
Dina V Dudina

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7186115/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Progress in aluminium and magnesium matrix composites obtained by spark plasma, microwave and induction sintering. International Materials Reviews, 2023, 68, 225-246.	9.4	14
2	Structural Features and Corrosion Resistance of Fe66Cr10Nb5B19 Metallic Glass Coatings Obtained by Detonation Spraying. Journal of Materials Engineering and Performance, 2022, 31, 622-630.	1.2	5
3	Microstructure and properties of Cu-10Âwt% Al bronze obtained by high-energy mechanical milling and spark plasma sintering. Materials Letters, 2022, 312, 131671.	1.3	12
4	Detonation Spraying of Cr3C2-NiCr Coatings and Their Properties. Journal of Thermal Spray Technology, 2022, 31, 598-608.	1.6	7
5	Electric current-assisted joining of similar/dissimilar materials. , 2022, , 151-176.		3
6	Preparation of nanoporous gold particles on diamond facets via galvanic replacement and dealloying. Diamond and Related Materials, 2022, 123, 108860.	1.8	2
7	Elimination of Composition Segregation in 33Al–45Cu–22Fe (at.%) Powder by Two-Stage High-Energy Mechanical Alloying. Materials, 2022, 15, 2087.	1.3	6
8	FeCoNiCu Alloys Obtained by Detonation Spraying and Spark Plasma Sintering of High-Energy Ball-Milled Powders. Journal of Thermal Spray Technology, 2022, 31, 1067-1075.	1.6	4
9	Core–Shell Particle Reinforcements—A New Trend in the Design and Development of Metal Matrix Composites. Materials, 2022, 15, 2629.	1.3	8
10	Spark plasma sintering treatment of cold sprayed materials for synthesis and structural modification: A case study using TiC-Cu composites. Materials Letters: X, 2022, 14, 100140.	0.3	5
11	The Benefit of the Glassy State of Reinforcing Particles for the Densification of Aluminum Matrix Composites. Journal of Composites Science, 2022, 6, 135.	1.4	10
12	Morphological and Structural Transformations of Fe-Pd Powder Alloys Formed by Galvanic Replacement, Annealing and Acid Treatment. Materials, 2022, 15, 3571.	1.3	2
13	Fe-Ag pseudo-alloys obtained by wire electric explosion, ball milling and spark plasma sintering. Materials Letters, 2022, 323, 132536.	1.3	3
14	Materials Development Using High-Energy Ball Milling: A Review Dedicated to the Memory of M.A. Korchagin. Journal of Composites Science, 2022, 6, 188.	1.4	12
15	A Feasibility Study of High-Entropy Alloy Coating Deposition by Detonation Spraying Combined with Laser Melting. Materials, 2022, 15, 4532.	1.3	8
16	Interaction between Fe66Cr10Nb5B19 metallic glass and aluminum during spark plasma sintering. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 799, 140165.	2.6	21
17	Deposition of tungsten coatings by detonation spraying. Surface and Coatings Technology, 2021, 409, 126943.	2.2	13
18	Separating the reaction and spark plasma sintering effects during the formation of TiC–Cu composites from mechanically milled Ti–C–3Cu mixtures. Ceramics International, 2021, 47, 12494-12504.	2.3	18

#	Article	IF	CITATIONS
19	Structure and composition of Fe-Co-Ni and Fe-Co-Ni-Cu coatings obtained by detonation spraying of powder mixtures. Materials Letters, 2021, 290, 129498.	1.3	11
20	Processing of Fe-Based Alloys by Detonation Spraying and Spark Plasma Sintering. Journal of Thermal Spray Technology, 2021, 30, 1692-1702.	1.6	5
21	Detonation Spraying of Hydroxyapatite on a Titanium Alloy Implant. Materials, 2021, 14, 4852.	1.3	9
22	Microstructure and Mechanical Properties of Composites Obtained by Spark Plasma Sintering of Al–Fe66Cr10Nb5B19 Metallic Glass Powder Mixtures. Metals, 2021, 11, 1457.	1.0	8
23	Graphitization of synthetic diamond crystals: A morphological study. Diamond and Related Materials, 2021, 118, 108563.	1.8	12
24	Manufacturing of TiC-Cu composites by mechanical milling and spark plasma sintering using different carbon sources. Surfaces and Interfaces, 2021, 27, 101445.	1.5	8
25	Structural transformations of a gas-atomized Al62.5Cu25Fe12.5 alloy during detonation spraying, spark plasma sintering and hot pressing. Science of Sintering, 2021, 53, 379-386.	0.5	2
26	Metal–Nanocarbon Composite Coatings Produced by Detonation Spraying with In Situ Carbon Generation. Journal of Thermal Spray Technology, 2021, 30, 1837-1849.	1.6	3
27	Synthesis of Ceramic Reinforcements in Metallic Matrices during Spark Plasma Sintering: Consideration of Reactant/Matrix Mutual Chemistry. Ceramics, 2021, 4, 592-599.	1.0	3
28	Selective deposition of platinum hemispheres on the {100} facets of synthetic diamond. Diamond and Related Materials, 2020, 101, 107620.	1.8	2
29	Microstructure and mechanical properties of materials obtained by spark plasma sintering of Ni3Al–Ni powder mixtures. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 773, 138882.	2.6	18
30	Pulsed current-assisted joining of copper to graphite using Ti-Cu brazing layers. Materials Today: Proceedings, 2020, 25, 377-380.	0.9	8
31	Melting at the inter-particle contacts during Spark Plasma Sintering: Direct microstructural evidence and relation to particle morphology. Vacuum, 2020, 181, 109566.	1.6	20
32	The influence of morphology and composition of metal–carbide coatings deposited on the diamond surface on the properties of copper–diamond composites. Surface and Coatings Technology, 2020, 401, 126272.	2.2	28
33	Detonation spraying of Ti-Cu mixtures in different atmospheres: Carbon, nitrogen and oxygen uptake by the powders. Surfaces and Interfaces, 2020, 21, 100676.	1.5	8
34	Strontium and silicate co-substituted hydroxyapatite: Mechanochemical synthesis and structural characterization. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2020, 262, 114719.	1.7	24
35	Structure and Phase Composition of a W-Ta-Mo-Nb-V-Cr-Zr-Ti Alloy Obtained by Ball Milling and Spark Plasma Sintering. Entropy, 2020, 22, 143.	1.1	11
36	Combustion of Titanium–Carbon Black High-Energy Ball-Milled Mixtures in Nitrogen: Formation of Titanium Carbonitrides at Atmospheric Pressure. Materials, 2020, 13, 1810.	1.3	3

#	Article	IF	CITATIONS
37	Formation of Metallic Glass Coatings by Detonation Spraying of a Fe66Cr10Nb5B19 Powder. Metals, 2019, 9, 846.	1.0	16
38	Formation of ordered nanocrystalline CeO2 structures during thermal decomposition of cerium formate Ce(HCOO)3. Ceramics International, 2019, 45, 19684-19688.	2.3	12
39	Characterization of Sr-substituted hydroxyapatite synthesized by the mechanochemical method. Materials Today: Proceedings, 2019, 12, 57-60.	0.9	1
40	Fracture analysis in the area of contact stresses using the FEM and the gradient criteria of the limiting state. Materials Today: Proceedings, 2019, 16, 130-136.	0.9	0
41	Interaction of calcium phosphates with calcium oxide or calcium hydroxide during the "soft― mechanochemical synthesis of hydroxyapatite. Ceramics International, 2019, 45, 16927-16933.	2.3	33
42	Interaction of a Ti–Cu Alloy with Carbon: Synthesis of Composites and Model Experiments. Materials, 2019, 12, 1482.	1.3	15
43	Combustion characteristics and structure of carbon nanotube/titanium composites. Journal of Thermal Analysis and Calorimetry, 2019, 137, 1903-1910.	2.0	5
44	Spark Plasma Sintering of Diamond- and Nanodiamond-Metal Composites. , 2019, , 441-457.		2
45	Fabrication of Porous Materials by Spark Plasma Sintering: A Review. Materials, 2019, 12, 541.	1.3	81
46	Synthesis of Nano-Sized TiB2 and TiC Particles During Spark Plasma Sintering of Ball-Milled Ti-Cu Alloy + B(C) and Ti+Cu+B mixtures. IOP Conference Series: Materials Science and Engineering, 2019, 678, 012012.	0.3	1
47	Computer-Controlled Detonation Spraying: Flexible Control of the Coating Chemistry and Microstructure. Metals, 2019, 9, 1244.	1.0	29
48	Formation of TiC-Cu nanocomposites by a reaction between Ti25Cu75 melt-spun alloy and carbon. Materials Letters, 2019, 235, 104-106.	1.3	14
49	Synthesis of nickel boride by thermal explosion in ball-milled powder mixtures. Journal of Materials Science, 2018, 53, 13592-13599.	1.7	10
50	Structural and Phase Transformations in Alloys during Spark Plasma Sintering of Ti + 23.5 at % Al + 21 at % Nb Powder Mixtures. Inorganic Materials, 2018, 54, 37-41.	0.2	6
51	Phase formation during high-energy ball milling of the 33Al-45Cu-22Fe (at.%) powder mixture. Journal of Alloys and Compounds, 2018, 736, 289-296.	2.8	7
52	Electric Current-Assisted Joining of Copper Plates Using Silver Formed by In-Situ Decomposition of Ag2C2O4. Metals, 2018, 8, 538.	1.0	3
53	Structural and morphological transformations in cobalt-carbon mixtures during ball milling, annealing and Spark Plasma Sintering. Vacuum, 2018, 157, 210-215.	1.6	7
54	Detonation spraying behaviour of refractory metals: Case studies for Mo and Ta-based powders. Advanced Powder Technology, 2018, 29, 1859-1864.	2.0	35

#	Article	IF	CITATIONS
55	Effect of the Surface Modification of Synthetic Diamond with Nickel or Tungsten on the Properties of Copper–Diamond Composites. Inorganic Materials, 2018, 54, 426-433.	0.2	16
56	Field Effects on Reacting Systems. , 2018, , 315-400.		0
57	Sintering by Low-Voltage Electric Pulses (Including Spark Plasma Sintering (SPS)). , 2018, , 89-191.		4
58	Field-Assisted Sintering. , 2018, , .		74
59	Sintering by High-Voltage Electric Pulses. , 2018, , 37-87.		0
60	Structural and mechanical characterization of porous iron aluminide FeAl obtained by pressureless Spark Plasma Sintering. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 695, 309-314.	2.6	18
61	Multiwalled carbon nanotube forests grown on the surface of synthetic diamond crystals. Ceramics International, 2017, 43, 10606-10609.	2.3	7
62	Structural characterization and magnetic properties of Al 82 Fe 16 TM 2 (TM: Ti, Ni, Cu) alloys prepared by mechanical alloying. Journal of Non-Crystalline Solids, 2017, 468, 67-73.	1.5	8
63	Fast synthesis of La-substituted apatite by the dry mechanochemical method and analysis of its structure. Journal of Solid State Chemistry, 2017, 252, 93-99.	1.4	17
64	The influence of the formation of Fe3C on graphitization in a carbon-rich iron-amorphous carbon mixture processed by Spark Plasma Sintering and annealing. Ceramics International, 2017, 43, 11902-11906.	2.3	21
65	Application of a spark plasma sintering facility for the heat treatment of compact and powder materials. Inorganic Materials, 2017, 53, 658-663.	0.2	7
66	Elimination of oxide films during Spark Plasma Sintering of metallic powders: A case study using partially oxidized nickel. Advanced Powder Technology, 2017, 28, 641-647.	2.0	23
67	Analysis of the formation of FeAl with a high open porosity during electric current-assisted sintering of loosely packed Fe-Al powder mixtures. Vacuum, 2017, 146, 74-78.	1.6	8
68	Fast synthesis and consolidation of porous FeAl by pressureless Spark Plasma Sintering. IOP Conference Series: Materials Science and Engineering, 2017, 218, 012003.	0.3	2
69	Synthesis of ZrC and HfC nanoparticles encapsulated in graphitic shells from mechanically milled Zr-C and Hf-C powder mixtures. Ceramics International, 2017, 43, 14529-14532.	2.3	9
70	Structure and mechanical properties of coatings formed by detonation spraying of titanium powder. AIP Conference Proceedings, 2017, , .	0.3	0
71	Morphological features of W- and Ni-containing coatings on diamond crystals and properties of diamond-copper composites obtained by Spark Plasma Sintering. Materials Today: Proceedings, 2017, 4, 11396-11401.	0.9	2
72	Enhancing the properties of WC/Co detonation coatings using two-component fuels. Surface and Coatings Technology, 2017, 318, 244-249.	2.2	27

#	Article	IF	CITATIONS
73	Preparation of porous materials by Spark Plasma Sintering: Peculiarities of alloy formation during consolidation of Fe@Pt core-shell and hollow Pt(Fe) particles. Journal of Alloys and Compounds, 2017, 707, 233-237.	2.8	10
74	Detonation spraying of copper: theoretical analysis and experimental studies. Materials Today: Proceedings, 2017, 4, 11346-11350.	0.9	12
75	Mechanical Characterization of Composite Coatings Formed by Reactive Detonation Spraying of Titanium. Metals, 2017, 7, 355.	1.0	3
76	Structural Investigations of TiC–Cu Nanocomposites Prepared by Ball Milling and Spark Plasma Sintering. Metals, 2017, 7, 123.	1.0	14
77	Structure and Properties of Coatings Formed by Detonation Spraying of Titanium Powder. IOP Conference Series: Materials Science and Engineering, 2017, 286, 012025.	0.3	0
78	Spark Plasma Sintering of the mixtures of metallic powders and metal matrix composites: peculiarities of the structure formation and properties of the sintered materials. Metal Working and Material Science, 2017, , 45-54.	0.0	0
79	Crystallization Kinetics of Al-Fe and Al-Fe-Y Amorphous Alloys Produced by Mechanical Milling. Journal of Nanomaterials, 2016, 2016, 1-9.	1.5	9
80	Formation of Aluminum Particles with Shell Morphology during Pressureless Spark Plasma Sintering of Fe–Al Mixtures: Current-Related or Kirkendall Effect?. Materials, 2016, 9, 375.	1.3	14
81	Mechanochemical Synthesis of SiO ₄ ^{4–} ‣ubstituted Hydroxyapatite, Part III – Thermal Stability. European Journal of Inorganic Chemistry, 2016, 2016, 1866-1874.	1.0	5
82	Surface modification of synthetic diamond with tungsten. , 2016, , .		2
83	Inter-particle interactions in partially densified compacts of electrically conductive materials during spark plasma sintering. , 2016, , .		1
84	A novel approach to the synthesis of silicocarnotite. Materials Letters, 2016, 164, 255-259.	1.3	12
85	Network distribution of reinforcements in composites produced by sintering: microstructure formation and influence on consolidation behavior and properties. Journal of the Ceramic Society of Japan, 2016, 124, 289-295.	0.5	3
86	Microstructure and mechanical behavior of metallic glass fiber-reinforced Al alloy matrix composites. Scientific Reports, 2016, 6, 24384.	1.6	80
87	Structural and mechanical characterization of detonation coatings formed by reaction products of titanium with components of the spraying atmosphere. AIP Conference Proceedings, 2016, , .	0.3	0
88	The influence of the in-situ formed and added carbon on the formation of metastable Ni-based phases during detonation spraying. Materials Letters, 2016, 181, 127-131.	1.3	20
89	Reactivity of materials towards carbon of graphite foil during Spark Plasma Sintering: A case study using Ni–W powders. Materials Letters, 2016, 168, 62-67.	1.3	22
90	Detonation spraying behavior of TiCx–Ti powders and the role of reactive processes in the coating formation. Ceramics International, 2016, 42, 690-696.	2.3	18

#	Article	IF	CITATIONS
91	Detonation spraying of titanium and formation of coatings with spraying atmosphere-dependent phase composition. Surface and Coatings Technology, 2015, 261, 174-180.	2.2	27
92	Phase evolution during early stages of mechanical alloying of Cu–13 wt.% Al powder mixtures in a high-energy ball mill. Journal of Alloys and Compounds, 2015, 629, 343-350.	2.8	32
93	Smaller crystallites in sintered materials? A discussion of the possible mechanisms of crystallite size refinement during pulsed electric current-assisted sintering. Materials Letters, 2015, 144, 168-172.	1.3	21
94	Towards a better understanding of nickel/diamond interactions: the interface formation at low temperatures. RSC Advances, 2015, 5, 51799-51806.	1.7	17
95	Porous electrically conductive materials produced by Spark Plasma Sintering and hot pressing of nanodiamonds. Ceramics International, 2015, 41, 12459-12463.	2.3	16
96	Detonation Spraying of Ti–Al Intermetallics: Phase and Microstructure Development of the Coatings. Materials and Manufacturing Processes, 2015, 30, 724-729.	2.7	13
97	Crystallization of Fe83B17 amorphous alloy by electric pulses produced by a capacitor discharge. Applied Physics A: Materials Science and Processing, 2015, 120, 1565-1572.	1.1	4
98	Carbon uptake during Spark Plasma Sintering: investigation through the analysis of the carbide "footprint―in a Ni–W alloy. RSC Advances, 2015, 5, 80228-80237.	1.7	42
99	Formation of self-supporting porous graphite structures by Spark Plasma Sintering of nickel–amorphous carbon mixtures. Journal of Physics and Chemistry of Solids, 2015, 76, 192-202.	1.9	22
100	Nickel-graphite composites of variable architecture by graphitization-accompanied spark plasma sintering and hot pressing and their response to phase separation. Science of Sintering, 2015, 47, 237-248.	0.5	9
101	In situ formation of metal-ceramic composite coatings by detonation spraying of titanium. , 2014, , .		1
102	Formation Routes of Nanocomposite Coatings in Detonation Spraying of Ti3SiC2-Cu Powders. Journal of Thermal Spray Technology, 2014, 23, 1116-1123.	1.6	3
103	Control of interfacial interaction during detonation spraying of Ti3SiC2-Cu composites. Inorganic Materials, 2014, 50, 35-39.	0.2	8
104	Electric pulse consolidation: an alternative to spark plasma sintering. Journal of Materials Science, 2014, 49, 952-985.	1.7	57
105	Possibilities of the Computer-Controlled Detonation Spraying method: A chemistry viewpoint. Ceramics International, 2014, 40, 3253-3260.	2.3	26
106	4 Microstructure formation of particle-reinforced metal matrix composite coatings produced by thermal spraying. , 2014, , 103-122.		2
107	Recrystallisation-accompanied phase separation in Ag–Fe and Ag–Ni nanocomposites: a route to structure tailoring of nanoporous silver. RSC Advances, 2013, 3, 12655.	1.7	16
108	Ti3SiC2-Cu composites by mechanical milling and spark plasma sintering: Possible microstructure formation scenarios. Metals and Materials International, 2013, 19, 1235-1241.	1.8	15

#	Article	IF	CITATIONS
109	Outside Mainstream Electronic Databases: Review of Studies Conducted in the USSR and Post-Soviet Countries on Electric Current-Assisted Consolidation of Powder Materials. Materials, 2013, 6, 4375-4440.	1.3	37
110	Reactive Spark Plasma Sintering: Successes and Challenges of Nanomaterial Synthesis. Journal of Nanomaterials, 2013, 2013, 1-12.	1.5	69
111	Compositional variations in the coatings formed by detonation spraying of Ti3Al at different O2/C2H2 ratios. Intermetallics, 2012, 29, 140-146.	1.8	22
112	Detonation spraying of TiO2–2.5vol.% Ag powders in a reducing atmosphere. Journal of the European Ceramic Society, 2012, 32, 815-821.	2.8	23
113	Crystallization of Ti33Cu67 metallic glass under high-current density electrical pulses. Nanoscale Research Letters, 2011, 6, 512.	3.1	4
114	Properties of Cu-Based Nanocomposites Produced by Mechanically-Activated Self-Propagating High-Temperature Synthesis and Spark-Plasma Sintering. Journal of Nanoscience and Nanotechnology, 2010, 10, 252-257.	0.9	10
115	Glass formation in the Nb–Si binary system. Journal of Alloys and Compounds, 2010, 504, S14-S17.	2.8	4
116	Cu-based metallic glass particle additions to significantly improve overall compressive properties of an Al alloy. Composites Part A: Applied Science and Manufacturing, 2010, 41, 1551-1557.	3.8	70
117	The synthesis and consolidation of hard materials by spark plasma sintering. International Journal of Refractory Metals and Hard Materials, 2009, 27, 367-375.	1.7	107
118	Shock compression of Ti–B–Cu powder mixtures: Microstructural aspects. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2009, 503, 41-44.	2.6	4
119	A magnesium alloy matrix composite reinforced with metallic glass. Composites Science and Technology, 2009, 69, 2734-2736.	3.8	61
120	In situ boron carbide–titanium diboride composites prepared by mechanical milling and subsequent Spark Plasma Sintering. Journal of Materials Science, 2008, 43, 3569-3576.	1.7	60
121	Formation of intermetallic phases during mechanical alloying and annealing of Cr + 20 wt % al mixtures. Inorganic Materials, 2008, 44, 587-591.	0.2	6
122	The absence of plasma in "spark plasma sintering― Journal of Applied Physics, 2008, 104, .	1.1	142
123	Shock-Wave Synthesis of Titanium Diboride in Copper Matrix and Compaction of TiB ₂ -Cu Nanocomposites. Materials Science Forum, 2007, 534-536, 921-924.	0.3	0
124	Cold and Detonation Spraying of TiB ₂ -Cu Nanocomposites. Materials Science Forum, 2007, 534-536, 1373-1376.	0.3	10
125	Spark Plasma Sintering of Nanoscale (Ni+Al) Powder Mixture. Solid State Phenomena, 2007, 119, 35-38.	0.3	15
126	Production of Dispersion-Strengthened Cu-TiB ₂ Alloys by Ball-Milling and Spark-Plasma Sintering. Materials Science Forum, 2007, 534-536, 1489-1492.	0.3	1

#	ARTICLE	IF	CITATIONS
127	Thermal Stability and Properties of Cu-TiB ₂ Nanocomposites Prepared by Combustion Synthesis and Spark-Plasma Sintering. Materials Science Forum, 2007, 534-536, 1517-1520.	0.3	0
128	Properties of Dispersion Strengthened Cu-TiB ₂ Nanocomposites Prepared by Spark Plasma Sintering. Solid State Phenomena, 2007, 119, 63-66.	0.3	7
129	Cold spraying of in situ produced TiB2–Cu nanocomposite powders. Composites Science and Technology, 2007, 67, 2292-2296.	3.8	56
130	Application of self-propagating high-temperature synthesis and mechanical activation for obtaining nanocomposites. Combustion, Explosion and Shock Waves, 2007, 43, 176-187.	0.3	39
131	Preparation and electrical erosion resistance of TiB2/Cu nanocomposites. Inorganic Materials, 2006, 42, 739-743.	0.2	2
132	A synthetic route for metal–ceramic interpenetrating phase composites. Materials Letters, 2006, 60, 3723-3726.	1.3	17
133	Nanocomposites TiB2-Cu: Consolidation and erosion behavior. Journal of Materials Science, 2005, 40, 3491-3495.	1.7	13
134	Electric Erosion Behavior of Nanocomposites. Journal of Metastable and Nanocrystalline Materials, 2005, 24-25, 727-0.	0.1	0
135	SPARK PLASMA SINTERING OF Cu-TiB2 NANOCOMPOSITE. , 2005, , 293-296.		0
136	Microstructure of Cu-TiB ₂ Nanocomposite during Spark Plasma Sintering. Materials Science Forum, 2004, 449-452, 1113-1116.	0.3	5
137	Microstructure changes in TiB ₂ -Cu nanocomposite under sintering. Journal of Materials Science, 2004, 39, 5325-5331.	1.7	31
138	Solid-State Synthesis of Titanium Diboride in Copper Matrix. Journal of Metastable and Nanocrystalline Materials, 2003, 15-16, 253-258.	0.1	8
139	TiB ₂ -Cu Interpenetrating Phase Composites Produced by Spark-plasma Sintering. Journal of Korean Powder Metallurgy Institute, 2003, 10, 168-171.	0.2	1
140	On the choice of structure materials for high-temperature galvanic cells. , 0, , .		0
141	Nanoscale TiB/sub 2/-dispersed Cu-matrix composite produced by a high-energy milling and self-propagating high-temperature synthesis process. , 0, , .		1
142	Spark Plasma Sintering of Nanoscale (Ni+Al) Powder Mixture. Solid State Phenomena, 0, , 35-38.	0.3	1
143	Properties of Dispersion Strengthened Cu-TiB ₂ Nanocomposites Prepared by Spark Plasma Sintering. Solid State Phenomena, 0, , 63-66.	0.3	1