces, 2022, 9, .	1.9	0