Jhonatan Rodriguez Pereira

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/718633/publications.pdf

Version: 2024-02-01

45 papers 591 citations

16 h-index 642732 23 g-index

46 all docs

46 docs citations

46 times ranked

796 citing authors

#	Article	IF	Citations
1	Catalytic consequences of Ga promotion on Cu for CO ₂ hydrogenation to methanol. Catalysis Science and Technology, 2017, 7, 3375-3387.	4.1	68
2	Unravelling the Photocatalytic Behavior of All-Inorganic Mixed Halide Perovskites: The Role of Surface Chemical States. ACS Applied Materials & Surface Chemical States. ACS ACS ACCESS	8.0	55
3	An analysis of the effect of zirconium precursors of MOF-808 on its thermal stability, and structural and surface properties. CrystEngComm, 2019, 21, 1407-1415.	2.6	39
4	2D MoS ₂ nanosheets on 1D anodic TiO ₂ nanotube layers: an efficient co-catalyst for liquid and gas phase photocatalysis. Nanoscale, 2019, 11, 23126-23131.	5.6	34
5	Atomic Layer Deposition of SnO ₂ -Coated Anodic One-Dimensional TiO ₂ Nanotube Layers for Low Concentration NO ₂ Sensing. ACS Applied Materials & Samp; Interfaces, 2020, 12, 33386-33396.	8.0	28
6	Atomic Layer Deposition of MoSe ₂ Nanosheets on TiO ₂ Nanotube Arrays for Photocatalytic Dye Degradation and Electrocatalytic Hydrogen Evolution. ACS Applied Nano Materials, 2020, 3, 12034-12045.	5.0	25
7	Efficient and Stable Blue- and Red-Emitting Perovskite Nanocrystals through Defect Engineering: PbX ₂ Purification. Chemistry of Materials, 2021, 33, 8745-8757.	6.7	24
8	Laser-induced crystallization of anodic TiO ₂ nanotube layers. RSC Advances, 2020, 10, 22137-22145.	3.6	23
9	Engineering Sr-doping for enabling long-term stable FAPb _{1â^x} Sr _x I ₃ quantum dots with 100% photoluminescence quantum yield. Journal of Materials Chemistry C, 2021, 9, 1555-1566.	5. 5	23
10	Amorphous-to-Crystal Transition in Quasi-Two-Dimensional MoS ₂ : Implications for 2D Electronic Devices. ACS Applied Nano Materials, 2021, 4, 8834-8844.	5.0	22
11	The nature of the active sites of Pd–Ga catalysts in the hydrogenation of CO ₂ to methanol. Catalysis Science and Technology, 2020, 10, 6644-6658.	4.1	21
12	Atomic layer deposition of photoelectrocatalytic material on 3D-printed nanocarbon structures. Journal of Materials Chemistry A, 2021, 9, 11405-11414.	10.3	21
13	Insights into the role of Zn and Ga in the hydrogenation of CO2 to methanol over Pd. International Journal of Hydrogen Energy, 2019, 44, 16526-16536.	7.1	20
14	Anodic TiO2 nanotube walls reconstructed: Inner wall replaced by ALD TiO2 coating. Applied Surface Science, 2021, 549, 149306.	6.1	20
15	Anodization of electrodeposited titanium films towards TiO2 nanotube layers. Electrochemistry Communications, 2020, 118, 106788.	4.7	19
16	Influence of immersion cycles during n–β–Bi2O3 sensitization on the photoelectrochemical behaviour of N–F–codoped TiO2 nanotubes. Applied Surface Science, 2017, 423, 917-926.	6.1	18
17	XPS of the surface chemical environment of CsMAFAPbBrI trication-mixed halide perovskite film. Surface Science Spectra, 2020, 27, .	1.3	17
18	2D MoTe2 nanosheets by atomic layer deposition: Excellent photo- electrocatalytic properties. Applied Materials Today, 2021, 23, 101017.	4.3	12

#	Article	IF	CITATIONS
19	Molybdenum diselenide thin films grown by atomic layer deposition: An XPS analysis. Surface Science Spectra, 2020, 27, .	1.3	10
20	Cadmium selenide by XPS. Surface Science Spectra, 2020, 27, .	1.3	10
21	TiO2 Nanotube Layers Decorated with Al2O3/MoS2/Al2O3 as Anode for Li-ion Microbatteries with Enhanced Cycling Stability. Nanomaterials, 2020, 10, 953.	4.1	9
22	Cyclic Silylselenides: Convenient Selenium Precursors for Atomic Layer Deposition. ChemPlusChem, 2020, 85, 576-579.	2.8	8
23	Protection of hematite photoelectrodes by ALD-TiO2 capping. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 409, 113126.	3.9	7
24	Improved Ordering of Quasi-Two-Dimensional MoS ₂ via an Amorphous-to-Crystal Transition Initiated from Amorphous Sulfur-Rich MoS _{2+<i>x</i>} . Crystal Growth and Design, 2022, 22, 3072-3079.	3.0	7
25	Bismuth acetate by XPS. Surface Science Spectra, 2020, 27, .	1.3	6
26	Molybdenum and Nickel Nanoparticles Synthesis by Laser Ablation towards the Preparation of a Hydrodesulfurization Catalyst. Catalysts, 2020, 10, 1076.	3.5	6
27	Tunable optical performance in nanosized AgInS2-ZnS solid solution heterostructures due to the precursor's ratio modification. Optical Materials Express, 2021, 11, 539.	3.0	6
28	A layered Ge ₂ Sb ₂ Te ₅ phase change material. Nanoscale, 2020, 12, 3351-3358.	5.6	5
29	2D metallic tungsten material. Applied Surface Science, 2020, 530, 147231.	6.1	4
30	Morphology and optical properties of CeF3 and CeF3:Tb nanocrystals: The dominant role of the reaction thermal mode. Materials Chemistry and Physics, 2021, 260, 124161.	4.0	4
31	Wireless Anodization of Ti in Closed Bipolar Cells. ChemElectroChem, 2021, 8, 3827-3831.	3.4	4
32	Highâ€Aspectâ€Ratio TiO ₂ Nanotube Layers via Galvanostatic Anodization in an Electrolyte Containing Lactic Acid. Physica Status Solidi - Rapid Research Letters, 2021, 15, 2100146.	2.4	3
33	Highly Efficient and Controllable Methodology of the Cd0.25Zn0.75Se/ZnS Core/Shell Quantum Dots Synthesis. Nanomaterials, 2021, 11, 2616.	4.1	3
34	Deposition of MoSe ₂ flakes using cyclic selenides. RSC Advances, 2021, 11, 22140-22147.	3.6	2
35	Sildenafil tablet analyzed by XPS. Surface Science Spectra, 2020, 27, 024016.	1.3	2
36	Enhanced optical properties of ZnSexS1-x and Mn-doped ZnSexS1-x QDs via non-toxic synthetic approach. Materials Chemistry and Physics, 2022, 284, 126060.	4.0	2

#	Article	IF	Citations
37	Effect of modification substrate on the microstructure of hydroxyapatite coating. Journal of Physics: Conference Series, 2017, 786, 012024.	0.4	1
38	How does the Zn-precursor nature impact carrier transfer in ZnO/Zn-TiO2 nanostructures? organic vs. inorganic anions. New Journal of Chemistry, 2019, 43, 19085-19096.	2.8	1
39	Ligand field states and defect levels synergism: A close look at the band alignment of 4T1â€'Mn-CdS/Bi2S3-co-sensitized photoanodes. Thin Solid Films, 2020, 714, 138393.	1.8	1
40	Niobium ethoxide analyzed by XPS. Surface Science Spectra, 2020, 27, 024014.	1.3	1
41	Ruthenium thin film under methanation atmosphere analyzed by x-ray photoelectron spectroscopy. Surface Science Spectra, 2019, 26, 024012.	1.3	O
42	TiZrN thin films under CO2 and thermal treatment characterized by x-ray photoelectron spectroscopy. Surface Science Spectra, 2019, 26, 024013.	1.3	0
43	Laser Annealing of Anodic TiO2 Nanotubes: Explosive Solid Phase Crystallization into Anatase. , 2021, , .		0
44	(Invited) Anodic TiO2 Nanotube Layers: Efficient Photocatalyst. ECS Meeting Abstracts, 2021, MA2021-01, 1928-1928.	0.0	0
45	Ibuprofen tablet characterized by XPS. Surface Science Spectra, 2021, 28, 014004.	1.3	0