
Koichi Okuda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7186219/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Beads phantom for evaluating heterogeneity of SUV on 18F-FDG PET images. Annals of Nuclear Medicine, 2022, , 1.	2.2	0
2	Clinical Validation of Japanese Normal Myocardial Perfusion Imaging Databases Using Semi-conductor Gamma Camera (D-SPECT). Annals of Nuclear Cardiology, 2022, , .	0.2	0
3	Demystifying dyssynchrony for diagnosis and prognosis: Tips for measuring heterogeneous phase distribution. Journal of Nuclear Cardiology, 2021, 28, 1064-1067.	2.1	2
4	What does diagnostic threshold mean? Deterministic and probabilistic considerations. Journal of Nuclear Cardiology, 2021, 28, 1702-1706.	2.1	4
5	The utility of heart-to-mediastinum ratio using a planar image created from IQ-SPECT with lodine-123 meta-iodobenzylguanidine. Journal of Nuclear Cardiology, 2021, 28, 2569-2577.	2.1	11
6	What does entropy reveal in phase analysis of myocardial perfusion SPECT?. Journal of Nuclear Cardiology, 2021, 28, 172-174.	2.1	5
7	Metal artifact reduction for improving quantitative SPECT/CT imaging. Annals of Nuclear Medicine, 2021, 35, 291-298.	2.2	8
8	Experimental evaluation of the GE NM/CT 870 CZT clinical SPECT system equipped with WEHR and MEHRS collimator. Journal of Applied Clinical Medical Physics, 2021, 22, 165-177.	1.9	26
9	Verification of phantom accuracy using a Monte Carlo simulation: bone scintigraphy chest phantom. Radiological Physics and Technology, 2021, 14, 336-344.	1.9	4
10	Comparison of Myocardial Ischemia Detection Between Semiconductor and Conventional Anger-type Three-detector SPECT. Annals of Nuclear Cardiology, 2021, 7, 49-56.	0.2	0
11	Texture Feature Comparison Between Step-and-Shoot and Continuous-Bed-Motion ¹⁸ F-FDG PET. Journal of Nuclear Medicine Technology, 2021, 49, 58-64.	0.8	2
12	Current state of oncologic F-FDG PET/CT in Japan: A nationwide survey. Asia Oceania Journal of Nuclear Medicine and Biology, 2021, 9, 158-166.	0.1	0
13	Has the era of dual-gated myocardial perfusion SPECT and PET arrived?. Journal of Nuclear Cardiology, 2020, 27, 648-650.	2.1	4
14	Imaging technology for myocardial perfusion single-photon emission computed tomography 2018 in Japan. Japanese Journal of Radiology, 2020, 38, 274-282.	2.4	2
15	Study of novel deformable image registration in myocardial perfusion single-photon emission computed tomography. Nuclear Medicine Communications, 2020, 41, 196-205.	1.1	0
16	Serial examination of cardiac function and perfusion in growing rats using SPECT/CT for small animals. Scientific Reports, 2020, 10, 160.	3.3	1
17	Calibrated scintigraphic imaging procedures improve quantitative assessment of the cardiac sympathetic nerve activity. Scientific Reports, 2020, 10, 21834.	3.3	7
18	Current state of bone scintigraphy protocols and practice in Japan. Asia Oceania Journal of Nuclear Medicine and Biology, 2020, 8, 116-122.	0.1	6

Коісні Окида

#	Article	lF	CITATIONS
19	Phase dyssynchrony and 123I-meta-iodobenzylguanidine innervation imaging towards standardization. Journal of Nuclear Cardiology, 2019, 26, 519-523.	2.1	5
20	Nasal thalliumâ€201 uptake in patients with parosmia with and without hyposmia after upper respiratory tract infection. International Forum of Allergy and Rhinology, 2019, 9, 1252-1256.	2.8	11
21	Preliminary quantitative evaluation of radiation-induced DNA damage in peripheral blood lymphocytes after cardiac dual-isotope imaging. Applied Radiation and Isotopes, 2019, 154, 108890.	1.5	2
22	Ability of artificial intelligence to diagnose coronary artery stenosis using hybrid images of coronary computed tomography angiography and myocardial perfusion SPECT. European Journal of Hybrid Imaging, 2019, 3, 4.	1.5	10
23	Impact of iterative reconstruction with resolution recovery in myocardial perfusion SPECT: phantom and clinical studies. Scientific Reports, 2019, 9, 19618.	3.3	4
24	Prognostic Value of Early Evaluation of Left Ventricular Dyssynchrony After Myocardial Infarction. Molecular Imaging and Biology, 2019, 21, 654-659.	2.6	5
25	Accuracy of an artificial neural network for detecting a regional abnormality in myocardial perfusion SPECT. Annals of Nuclear Medicine, 2019, 33, 86-92.	2.2	16
26	Making the invisible visible: Phase dyssynchrony has potential as a new prognostic marker. Journal of Nuclear Cardiology, 2019, 26, 298-302.	2.1	9
27	Artificial neural network retrained to detect myocardial ischemia using a Japanese multicenter database. Annals of Nuclear Medicine, 2018, 32, 303-310.	2.2	24
28	Is 1231-metaiodobenzylguanidine heart-to-mediastinum ratio dependent on age? From Japanese Society of Nuclear Medicine normal database. Annals of Nuclear Medicine, 2018, 32, 175-181.	2.2	17
29	Quantification of Myocardial Perfusion Defect Size in Rats: Comparison between Quantitative Perfusion SPECT and Autoradiography. Molecular Imaging and Biology, 2018, 20, 544-550.	2.6	4
30	Ability of the prognostic model of J-ACCESS study to predict cardiac events in a clinical setting: The APPROACH study. Journal of Cardiology, 2018, 72, 81-86.	1.9	7
31	Influence of ROI definition on the heart-to-mediastinum ratio in planar 123I-MIBG imaging. Journal of Nuclear Cardiology, 2018, 25, 208-216.	2.1	11
32	A European myocardial 123I-mIBG cross-calibration phantom study. Journal of Nuclear Cardiology, 2018, 25, 1191-1197.	2.1	39
33	Creation and characterization of normal myocardial perfusion imaging databases using the IQ·SPECT system. Journal of Nuclear Cardiology, 2018, 25, 1328-1337.	2.1	17
34	Comparison of phase dyssynchrony analysis using gated myocardial perfusion imaging with four software programs: Based on the Japanese Society of Nuclear Medicine working group normal database. Journal of Nuclear Cardiology, 2017, 24, 611-621.	2.1	63
35	IQ-SPECT for thallium-201 myocardial perfusion imaging: effect of normal databases on quantification. Annals of Nuclear Medicine, 2017, 31, 454-461.	2.2	5
36	Comparison of diagnostic performance of four software packages for phase dyssynchrony analysis in gated myocardial perfusion SPECT. EJNMMI Research, 2017, 7, 27.	2.5	30

Коісні Окида

#	Article	IF	CITATIONS
37	Prognostic value of olfactory nerve damage measured with thallium-based olfactory imaging in patients with idiopathic olfactory dysfunction. Scientific Reports, 2017, 7, 3581.	3.3	12
38	Standardization of 123I-meta-iodobenzylguanidine myocardial sympathetic activity imaging: phantom calibration and clinical applications. Clinical and Translational Imaging, 2017, 5, 255-263.	2.1	28
39	Diagnostic accuracy of an artificial neural network compared with statistical quantitation of myocardial perfusion images: a Japanese multicenter study. European Journal of Nuclear Medicine and Molecular Imaging, 2017, 44, 2280-2289.	6.4	57
40	Validation of Left Ventricular Ejection Fraction with the IQ•SPECT System in Small-Heart Patients. Journal of Nuclear Medicine Technology, 2017, 45, 201-207.	0.8	8
41	Reducing the small-heart effect in pediatric gated myocardial perfusion single-photon emission computed tomography. Journal of Nuclear Cardiology, 2017, 24, 1378-1388.	2.1	14
42	IQ·SPECT technology and its clinical applications using multicenter normal databases. Annals of Nuclear Medicine, 2017, 31, 649-659.	2.2	20
43	Cross calibration of 123I-meta-iodobenzylguanidine heart-to-mediastinum ratio with D-SPECT planogram and Anger camera. Annals of Nuclear Medicine, 2017, 31, 605-615.	2.2	15
44	Normal Values and Gender Differences of Left Ventricular Functional Parameters with CardioREPO Software. Annals of Nuclear Cardiology, 2017, 3, 29-33.	0.2	5
45	Cardiac and Respiratory Motion-induced Artifact in Myocardial Perfusion SPECT. Annals of Nuclear Cardiology, 2017, 3, 88-93.	0.2	10
46	¹²³ I- <i>meta</i> -iodobenzylguanidine Sympathetic Nerve Function Indices Derived from Planar Images. Annals of Nuclear Cardiology, 2017, 3, 200-202.	0.2	0
47	Cardiac Time-of-flight PET for Evaluating Myocardial Perfusion with ¹³ N-ammonia. Annals of Nuclear Cardiology, 2016, 2, 73-78.	0.2	2
48	Normal values and standardization of parameters in nuclear cardiology: Japanese Society of Nuclear Medicine working group database. Annals of Nuclear Medicine, 2016, 30, 188-199.	2.2	99
49	The time has come to standardize 123I-MIBG heart-to-mediastinum ratios including planar and SPECT methods. European Journal of Nuclear Medicine and Molecular Imaging, 2016, 43, 386-388.	6.4	16
50	Development and validation of a direct-comparison method for cardiac 123I-metaiodobenzylguanidine washout rates derived from late 3-hour and 4-hour imaging. European Journal of Nuclear Medicine and Molecular Imaging, 2016, 43, 319-325.	6.4	14
51	Cardiac Time-of-flight PET for Evaluating Myocardial Perfusion with ¹³ N-ammonia. Annals of Nuclear Cardiology, 2016, 2, 73-78.	0.2	1
52	Diagnostic Performance of Artificial Neural Network for Detecting Ischemia in Myocardial Perfusion Imaging. Circulation Journal, 2015, 79, 1549-1556.	1.6	23
53	Nuclear myocardial perfusion imaging using thallium-201 with a novel multifocal collimator SPECT/CT: IQ-SPECT versus conventional protocols in normal subjects. Annals of Nuclear Medicine, 2015, 29, 452-459.	2.2	30
54	Optimization of iterative reconstruction parameters with attenuation correction, scatter correction and resolution recovery in myocardial perfusion SPECT/CT. Annals of Nuclear Medicine, 2014, 28, 60-68.	2.2	25

Коісні Окида

#	Article	IF	CITATIONS
55	Application of a medium-energy collimator for I-131 imaging after ablation treatment of differentiated thyroid cancer. Annals of Nuclear Medicine, 2014, 28, 551-558.	2.2	6
56	Multicenter cross-calibration of I-123 metaiodobenzylguanidine heart-to-mediastinum ratios to overcome camera-collimator variations. Journal of Nuclear Cardiology, 2014, 21, 970-978.	2.1	117
57	Improved quantification of small hearts for gated myocardial perfusion imaging. European Journal of Nuclear Medicine and Molecular Imaging, 2013, 40, 1163-1170.	6.4	50
58	Assessment of Olfactory Nerve by SPECT-MRI Image with Nasal Thallium-201 Administration in Patients with Olfactory Impairments in Comparison to Healthy Volunteers. PLoS ONE, 2013, 8, e57671.	2.5	29
59	Prototype imaging protocols for monitoring the efficacy of iodine-131 ablation in differentiated thyroid cancer. Hellenic Journal of Nuclear Medicine, 2013, 16, 175-80.	0.3	2
60	Standardization of metaiodobenzylguanidine heart to mediastinum ratio using a calibration phantom: effects of correction on normal databases and a multicentre study. European Journal of Nuclear Medicine and Molecular Imaging, 2012, 39, 113-119.	6.4	87
61	Cause of apical thinning on attenuation-corrected myocardial perfusion SPECT. Nuclear Medicine Communications, 2011, 32, 1033-1039.	1.1	20
62	Estimation of Cardiac Event Risk by Gated Myocardial Perfusion Imaging and Quantitative Scoring Methods Based on a Multi-Center J-ACCESS Database. Circulation Journal, 2011, 75, 2417-2423.	1.6	22
63	Quantification of myocardial perfusion SPECT using freeware package (cardioBull). Annals of Nuclear Medicine, 2011, 25, 571-579.	2.2	13
64	The relationship between stress-induced myocardial ischemia and coronary artery atherosclerosis measured by hybrid SPECT/CT camera. Annals of Nuclear Medicine, 2011, 25, 650-656.	2.2	12
65	Semi-automated algorithm for calculating heart-to-mediastinum ratio in cardiac lodine-123 MIBG imaging. Journal of Nuclear Cardiology, 2011, 18, 82-89.	2.1	88
66	The validity of multi-center common normal database for identifying myocardial ischemia: Japanese Society of Nuclear Medicine working group database. Annals of Nuclear Medicine, 2010, 24, 99-105.	2.2	14
67	Attenuation correction of myocardial SPECT by scatter-photopeak window method in normal subjects. Annals of Nuclear Medicine, 2009, 23, 501-506.	2.2	15
68	Characterization of Japanese standards for myocardial sympathetic and metabolic imaging in comparison with perfusion imaging. Annals of Nuclear Medicine, 2009, 23, 517-522.	2.2	32
69	Clinical usefulness of novel cardiac MDCT/SPECT fusion image. Annals of Nuclear Medicine, 2009, 23, 579-586.	2.2	9
70	The importance of population-specific normal database for quantification of myocardial ischemia: comparison between Japanese 360 and 180-degree databases and a US database. Journal of Nuclear Cardiology, 2009, 16, 422-430.	2.1	57
71	Standardization of the heart-to-mediastinum ratio of 123I-labelled-metaiodobenzylguanidine uptake using the dual energy window method: feasibility of correction with different camera–collimator combinations. European Journal of Nuclear Medicine and Molecular Imaging, 2009, 36, 560-566.	6.4	31
72	Regional wall thickening in gated myocardial perfusion SPECT in a Japanese population: effect of sex, radiotracer, rotation angles and frame rates. European Journal of Nuclear Medicine and Molecular Imaging, 2008, 35, 1608-1615.	6.4	17

#	Article	IF	CITATIONS
73	Correction of iodine-123-labeled meta-iodobenzylguanidine uptake with multi-window methods for standardization of the heart-to-mediastinum ratio. Journal of Nuclear Cardiology, 2007, 14, 843-851.	2.1	44
74	Shape Recovery Method for Repairing Dents on Stainless Steel Sheets by Laser Forming. Key Engineering Materials, 0, 523-524, 1012-1017.	0.4	0