Jhonatan Rodriguez Pereira

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/718633/jhonatan-rodriguez-pereira-publications-by-year.pdf

Version: 2024-04-19

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

41 284 10 15 g-index

46 432 4.4 3.6 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
41	Enhanced optical properties of ZnSexS1-x and Mn-doped ZnSexS1-x QDs via non-toxic synthetic approach. <i>Materials Chemistry and Physics</i> , 2022 , 284, 126060	4.4	O
40	Efficient and Stable Blue- and Red-Emitting Perovskite Nanocrystals through Defect Engineering: PbX2 Purification. <i>Chemistry of Materials</i> , 2021 , 33, 8745-8757	9.6	6
39	Protection of hematite photoelectrodes by ALD-TiO2 capping. <i>Journal of Photochemistry and Photobiology A: Chemistry</i> , 2021 , 409, 113126	4.7	2
38	High-Aspect-Ratio TiO2 Nanotube Layers via Galvanostatic Anodization in an Electrolyte Containing Lactic Acid. <i>Physica Status Solidi - Rapid Research Letters</i> , 2021 , 15, 2100146	2.5	0
37	Anodic TiO2 nanotube walls reconstructed: Inner wall replaced by ALD TiO2 coating. <i>Applied Surface Science</i> , 2021 , 549, 149306	6.7	6
36	2D MoTe2 nanosheets by atomic layer deposition: Excellent photo- electrocatalytic properties. <i>Applied Materials Today</i> , 2021 , 23, 101017	6.6	3
35	Ibuprofen tablet characterized by XPS. Surface Science Spectra, 2021 , 28, 014004	1.2	
34	Morphology and optical properties of CeF3 and CeF3:Tb nanocrystals: The dominant role of the reaction thermal mode. <i>Materials Chemistry and Physics</i> , 2021 , 260, 124161	4.4	1
33	Tunable optical performance in nanosized AgInS2-ZnS solid solution heterostructures due to the precursor ratio modification. <i>Optical Materials Express</i> , 2021 , 11, 539	2.6	1
32	Engineering Sr-doping for enabling long-term stable FAPb1\(\mathbb{B}\)SrxI3 quantum dots with 100% photoluminescence quantum yield. <i>Journal of Materials Chemistry C</i> , 2021 , 9, 1555-1566	7.1	7
31	Deposition of MoSe flakes using cyclic selenides <i>RSC Advances</i> , 2021 , 11, 22140-22147	3.7	O
30	Wireless Anodization of Ti in Closed Bipolar Cells. ChemElectroChem, 2021, 8, 3827	4.3	1
29	Amorphous-to-Crystal Transition in Quasi-Two-Dimensional MoS2: Implications for 2D Electronic Devices. <i>ACS Applied Nano Materials</i> , 2021 , 4, 8834-8844	5.6	4
28	Niobium ethoxide analyzed by XPS. Surface Science Spectra, 2020, 27, 024014	1.2	0
27	TiO Nanotube Layers Decorated with AlO/MoS/AlO as Anode for Li-ion Microbatteries with Enhanced Cycling Stability. <i>Nanomaterials</i> , 2020 , 10,	5.4	4
26	Cadmium selenide by XPS. Surface Science Spectra, 2020 , 27, 014021	1.2	3
25	Laser-induced crystallization of anodic TiO nanotube layers RSC Advances, 2020, 10, 22137-22145	3.7	10

(2019-2020)

Cyclic Silylselenides: Convenient Selenium Precursors for Atomic Layer Deposition. <i>ChemPlusChem</i> , 2020 , 85, 576-579	2.8	8
Atomic Layer Deposition of SnO-Coated Anodic One-Dimensional TiO Nanotube Layers for Low Concentration NO Sensing. <i>ACS Applied Materials & Amp; Interfaces</i> , 2020 , 12, 33386-33396	9.5	13
Sildenafil tablet analyzed by XPS. Surface Science Spectra, 2020 , 27, 024016	1.2	1
A layered GeSbTe phase change material. <i>Nanoscale</i> , 2020 , 12, 3351-3358	7.7	2
Unravelling the Photocatalytic Behavior of All-Inorganic Mixed Halide Perovskites: The Role of Surface Chemical States. <i>ACS Applied Materials & Description</i> (12, 914-924)	9.5	33
Anodization of electrodeposited titanium films towards TiO2 nanotube layers. <i>Electrochemistry Communications</i> , 2020 , 118, 106788	5.1	11
2D metallic tungsten material. <i>Applied Surface Science</i> , 2020 , 530, 147231	6.7	2
Atomic Layer Deposition of MoSe2 Nanosheets on TiO2 Nanotube Arrays for Photocatalytic Dye Degradation and Electrocatalytic Hydrogen Evolution. <i>ACS Applied Nano Materials</i> , 2020 , 3, 12034-120	45 ^{5.6}	11
The nature of the active sites of PdC a catalysts in the hydrogenation of CO2 to methanol. <i>Catalysis Science and Technology</i> , 2020 , 10, 6644-6658	5.5	13
Bismuth acetate by XPS. Surface Science Spectra, 2020 , 27, 024001	1.2	2
Ligand field states and defect levels synergism: A close look at the band alignment of 4T1-Mn-CdS/Bi2S3-co-sensitized photoanodes. <i>Thin Solid Films</i> , 2020 , 714, 138393	2.2	О
XPS of the surface chemical environment of CsMAFAPbBrI trication-mixed halide perovskite film. <i>Surface Science Spectra</i> , 2020 , 27, 024003	1.2	7
Molybdenum diselenide thin films grown by atomic layer deposition: An XPS analysis. <i>Surface Science Spectra</i> , 2020 , 27, 024006	1.2	4
Molybdenum and Nickel Nanoparticles Synthesis by Laser Ablation towards the Preparation of a Hydrodesulfurization Catalyst. <i>Catalysts</i> , 2020 , 10, 1076	4	2
An analysis of the effect of zirconium precursors of MOF-808 on its thermal stability, and structural and surface properties. <i>CrystEngComm</i> , 2019 , 21, 1407-1415	3.3	20
Insights into the role of Zn and Ga in the hydrogenation of CO2 to methanol over Pd. <i>International Journal of Hydrogen Energy</i> , 2019 , 44, 16526-16536	6.7	15
Ruthenium thin film under methanation atmosphere analyzed by x-ray photoelectron spectroscopy. <i>Surface Science Spectra</i> , 2019 , 26, 024012	1.2	
TiZrN thin films under CO2 and thermal treatment characterized by x-ray photoelectron spectroscopy. <i>Surface Science Spectra</i> , 2019 , 26, 024013	1.2	
	Atomic Layer Deposition of SnO-Coated Anodic One-Dimensional TiO Nanotube Layers for Low Concentration NO Sensing. <i>ACS Applied Materials & Discourse (Concentration No Sensing)</i> . <i>ACS Applied Materials & Discourse (Concentration No Sensing)</i> . <i>ACS Applied Materials & Discourse (Concentration No Sensing)</i> . <i>ACS Applied Materials & Discourse (Concentration No Sensing)</i> . <i>Acy Applied Materials & Discourse (Concentration No Sensing)</i> . <i>Acy Applied Materials & Discourse (Concentration Sensing)</i> . <i>Acy Applied Surface Science</i> , <i>2020</i> , 530, 147231 Atomic Layer Deposition of MoSe2 Nanosheets on TiO2 Nanotube Arrays for Photocatalytic Dye Degradation and Electrocatalytic Hydrogen Evolution. <i>ACS Applied Nano Materials</i> , <i>2020</i> , 3, 12034-120. The nature of the active sites of PdGa catalysts in the hydrogenation of CO2 to methanol. <i>Catalysis Science and Technology</i> , <i>2020</i> , 10, 6644-6658. Bismuth acetate by XPS. <i>Surface Science Spectra</i> , <i>2020</i> , 27, 024001 Ligand field states and defect levels synergism: A close look at the band alignment of 4T1-Mn-Cd5/Biz53-co-sensitized photoanodes. <i>Thin Solid Films</i> , <i>2020</i> , 714, 138393 XPS of the surface chemical environment of CSMAFAPBBrI trication-mixed halide perovskite film. <i>Surface Science Spectra</i> , <i>2020</i> , 27, 024003 Molybdenum disclenide thin films grown by atomic layer deposition: An XPS analysis. <i>Surface Science Spectra</i> , <i>2020</i> , 27, 024006 Molybdenum and Nickel Nanoparticles Synthesis by Laser Ablation towards the Preparation of a Hydrodesulfurization Catalyst. <i>Catalysts</i> , <i>2020</i> , 10, 1076 An analysis of the effect of zirconium precursors of MOF-808 on its thermal stability, and structural and surface properties. <i>CrystEngComm</i> , <i>2019</i> , 21, 1407-1415 Insights into the role of Zn and Ga in the hydrogenation of CO2 to meth	Atomic Layer Deposition of SnO-Coated Anodic One-Dimensional TiO Nanotube Layers for Low Concentration NO Sensing. ACS Applied Materials & Description (Concentration NO Sensing.) A layered GesbTe phase change material. Nanoscale, 2020, 12, 3351-3358 77 Unravelling the Photocatalytic Behavior of All-Inorganic Mixed Halide Perovskites: The Role of Surface Chemical States. ACS Applied Materials & Description (Concentration) (Concen

6	How does the Zn-precursor nature impact carrier transfer in ZnO/Zn-TiO2 nanostructures? organic vs. inorganic anions. <i>New Journal of Chemistry</i> , 2019 , 43, 19085-19096	3.6	
5	2D MoS nanosheets on 1D anodic TiO nanotube layers: an efficient co-catalyst for liquid and gas phase photocatalysis. <i>Nanoscale</i> , 2019 , 11, 23126-23131	7.7	22
4	Effect of modification substrate on the microstructure of hydroxyapatite coating. <i>Journal of Physics: Conference Series</i> , 2017 , 786, 012024	0.3	O
3	Catalytic consequences of Ga promotion on Cu for CO2 hydrogenation to methanol. <i>Catalysis Science and Technology</i> , 2017 , 7, 3375-3387	5.5	48
2	Influence of immersion cycles during n B i2O3 sensitization on the photoelectrochemical behaviour of N B Bodoped TiO2 nanotubes. <i>Applied Surface Science</i> , 2017 , 423, 917-926	6.7	15
1	Atomic layer deposition of photoelectrocatalytic material on 3D-printed nanocarbon structures. Journal of Materials Chemistry A,	13	6