Jose Munoz-Munoz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7186355/publications.pdf

Version: 2024-02-01

60 papers

1,524 citations

304602 22 h-index 330025 37 g-index

60 all docs 60 does citations

60 times ranked

1985 citing authors

#	Article	IF	Citations
1	Human gut Bacteroidetes can utilize yeast mannan through a selfish mechanism. Nature, 2015, 517, 165-169.	13.7	427
2	A surface endogalactanase in Bacteroides thetaiotaomicron confers keystone status for arabinogalactan degradation. Nature Microbiology, 2018, 3, 1314-1326.	5.9	103
3	Suicide inactivation of the diphenolase and monophenolase activities of tyrosinase. IUBMB Life, 2010, 62, 539-547.	1.5	63
4	Generation of hydrogen peroxide in the melanin biosynthesis pathway. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2009, 1794, 1017-1029.	1.1	57
5	Phenolic substrates and suicide inactivation of tyrosinase: kinetics and mechanism. Biochemical Journal, 2008, 416, 431-440.	1.7	56
6	Enzymatic and chemical oxidation of trihydroxylated phenols. Food Chemistry, 2009, 113, 435-444.	4.2	42
7	A comprehensive review on the impact of \hat{l}^2 -glucan metabolism by Bacteroides and Bifidobacterium species as members of the gut microbiota. International Journal of Biological Macromolecules, 2021, 181, 877-889.	3.6	40
8	Plant Glycan Metabolism by Bifidobacteria. Frontiers in Microbiology, 2021, 12, 609418.	1.5	40
9	Action of Tyrosinase on Ortho-Substituted Phenols: Possible Influence on Browning and Melanogenesis. Journal of Agricultural and Food Chemistry, 2012, 60, 6447-6453.	2.4	39
10	Unusual active site location and catalytic apparatus in a glycoside hydrolase family. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 4936-4941.	3.3	38
11	Catalysis and inhibition of tyrosinase in the presence of cinnamic acid and some of its derivatives. International Journal of Biological Macromolecules, 2018, 119, 548-554.	3.6	37
12	PROOXIDANT AND ANTIOXIDANT ACTIVITIES OF ROSMARINIC ACID. Journal of Food Biochemistry, 2013, 37, 396-408.	1.2	35
13	Stereospecific inactivation of tyrosinase by l- and d-ascorbic acid. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2009, 1794, 244-253.	1.1	34
14	Quantification of the Antioxidant Capacity of Different Molecules and Their Kinetic Antioxidant Efficiencies. Journal of Agricultural and Food Chemistry, 2010, 58, 2062-2070.	2.4	34
15	Tyrosinase inactivation in its action on dopa. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2010, 1804, 1467-1475.	1.1	33
16	Kinetic Characterization of the Enzymatic and Chemical Oxidation of the Catechins in Green Tea. Journal of Agricultural and Food Chemistry, 2008, 56, 9215-9224.	2.4	32
17	Tyrosinase-catalyzed hydroxylation of hydroquinone, a depigmenting agent, to hydroxyhydroquinone: A kinetic study. Bioorganic and Medicinal Chemistry, 2014, 22, 3360-3369.	1.4	28
18	An evolutionarily distinct family of polysaccharide lyases removes rhamnose capping of complex arabinogalactan proteins. Journal of Biological Chemistry, 2017, 292, 13271-13283.	1.6	26

#	Article	IF	CITATIONS
19	Kinetic Characterization of the Oxidation of Esculetin by Polyphenol Oxidase and Peroxidase. Bioscience, Biotechnology and Biochemistry, 2007, 71, 390-396.	0.6	24
20	Ellagic acid: Characterization as substrate of polyphenol oxidase. IUBMB Life, 2009, 61, 171-177.	1.5	24
21	Unravelling the suicide inactivation of tyrosinase: A discrimination between mechanisms. Journal of Molecular Catalysis B: Enzymatic, 2012, 75, 11-19.	1.8	23
22	Hydroxylation of p-substituted phenols by tyrosinase: Further insight into the mechanism of tyrosinase activity. Biochemical and Biophysical Research Communications, 2012, 424, 228-233.	1.0	22
23	Further insight into the pH effect on the catalysis of mushroom tyrosinase. Journal of Molecular Catalysis B: Enzymatic, 2016, 125, 6-15.	1.8	20
24	Biochemical analysis of crossâ€feeding behaviour between two common gut commensals when cultivated on plantâ€derived arabinogalactan. Microbial Biotechnology, 2020, 13, 1733-1747.	2.0	20
25	Hydrogen Peroxide Helps in the Identification of Monophenols as Possible Substrates of Tyrosinase. Bioscience, Biotechnology and Biochemistry, 2013, 77, 2383-2388.	0.6	17
26	Action of tyrosinase on hydroquinone in the presence of catalytic amounts of o-diphenol. A kinetic study. Reaction Kinetics, Mechanisms and Catalysis, 2014, 112, 305-320.	0.8	17
27	Spectrophotometric Characterization of the Action of Tyrosinase on <i>p</i> Coumaric and Caffeic Acids: Characteristics of <i>o</i> -Caffeoquinone. Journal of Agricultural and Food Chemistry, 2017, 65, 3378-3386.	2.4	15
28	Considerations about the kinetic mechanism of tyrosinase in its action on monophenols: A review. Molecular Catalysis, 2022, 518, 112072.	1.0	14
29	Catalytic oxidation of o-aminophenols and aromatic amines by mushroom tyrosinase. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2011, 1814, 1974-1983.	1.1	13
30	Study of Umbelliferone Hydroxylation to Esculetin Catalyzed by Polyphenol Oxidase. Biological and Pharmaceutical Bulletin, 2013, 36, 1140-1145.	0.6	12
31	Structural and functional analyses of glycoside hydrolase 138 enzymes targeting chain A galacturonic acid in the complex pectin rhamnogalacturonan II. Journal of Biological Chemistry, 2019, 294, 7711-7721.	1.6	12
32	Kinetic characterization of the oxidation of catecolamines and related compounds by laccase. International Journal of Biological Macromolecules, 2020, 164, 1256-1266.	3.6	12
33	Melanogenesis Inhibition Due to NADH. Bioscience, Biotechnology and Biochemistry, 2010, 74, 1777-1787.	0.6	11
34	Kinetic characterisation of o-aminophenols and aromatic o-diamines as suicide substrates of tyrosinase. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2012, 1824, 647-655.	1.1	10
35	Catalysis and inactivation of tyrosinase in its action on o-diphenols, o-aminophenols and o-phenylendiamines: Potential use in industrial applications. Journal of Molecular Catalysis B: Enzymatic, 2013, 91, 17-24.	1.8	10
36	Tetrahydrofolic Acid Is a Potent Suicide Substrate of Mushroom Tyrosinase. Journal of Agricultural and Food Chemistry, 2011, 59, 1383-1391.	2.4	8

#	Article	IF	Citations
37	Melanogenesis inhibition by tetrahydropterines. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2009, 1794, 1766-1774.	1.1	7
38	Catalysis and inactivation of tyrosinase in its action on hydroxyhydroquinone. IUBMB Life, 2014, 66, 122-127.	1.5	7
39	Sulfation of Arabinogalactan Proteins Confers Privileged Nutrient Status to Bacteroides plebeius. MBio, 2021, 12, e0136821.	1.8	7
40	Indirect inactivation of tyrosinase in its action on 4- <i>tert</i> -butylphenol. Journal of Enzyme Inhibition and Medicinal Chemistry, 2014, 29, 344-352.	2.5	6
41	Study of tyrosine and dopa enantiomers as tyrosinase substrates initiating <scp>l</scp> ― and <scp>d</scp> â€melanogenesis pathways. Biotechnology and Applied Biochemistry, 2021, 68, 823-831.	1.4	6
42	The Relationship between the IC50 Values and the Apparent Inhibition Constant in the Study of Inhibitors of Tyrosinase Diphenolase Activity Helps Confirm the Mechanism of Inhibition. Molecules, 2022, 27, 3141.	1.7	5
43	Beyond GalNAc! Drug delivery systems comprising complex oligosaccharides for targeted use of nucleic acid therapeutics. RSC Advances, 2022, 12, 20432-20446.	1.7	5
44	Some kinetic properties of deoxytyrosinase. Journal of Molecular Catalysis B: Enzymatic, 2010, 62, 173-182.	1.8	4
45	Suicide inactivation of tyrosinase in its action on tetrahydropterines. Journal of Enzyme Inhibition and Medicinal Chemistry, 2011, 26, 728-733.	2.5	4
46	Kinetic Characterization of the Oxidation of Carbidopa and Benserazide by Tyrosinase and Peroxidase. Bioscience, Biotechnology and Biochemistry, 2009, 73, 1308-1313.	0.6	3
47	New features of the steady-state rate related with the initial concentration of substrate in the diphenolase and monophenolase activities of tyrosinase. Journal of Mathematical Chemistry, 2010, 48, 347-362.	0.7	3
48	Enzymatic oxidation of oleuropein and 3â€hydroxytyrosol by laccase, peroxidase, and tyrosinase. Journal of Food Biochemistry, 2021, 45, e13803.	1.2	3
49	Kinetic cooperativity of tyrosinase. A general mechanism Acta Biochimica Polonica, 2011, 58, .	0.3	3
50	Indirect inactivation of tyrosinase in its action on tyrosine. Acta Biochimica Polonica, 2011, 58, 477-88.	0.3	3
51	A general model for non-autocatalytic zymogen activation in the presence of two different and mutually exclusive inhibitors. I. Kinetic analysis. Journal of Mathematical Chemistry, 2010, 48, 617-634.	0.7	2
52	Development of a method to measure laccase activity on methoxyphenolic food ingredients and isomers. International Journal of Biological Macromolecules, 2020, 151, 1099-1107.	3.6	2
53	Considerations about the Continuous Assay Methods, Spectrophotometric and Spectrofluorometric, of the Monophenolase Activity of Tyrosinase. Biomolecules, 2021, 11, 1269.	1.8	2
54	Kinetic analysis of a general model of activation of aspartic proteinase zymogens involving a reversible inhibitor. II. Contribution of the uni- and bimolecular activation routes. Journal of Enzyme Inhibition and Medicinal Chemistry, 2007, 22, 157-163.	2.5	1

#	Article	IF	CITATIONS
55	A general model for non-autocatalytic zymogen activation in the presence of two different and mutually exclusive inhibitors. II. Relative weight of activation and inhibition processes. Journal of Mathematical Chemistry, 2010, 48, 635-652.	0.7	1
56	Effects of Tetrahydropterines on the Generation of Quinones Catalyzed by Tyrosinase. Bioscience, Biotechnology and Biochemistry, 2010, 74, 1108-1109.	0.6	1
57	Deuterium isotope effect on the suicide inactivation of tyrosinase in its action on <i>oâ€</i> i>diphenols. IUBMB Life, 2013, 65, 793-799.	1.5	1
58	Determination and Applications of the Molar Absorptivity of Phenolic Adducts with Captopril and Mesna. Journal of Agricultural and Food Chemistry, 2009, 57, 1143-1150.	2.4	0
59	Characterization of unstable enzyme systems which evolve according to a three-exponential equation. Journal of Mathematical Chemistry, 2011, 49, 1667-1686.	0.7	O
60	Selection of most powerful depigmenting agents: Considerations about their possible use. Dermatologic Therapy, 2021, 34, e14774.	0.8	0