Mauricio Terrones

List of Publications by Citations

Source: https://exaly.com/author-pdf/7186025/mauricio-terrones-publications-by-citations.pdf

Version: 2024-04-19

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

694 papers 56,038 citations

116 h-index 216 g-index

751 ext. papers

62,022 ext. citations

9.2 avg, IF

7.57 L-index

#	Paper	IF	Citations
694	Progress, challenges, and opportunities in two-dimensional materials beyond graphene. <i>ACS Nano</i> , 2013 , 7, 2898-926	16.7	3414
693	Recent Advances in Two-Dimensional Materials beyond Graphene. ACS Nano, 2015, 9, 11509-39	16.7	1581
692	Vertical and in-plane heterostructures from WS2/MoS2 monolayers. <i>Nature Materials</i> , 2014 , 13, 1135-42	227	1580
691	Extraordinary room-temperature photoluminescence in triangular WS2 monolayers. <i>Nano Letters</i> , 2013 , 13, 3447-54	11.5	1145
690	Identification of individual and few layers of WS2 using Raman Spectroscopy. <i>Scientific Reports</i> , 2013 , 3,	4.9	911
689	Transition metal dichalcogenides and beyond: synthesis, properties, and applications of single- and few-layer nanosheets. <i>Accounts of Chemical Research</i> , 2015 , 48, 56-64	24.3	864
688	Science and Technology of the Twenty-First Century: Synthesis, Properties, and Applications of Carbon Nanotubes. <i>Annual Review of Materials Research</i> , 2003 , 33, 419-501	12.8	773
687	Evaluating the characteristics of multiwall carbon nanotubes. <i>Carbon</i> , 2011 , 49, 2581-2602	10.4	769
686	Graphene and graphite nanoribbons: Morphology, properties, synthesis, defects and applications. <i>Nano Today</i> , 2010 , 5, 351-372	17.9	695
685	Controlled production of aligned-nanotube bundles. <i>Nature</i> , 1997 , 388, 52-55	50.4	690
684	Identification of Electron Donor States in N-Doped Carbon Nanotubes. <i>Nano Letters</i> , 2001 , 1, 457-460	11.5	659
683	Controlled formation of sharp zigzag and armchair edges in graphitic nanoribbons. <i>Science</i> , 2009 , 323, 1701-5	33.3	592
682	Molecular junctions by joining single-walled carbon nanotubes. <i>Physical Review Letters</i> , 2002 , 89, 07550	57.4	584
681	Defect engineering of two-dimensional transition metal dichalcogenides. 2D Materials, 2016 , 3, 022002	5.9	538
680	Bulk production of a new form of sp(2) carbon: crystalline graphene nanoribbons. <i>Nano Letters</i> , 2008 , 8, 2773-8	11.5	524
679	Nitrogen-doped graphene: beyond single substitution and enhanced molecular sensing. <i>Scientific Reports</i> , 2012 , 2, 586	4.9	517
678	Nanotechnology: 'buckypaper' from coaxial nanotubes. <i>Nature</i> , 2005 , 433, 476	50.4	503

(2009-2003)

677	Selective Attachment of Gold Nanoparticles to Nitrogen-Doped Carbon Nanotubes. <i>Nano Letters</i> , 2003 , 3, 275-277	11.5	486	
676	Photosensor Device Based on Few-Layered WS2 Films. <i>Advanced Functional Materials</i> , 2013 , 23, 5511-5	5513.6	480	
675	Fast and Efficient Preparation of Exfoliated 2H MoS2 Nanosheets by Sonication-Assisted Lithium Intercalation and Infrared Laser-Induced 1T to 2H Phase Reversion. <i>Nano Letters</i> , 2015 , 15, 5956-60	11.5	472	
674	Controlled synthesis and transfer of large-area WS2 sheets: from single layer to few layers. <i>ACS Nano</i> , 2013 , 7, 5235-42	16.7	453	
673	Effect of defects on the intrinsic strength and stiffness of graphene. <i>Nature Communications</i> , 2014 , 5, 3186	17.4	435	
672	Structure and electronic properties of MoS2 nanotubes. <i>Physical Review Letters</i> , 2000 , 85, 146-9	7.4	432	
671	Beyond Graphene: Progress in Novel Two-Dimensional Materials and van der Waals Solids. <i>Annual Review of Materials Research</i> , 2015 , 45, 1-27	12.8	430	
670	Ultrahigh humidity sensitivity of graphene oxide. Scientific Reports, 2013, 3, 2714	4.9	427	
669	Coalescence of single-walled carbon nanotubes. <i>Science</i> , 2000 , 288, 1226-9	33.3	425	
668	New metallic allotropes of planar and tubular carbon. <i>Physical Review Letters</i> , 2000 , 84, 1716-9	7.4	407	
667	Three-dimensionally bonded spongy graphene material with super compressive elasticity and near-zero Poisson's ratio. <i>Nature Communications</i> , 2015 , 6, 6141	17.4	389	
666	The role of defects and doping in 2D graphene sheets and 1D nanoribbons. <i>Reports on Progress in Physics</i> , 2012 , 75, 062501	14.4	383	
665	Band gap engineering and layer-by-layer mapping of selenium-doped molybdenum disulfide. <i>Nano Letters</i> , 2014 , 14, 442-9	11.5	378	
664	Novel hetero-layered materials with tunable direct band gaps by sandwiching different metal disulfides and diselenides. <i>Scientific Reports</i> , 2013 , 3, 1549	4.9	378	
663	N-doping and coalescence of carbon nanotubes: synthesis and electronic properties. <i>Applied Physics A: Materials Science and Processing</i> , 2002 , 74, 355-361	2.6	367	
662	Graphene edges: a review of their fabrication and characterization. <i>Nanoscale</i> , 2011 , 3, 86-95	7.7	353	
661	Structural characterization of cup-stacked-type nanofibers with an entirely hollow core. <i>Applied Physics Letters</i> , 2002 , 80, 1267-1269	3.4	329	
660	Ex-MWNTs: graphene sheets and ribbons produced by lithium intercalation and exfoliation of carbon nanotubes. <i>Nano Letters</i> , 2009 , 9, 1527-33	11.5	326	

659	Protein immobilization on carbon nanotubes via a two-step process of diimide-activated amidation. Journal of Materials Chemistry, 2004 , 14, 37		317
658	Biocompatibility and toxicological studies of carbon nanotubes doped with nitrogen. <i>Nano Letters</i> , 2006 , 6, 1609-16	11.5	305
657	Covalently bonded three-dimensional carbon nanotube solids via boron induced nanojunctions. <i>Scientific Reports</i> , 2012 , 2, 363	4.9	300
656	2D materials advances: from large scale synthesis and controlled heterostructures to improved characterization techniques, defects and applications. <i>2D Materials</i> , 2016 , 3, 042001	5.9	297
655	New first order Raman-active modes in few layered transition metal dichalcogenides. <i>Scientific Reports</i> , 2014 , 4, 4215	4.9	289
654	Manganese Doping of Monolayer MoS2: The Substrate Is Critical. <i>Nano Letters</i> , 2015 , 15, 6586-91	11.5	285
653	Longitudinal cutting of pure and doped carbon nanotubes to form graphitic nanoribbons using metal clusters as nanoscalpels. <i>Nano Letters</i> , 2010 , 10, 366-72	11.5	284
652	Field-effect transistors based on few-layered \(\text{MoTe}(2). \) ACS Nano, 2014 , 8, 5911-20	16.7	281
651	Flexible piezoelectric ZnO-paper nanocomposite strain sensor. <i>Small</i> , 2010 , 6, 1641-6	11	281
650	Enhanced magnetic coercivities in Fe nanowires. <i>Applied Physics Letters</i> , 1999 , 75, 3363-3365	3.4	276
649	Metal particle catalysed production of nanoscale BN structures. <i>Chemical Physics Letters</i> , 1996 , 259, 568	3- <u>25</u> ₹3	256
648	Carbon nanotubes as high-pressure cylinders and nanoextruders. <i>Science</i> , 2006 , 312, 1199-202	33.3	243
647	Carbon Nanotubes and Related Nanomaterials: Critical Advances and Challenges for Synthesis toward Mainstream Commercial Applications. <i>ACS Nano</i> , 2018 , 12, 11756-11784	16.7	239
646	Condensed-phase nanotubes. <i>Nature</i> , 1995 , 377, 687-687	50.4	238
645	Electron and phonon renormalization near charged defects in carbon nanotubes. <i>Nature Materials</i> , 2008 , 7, 878-83	27	236
644	Spectroscopic signatures for interlayer coupling in MoS2-WSe2 van der Waals stacking. <i>ACS Nano</i> , 2014 , 8, 9649-56	16.7	233
643	Carbon Nitride Nanocomposites: Formation of Aligned CxNy Nanofibers. <i>Advanced Materials</i> , 1999 , 11, 655-658	24	231
642	Efficient route to large arrays of CNx nanofibers by pyrolysis of ferrocene/melamine mixtures. Applied Physics Letters, 1999 , 75, 3932-3934	3.4	229

(2007-2012)

641	Defects and impurities in graphene-like materials. <i>Materials Today</i> , 2012 , 15, 98-109	21.8	228
640	Effective NaCl and dye rejection of hybrid graphene oxide/graphene layered membranes. <i>Nature Nanotechnology</i> , 2017 , 12, 1083-1088	28.7	227
639	Nanotubes in a flashignition and reconstruction. <i>Science</i> , 2002 , 296, 705	33.3	221
638	Direct synthesis of van der Waals solids. ACS Nano, 2014 , 8, 3715-23	16.7	218
637	Toxicity Evaluation for Safe Use of Nanomaterials: Recent Achievements and Technical Challenges. <i>Advanced Materials</i> , 2009 , 21, 1549-1559	24	216
636	Extraordinary Second Harmonic Generation in tungsten disulfide monolayers. <i>Scientific Reports</i> , 2014 , 4, 5530	4.9	214
635	Raman spectroscopy of boron-doped single-layer graphene. ACS Nano, 2012, 6, 6293-300	16.7	209
634	Carbon nanotubes: synthesis and properties, electronic devices and other emerging applications. <i>International Materials Reviews</i> , 2004 , 49, 325-377	16.1	209
633	Carbon science in 2016: Status, challenges and perspectives. <i>Carbon</i> , 2016 , 98, 708-732	10.4	200
632	New direction in nanotube science. <i>Materials Today</i> , 2004 , 7, 30-45	21.8	200
632	New direction in nanotube science. <i>Materials Today</i> , 2004 , 7, 30-45 Pyrolytically grown BxCyNz nanomaterials: nanofibres and nanotubes. <i>Chemical Physics Letters</i> , 1996 , 257, 576-582	21.8	200
	Pyrolytically grown BxCyNz nanomaterials: nanofibres and nanotubes. <i>Chemical Physics Letters</i> ,		
631	Pyrolytically grown BxCyNz nanomaterials: nanofibres and nanotubes. <i>Chemical Physics Letters</i> , 1996 , 257, 576-582	2.5	200
631	Pyrolytically grown BxCyNz nanomaterials: nanofibres and nanotubes. <i>Chemical Physics Letters</i> , 1996 , 257, 576-582 Electrolytic formation of carbon nanostructures. <i>Chemical Physics Letters</i> , 1996 , 262, 161-166 In situ nucleation of carbon nanotubes by the injection of carbon atoms into metal particles. <i>Nature</i>	2.5	2 00
631 630 629	Pyrolytically grown BxCyNz nanomaterials: nanofibres and nanotubes. <i>Chemical Physics Letters</i> , 1996 , 257, 576-582 Electrolytic formation of carbon nanostructures. <i>Chemical Physics Letters</i> , 1996 , 262, 161-166 In situ nucleation of carbon nanotubes by the injection of carbon atoms into metal particles. <i>Nature Nanotechnology</i> , 2007 , 2, 307-11 Selective and Efficient Impregnation of Metal Nanoparticles on Cup-Stacked-Type Carbon	2.5 2.5 28.7	200 196 195
631 630 629 628	Pyrolytically grown BxCyNz nanomaterials: nanofibres and nanotubes. <i>Chemical Physics Letters</i> , 1996, 257, 576-582 Electrolytic formation of carbon nanostructures. <i>Chemical Physics Letters</i> , 1996, 262, 161-166 In situ nucleation of carbon nanotubes by the injection of carbon atoms into metal particles. <i>Nature Nanotechnology</i> , 2007, 2, 307-11 Selective and Efficient Impregnation of Metal Nanoparticles on Cup-Stacked-Type Carbon Nanofibers. <i>Nano Letters</i> , 2003, 3, 723-726 Electronic transport and mechanical properties of phosphorus- and phosphorus-nitrogen-doped	2.5 2.5 28.7	200 196 195 193
631 630 629 628	Pyrolytically grown BxCyNz nanomaterials: nanofibres and nanotubes. <i>Chemical Physics Letters</i> , 1996, 257, 576-582 Electrolytic formation of carbon nanostructures. <i>Chemical Physics Letters</i> , 1996, 262, 161-166 In situ nucleation of carbon nanotubes by the injection of carbon atoms into metal particles. <i>Nature Nanotechnology</i> , 2007, 2, 307-11 Selective and Efficient Impregnation of Metal Nanoparticles on Cup-Stacked-Type Carbon Nanofibers. <i>Nano Letters</i> , 2003, 3, 723-726 Electronic transport and mechanical properties of phosphorus- and phosphorus-nitrogen-doped carbon nanotubes. <i>ACS Nano</i> , 2009, 3, 1913-21 Covalent 2D and 3D networks from 1D nanostructures: designing new materials. <i>Nano Letters</i> , 2007	2.5 2.5 28.7 11.5	200 196 195 193 191

623	Thermal stability and structural changes of double-walled carbon nanotubes by heat treatment. <i>Chemical Physics Letters</i> , 2004 , 398, 87-92	2.5	185
622	Applications of carbon nanotubes in the twenty-first century. <i>Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences</i> , 2004 , 362, 2223-38	3	185
621	Conducting linear chains of sulphur inside carbon nanotubes. <i>Nature Communications</i> , 2013 , 4, 2162	17.4	176
620	Synthesis and characterization of long strands of nitrogen-doped single-walled carbon nanotubes. <i>Chemical Physics Letters</i> , 2006 , 424, 345-352	2.5	173
619	Pure and doped boron nitride nanotubes. <i>Materials Today</i> , 2007 , 10, 30-38	21.8	171
618	CVD-grown monolayered MoS 2 as an effective photosensor operating at low-voltage. <i>2D Materials</i> , 2014 , 1, 011004	5.9	170
617	Towards new graphene materials: Doped graphene sheets and nanoribbons. <i>Materials Letters</i> , 2012 , 78, 209-218	3.3	168
616	Dislocation motion and grain boundary migration in two-dimensional tungsten disulphide. <i>Nature Communications</i> , 2014 , 5, 4867	17.4	167
615	Fullerene Coalescence in Nanopeapods: A Path to Novel Tubular Carbon. <i>Nano Letters</i> , 2003 , 3, 1037-1	042 .5	166
614	Controlled Exfoliation of MoS2 Crystals into Trilayer Nanosheets. <i>Journal of the American Chemical Society</i> , 2016 , 138, 5143-9	16.4	166
613	Heterodoped nanotubes: theory, synthesis, and characterization of phosphorus-nitrogen doped multiwalled carbon nanotubes. <i>ACS Nano</i> , 2008 , 2, 441-8	16.7	165
612	Metallic and ferromagnetic edges in molybdenum disulfide nanoribbons. <i>Nanotechnology</i> , 2009 , 20, 32	53043	164
611	Synthesis of thick and crystalline nanotube arrays by spray pyrolysis. <i>Applied Physics Letters</i> , 2000 , 77, 3385-3387	3.4	163
610	Fabrication of vapor and gas sensors using films of aligned CNx nanotubes. <i>Chemical Physics Letters</i> , 2004 , 386, 137-143	2.5	159
609	Microstructural changes induced in Btacked cuplcarbon nanofibers by heat treatment. <i>Carbon</i> , 2003 , 41, 1941-1947	10.4	159
608	Wetting of mono and few-layered WS2 and MoS2 films supported on Si/SiO2 substrates. <i>ACS Nano</i> , 2015 , 9, 3023-31	16.7	156
607	Optical identification of sulfur vacancies: Bound excitons at the edges of monolayer tungsten disulfide. <i>Science Advances</i> , 2017 , 3, e1602813	14.3	154
606	Non-oxidative intercalation and exfoliation of graphite by Brfisted acids. <i>Nature Chemistry</i> , 2014 , 6, 957-63	17.6	154

(2016-2014)

605	Excited excitonic states in 1L, 2L, 3L, and bulk WSe2 observed by resonant Raman spectroscopy. <i>ACS Nano</i> , 2014 , 8, 9629-35	16.7	154
604	Super-stretchable graphene oxide macroscopic fibers with outstanding knotability fabricated by dry film scrolling. <i>ACS Nano</i> , 2014 , 8, 5959-67	16.7	150
603	Production and characterization of single-crystal FeCo nanowires inside carbon nanotubes. <i>Nano Letters</i> , 2005 , 5, 467-72	11.5	150
602	Thermal stability studies of CVD-grown graphene nanoribbons: Defect annealing and loop formation. <i>Chemical Physics Letters</i> , 2009 , 469, 177-182	2.5	147
601	Synthesis of Mesoporous BN and BCN Exhibiting Large Surface Areas via Templating Methods. <i>Chemistry of Materials</i> , 2005 , 17, 5887-5890	9.6	147
600	Ultrasensitive gas detection of large-area boron-doped graphene. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, 14527-32	11.5	146
599	Tungsten oxide tree-like structures. Chemical Physics Letters, 1999, 309, 327-334	2.5	145
598	Intervalley scattering by acoustic phonons in two-dimensional MoS revealed by double-resonance Raman spectroscopy. <i>Nature Communications</i> , 2017 , 8, 14670	17.4	141
597	Curved nanostructured materials. New Journal of Physics, 2003, 5, 126-126	2.9	140
596	Magnetic behavior in zinc oxide zigzag nanoribbons. <i>Nano Letters</i> , 2008 , 8, 1562-5	11.5	138
595	Efficient anchoring of silver nanoparticles on N-doped carbon nanotubes. <i>Small</i> , 2006 , 2, 346-50	11	138
594	Graphitic cones in palladium catalysed carbon nanofibres. <i>Chemical Physics Letters</i> , 2001 , 343, 241-250	2.5	138
593	Novel nanotubes and encapsulated nanowires. <i>Applied Physics A: Materials Science and Processing</i> , 1998 , 66, 307-317	2.6	136
592	Synthetic routes to nanoscale BxCyNz architectures. <i>Carbon</i> , 2002 , 40, 1665-1684	10.4	136
591	Graphene Shape Control by Multistage Cutting and Transfer. Advanced Materials, 2009, 21, 4487-4491	24	133
590	A roadmap for electronic grade 2D materials. 2D Materials, 2019 , 6, 022001	5.9	133
589	Rice husk-derived graphene with nano-sized domains and clean edges. <i>Small</i> , 2014 , 10, 2766-70, 2740	11	130
588	Ultrasensitive molecular sensor using N-doped graphene through enhanced Raman scattering. <i>Science Advances</i> , 2016 , 2, e1600322	14.3	125

587	Enhanced Electron Field Emission in B-doped Carbon Nanotubes. <i>Nano Letters</i> , 2002 , 2, 1191-1195	11.5	125
586	Hydrogen storage in nanoporous carbon materials: myth and facts. <i>Physical Chemistry Chemical Physics</i> , 2007 , 9, 1786-92	3.6	124
585	Synthesis, electronic structure, and Raman scattering of phosphorus-doped single-wall carbon nanotubes. <i>Nano Letters</i> , 2009 , 9, 2267-72	11.5	121
584	Selective Co-catalysed growth of novel MgO fishbone fractal nanostructures. <i>Chemical Physics Letters</i> , 2001 , 347, 337-343	2.5	121
583	Observation of magnetic edge state in graphene nanoribbons. <i>Physical Review B</i> , 2010 , 81,	3.3	120
582	Building complex hybrid carbon architectures by covalent interconnections: graphene-nanotube hybrids and more. <i>ACS Nano</i> , 2014 , 8, 4061-9	16.7	119
581	Novel nanoscale gas containers: encapsulation of N2 in CNx nanotubes. <i>Chemical Communications</i> , 2000 , 2335-2336	5.8	118
580	Low-temperature Synthesis of Heterostructures of Transition Metal Dichalcogenide Alloys (WMoS) and Graphene with Superior Catalytic Performance for Hydrogen Evolution. <i>ACS Nano</i> , 2017 , 11, 5103-5	1 ¹⁶²⁷	116
579	Nanotube composites: novel SiO2 coated carbon nanotubes. <i>Chemical Communications</i> , 2002 , 34-5	5.8	114
578	Extraordinary toughening enhancement and flexural strength in Si3N4 composites using graphene sheets. <i>Journal of the European Ceramic Society</i> , 2014 , 34, 161-169	6	108
577	Hysteresis shift in Fe-filled carbon nanotubes due to Fe. <i>Physical Review B</i> , 2002 , 65,	3.3	108
576	Boron-Mediated Growth of Long Helicity-Selected Carbon Nanotubes. <i>Physical Review Letters</i> , 1999 , 83, 5078-5081	7.4	108
575	Tellurium-Assisted Low-Temperature Synthesis of MoS2 and WS2 Monolayers. ACS Nano, 2015, 9, 1165	8 <u>166</u> 7	107
574	Aligned CNx nanotubes by pyrolysis of ferrocene/C60 under NH3 atmosphere. <i>Applied Physics Letters</i> , 2000 , 77, 1807	3.4	107
573	Nanotubes: A Revolution in Materials Science and Electronics. <i>Topics in Current Chemistry</i> , 1999 , 189-23	4	106
57²	Resonance effects on the Raman spectra of graphene superlattices. <i>Physical Review B</i> , 2013 , 88,	3.3	104
571	3D Silicon oxide nanostructures: from nanoflowers to radiolaria. <i>Journal of Materials Chemistry</i> , 1998 , 8, 1859-1864		102
570	Chemical vapor deposition synthesis of N-, P-, and Si-doped single-walled carbon nanotubes. <i>ACS Nano</i> , 2010 , 4, 1696-702	16.7	101

(2006-2008)

569	Extreme-Performance Rubber Nanocomposites for Probing and Excavating Deep Oil Resources Using Multi-Walled Carbon Nanotubes. <i>Advanced Functional Materials</i> , 2008 , 18, 3403-3409	15.6	101	
568	Heterojunctions between metals and carbon nanotubes as ultimate nanocontacts. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2009 , 106, 4591-5	11.5	100	
567	In situ processing of electrically conducting graphene/SiC nanocomposites. <i>Journal of the European Ceramic Society</i> , 2013 , 33, 1665-1674	6	99	
566	Effects of 45-nm silver nanoparticles on coronary endothelial cells and isolated rat aortic rings. <i>Toxicology Letters</i> , 2009 , 191, 305-13	4.4	99	
565	A rapid and label-free platform for virus capture and identification from clinical samples. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 895-901	11.5	99	
564	Intrinsic carrier mobility of multi-layered MoS2 field-effect transistors on SiO2. <i>Applied Physics Letters</i> , 2013 , 102, 123105	3.4	98	
563	Electrochemical characterization of liquid phase exfoliated two-dimensional layers of molybdenum disulfide. <i>ACS Applied Materials & amp; Interfaces</i> , 2014 , 6, 2125-30	9.5	97	
562	Three-dimensional nitrogen-doped multiwall carbon nanotube sponges with tunable properties. <i>Nano Letters</i> , 2013 , 13, 5514-20	11.5	97	
561	SiOx-coating of carbon nanotubes at room temperature. <i>Chemical Physics Letters</i> , 2001 , 339, 41-46	2.5	97	
560	Boron-doping effects in carbon nanotubes. <i>Journal of Materials Chemistry</i> , 2000 , 10, 1425-1429		95	
559	Pentagonal rings and nitrogen excess in fullerene-based BN cages and nanotube caps. <i>Chemical Physics Letters</i> , 1999 , 299, 359-367	2.5	95	
558	Hall and field-effect mobilities in few layered p-WSelfield-effect transistors. <i>Scientific Reports</i> , 2015 , 5, 8979	4.9	94	
557	Preparation of aligned carbon nanotubes catalysed by laser-etched cobalt thin films. <i>Chemical Physics Letters</i> , 1998 , 285, 299-305	2.5	93	
556	On the electronic structure of WS2 nanotubes. <i>Solid State Communications</i> , 2000 , 114, 245-248	1.6	92	
555	Atypical Exciton-Phonon Interactions in WS2 and WSe2 Monolayers Revealed by Resonance Raman Spectroscopy. <i>Nano Letters</i> , 2016 , 16, 2363-8	11.5	91	
554	Large-area Si-doped graphene: controllable synthesis and enhanced molecular sensing. <i>Advanced Materials</i> , 2014 , 26, 7593-9	24	91	
553	Extreme superheating and supercooling of encapsulated metals in fullerenelike shells. <i>Physical Review Letters</i> , 2003 , 90, 185502	7.4	91	
552	Fabrication of High-Purity, Double-Walled Carbon Nanotube Buckypaper. <i>Chemical Vapor Deposition</i> , 2006 , 12, 327-330		90	

551	Defect Engineering and Surface Functionalization of Nanocarbons for Metal-Free Catalysis. <i>Advanced Materials</i> , 2019 , 31, e1805717	24	88
550	Magnetism in Fe-based and carbon nanostructures: Theory and applications. <i>Solid State Sciences</i> , 2006 , 8, 303-320	3.4	88
549	Production of WS2 Nanotubes. <i>Chemistry of Materials</i> , 2000 , 12, 1190-1194	9.6	88
548	Formation and Interlayer Decoupling of Colloidal MoSe2Nanoflowers. <i>Chemistry of Materials</i> , 2015 , 27, 3167-3175	9.6	86
547	Angstrom-Size Defect Creation and Ionic Transport through Pores in Single-Layer MoS. <i>Nano Letters</i> , 2018 , 18, 1651-1659	11.5	86
546	Sharpening the chemical scissors to unzip carbon nanotubes: crystalline graphene nanoribbons. <i>ACS Nano</i> , 2010 , 4, 1775-81	16.7	86
545	Two-dimensional transition metal dichalcogenides: Clusters, ribbons, sheets and more. <i>Nano Today</i> , 2015 , 10, 559-592	17.9	84
544	Cutting single-walled carbon nanotubes with an electron beam: evidence for atom migration inside nanotubes. <i>Small</i> , 2005 , 1, 953-6	11	84
543	Efficient anchorage of Pt clusters on N-doped carbon nanotubes and their catalytic activity. <i>Chemical Physics Letters</i> , 2008 , 463, 124-129	2.5	83
542	Metal to Insulator Quantum-Phase Transition in Few-Layered ReS\(\textsize\) Nano Letters, 2015 , 15, 8377-84	11.5	82
541	One-dimensional extended lines of divacancy defects in graphene. <i>Nanoscale</i> , 2011 , 3, 2868-72	7.7	82
540	Structure, transport and field-emission properties of compound nanotubes: CNx vs. BNCx (x. <i>Applied Physics A: Materials Science and Processing</i> , 2003 , 76, 499-507	2.6	82
539	Comparison study of semi-crystalline and highly crystalline multiwalled carbon nanotubes. <i>Applied Physics Letters</i> , 2001 , 79, 1531-1533	3.4	82
538	High-performance multi-functional reverse osmosis membranes obtained by carbon nanotube[polyamide nanocomposite. <i>Scientific Reports</i> , 2015 , 5, 13562	4.9	81
537	A Simple Route to Silicon-Based Nanostructures. <i>Advanced Materials</i> , 1999 , 11, 844-847	24	81
536	Importance of open, heteroatom-decorated edges in chemically doped-graphene for supercapacitor applications. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 9532-9540	13	80
535	Enhanced thermal conductivity of carbon fiber/phenolic resin composites by the introduction of carbon nanotubes. <i>Applied Physics Letters</i> , 2007 , 90, 093125	3.4	8o
534	Alloy nanowires: Invar inside carbon nanotubes. <i>Chemical Communications</i> , 2001 , 471-472	5.8	80

(2000-2017)

533	Covalent three-dimensional networks of graphene and carbon nanotubes: synthesis and environmental applications. <i>Nano Today</i> , 2017 , 12, 116-135	17.9	79
532	Experimental and theoretical studies suggesting the possibility of metallic boron nitride edges in porous nanourchins. <i>Nano Letters</i> , 2008 , 8, 1026-32	11.5	79
531	Direct observation of the structure of gold nanoparticles by total scattering powder neutron diffraction. <i>Chemical Physics Letters</i> , 2004 , 393, 385-388	2.5	79
530	Novel NbS2 metallic nanotubes. <i>Solid State Communications</i> , 2000 , 115, 635-638	1.6	78
529	Growth and Tunable Surface Wettability of Vertical MoS2 Layers for Improved Hydrogen Evolution Reactions. <i>ACS Applied Materials & Amp; Interfaces</i> , 2016 , 8, 22190-5	9.5	77
528	Synthesis of macroporous poly(acrylic acid) darbon nanotube composites by frontal polymerization in deep-eutectic solvents. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 3970	13	75
527	Facile synthesis of MoS2 and MoxW1-xS2 triangular monolayers. APL Materials, 2014, 2, 092514	5.7	75
526	The transformation of polyhedral particles into graphitic onions. <i>Journal of Physics and Chemistry of Solids</i> , 1997 , 58, 1789-1796	3.9	75
525	Zipper mechanism of nanotube fusion: theory and experiment. <i>Physical Review Letters</i> , 2004 , 92, 07550	04 7.4	75
524	Phosphorus and phosphorus-nitrogen doped carbon nanotubes for ultrasensitive and selective molecular detection. <i>Nanoscale</i> , 2011 , 3, 1008-13	7.7	74
523	Large area films of alternating graphene-carbon nanotube layers processed in water. <i>ACS Nano</i> , 2013 , 7, 10788-98	16.7	73
522	Resonance Raman study of linear carbon chains formed by the heat treatment of double-wall carbon nanotubes. <i>Physical Review B</i> , 2006 , 73,	3.3	73
521	Activation routes for high surface area graphene monoliths from graphene oxide colloids. <i>Carbon</i> , 2014 , 76, 220-231	10.4	72
520	Synthesis of conducting graphene/Si3N4 composites by spark plasma sintering. <i>Carbon</i> , 2013 , 57, 425-4	13 <u>2</u> 0.4	72
519	Mechanical behavior of polystyrene grafted carbon nanotubes/polystyrene nanocomposites. <i>Composites Science and Technology</i> , 2008 , 68, 3265-3271	8.6	72
518	Efficient encapsulation of gaseous nitrogen inside carbon nanotubes with bamboo-like structure using aerosol thermolysis. <i>Chemical Physics Letters</i> , 2004 , 396, 167-173	2.5	72
517	Raman spectroscopy study of isolated double-walled carbon nanotubes with different metallic and semiconducting configurations. <i>Nano Letters</i> , 2008 , 8, 3879-86	11.5	71
516	Generation of hollow crystalline tungsten oxide fibres. <i>Applied Physics A: Materials Science and Processing</i> , 2000 , 70, 231-233	2.6	71

Monolayer WS Nanopores for DNA Translocation with Light-Adjustable Sizes. ACS Nano, 2017, 11, 1937-1945 70 515 Carbon doping of WS monolayers: Bandgap reduction and p-type doping transport. Science 514 14.3 70 Advances, 2019, 5, eaav5003 Effects of Uniaxial and Biaxial Strain on Few-Layered Terrace Structures of MoSiGrown by Vapor 513 70 Transport. ACS Nano, 2016, 10, 3186-97 Atomic nanotube welders: boron interstitials triggering connections in double-walled carbon 512 11.5 70 nanotubes. Nano Letters, 2005, 5, 1099-105 Defect-Controlled Nucleation and Orientation of WSe on hBN: A Route to Single-Crystal Epitaxial 16.7 511 70 Monolayers. ACS Nano, 2019, 13, 3341-3352 Electrically functional 3D-architectured graphene/SiC composites. Carbon, 2016, 100, 318-328 510 69 10.4 Reversible intercalation of hexagonal boron nitride with Bristed acids. Journal of the American 509 16.4 69 Chemical Society, 2013, 135, 8372-81 An atomistic branching mechanism for carbon nanotubes: sulfur as the triggering agent. 508 16.4 69 Angewandte Chemie - International Edition, 2008, 47, 2948-53 Pore structure and oxidation stability of double-walled carbon nanotube-derived bucky paper. 69 2.5 507 Chemical Physics Letters, 2005, 414, 444-448 An Alternative Route to Molybdenum Disulfide Nanotubes. Journal of the American Chemical 506 16.4 69 Society, 2000, 122, 10155-10158 Graphene Sandwiched Mesostructured Li-Ion Battery Electrodes. Advanced Materials, 2016, 28, 7696-7024 505 68 Electrical transport and field-effect transistors using inkjet-printed SWCNT films having different 504 16.7 68 functional side groups. ACS Nano, 2010, 4, 3318-24 SiCBiOx heterojunctions in nanowires. Journal of Materials Chemistry, 1999, 9, 3173-3178 68 503 Distinct photoluminescence and Raman spectroscopy signatures for identifying highly crystalline 68 502 WS2 monolayers produced by different growth methods. Journal of Materials Research, 2016, 31, 931-9445 Flexible ZnO-cellulose nanocomposite for multisource energy conversion. Small, 2011, 7, 2173-8 67 501 11 500 Second Harmonic Generation in WSe 2. 2D Materials, 2015, 2, 045015 66 5.9 Nanotube coalescence-inducing mode: a novel vibrational mode in carbon systems. Small, 2006, 2, 1031-€1 66 499 Nonlinear Behavior in the Thermopower of Doped Carbon Nanotubes Due to Strong, Localized 498 11.5 66 States. Nano Letters, 2003, 3, 839-842

497	Advances in the Creation of Filled Nanotubes and Novel Nanowires. MRS Bulletin, 1999, 24, 43-49	3.2	66
496	Fabrication of transparent, tough, and conductive shape-memory polyurethane films by incorporating a small amount of high-quality graphene. <i>Macromolecular Rapid Communications</i> , 2012 , 33, 628-34	4.8	65
495	A theoretical and experimental study on manipulating the structure and properties of carbon nanotubes using substitutional dopants. <i>International Journal of Quantum Chemistry</i> , 2009 , 109, 97-118	2.1	64
494	Controlling the dimensions, reactivity and crystallinity of multiwalled carbon nanotubes using low ethanol concentrations. <i>Chemical Physics Letters</i> , 2008 , 453, 55-61	2.5	64
493	Coalescence of Double-Walled Carbon Nanotubes: Formation of Novel Carbon Bicables. <i>Nano Letters</i> , 2004 , 4, 1451-1454	11.5	64
492	NanoTeflons: Structure and EELS Characterization of Fluorinated Carbon Nanotubes and Nanofibers. <i>Nano Letters</i> , 2002 , 2, 491-496	11.5	64
491	Hydroxyl-functionalized and N-doped multiwalled carbon nanotubes decorated with silver nanoparticles preserve cellular function. <i>ACS Nano</i> , 2011 , 5, 2458-66	16.7	63
490	In situ Raman study on single- and double-walled carbon nanotubes as a function of lithium insertion. <i>Small</i> , 2006 , 2, 667-76	11	63
489	Low-Temperature Solution Synthesis of Few-Layer 1T '-MoTe2 Nanostructures Exhibiting Lattice Compression. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 2830-4	16.4	63
488	Noble-Metal-Free Hybrid Membranes for Highly Efficient Hydrogen Evolution. <i>Advanced Materials</i> , 2017 , 29, 1603617	24	62
487	MoS 2 monolayers on nanocavities: enhancement in lighthatter interaction. 2D Materials, 2016, 3, 0250) 157 9	62
486	Formation of nitrogen-doped graphene nanoribbons via chemical unzipping. ACS Nano, 2013, 7, 2192-20	0 46.7	61
485	Metastable one-dimensional AgCl(1)-(x)I(x) solid-solution wurzite "tunnel" crystals formed within single-walled carbon nanotubes. <i>Journal of the American Chemical Society</i> , 2002 , 124, 2116-7	16.4	61
484	Doping two-dimensional materials: ultra-sensitive sensors, band gap tuning and ferromagnetic monolayers. <i>Nanoscale Horizons</i> , 2017 , 2, 72-80	10.8	60
483	Collapsing carbon nanotubes and diamond formation under shock waves. <i>Chemical Physics Letters</i> , 1998 , 287, 689-693	2.5	60
482	Selective optical property modification of double-walled carbon nanotubes by fluorination. <i>ACS Nano</i> , 2008 , 2, 485-8	16.7	60
481	METAL ATOMS IN CARBON NANOTUBES AND RELATED NANOPARTICLES. <i>International Journal of Modern Physics B</i> , 2001 , 15, 4037-4069	1.1	60
480	Beyond C60: graphite structures for the future. <i>Chemical Society Reviews</i> , 1995 , 24, 341	58.5	60

479	Nanocarbons from rice husk by microwave plasma irradiation: From graphene and carbon nanotubes to graphenated carbon nanotube hybrids. <i>Carbon</i> , 2015 , 94, 479-484	10.4	59
478	A carbon science perspective in 2018: Current achievements and future challenges. <i>Carbon</i> , 2018 , 132, 785-801	10.4	59
477	Ultra-light carbon nanotube sponge as an efficient electromagnetic shielding material in the GHz range. <i>Physica Status Solidi - Rapid Research Letters</i> , 2014 , 8, 698-704	2.5	59
476	Thermolysis of C60 thin films yields Ni-filled tapered nanotubes. <i>Applied Physics A: Materials Science and Processing</i> , 1998 , 67, 595-598	2.6	59
475	Synthesis and isolation of molybdenum atomic wires. <i>Nano Letters</i> , 2008 , 8, 237-40	11.5	59
474	Zone-center phonons of bulk, few-layer, and monolayer 1TIIaS2: Detection of commensurate charge density wave phase through Raman scattering. <i>Physical Review B</i> , 2016 , 93,	3.3	58
473	Development of highly microporous activated carbon from the alcoholic beverage industry organic by-products. <i>Biomass and Bioenergy</i> , 2011 , 35, 103-112	5.3	58
472	Hydrogen storage in spherical nanoporous carbons. <i>Chemical Physics Letters</i> , 2005 , 403, 363-366	2.5	58
47 ¹	A novel route to aligned nanotubes and nanofibres using laser-patterned catalytic substrates. <i>Applied Physics A: Materials Science and Processing</i> , 2000 , 70, 175-183	2.6	57
47°	Single-atom doping of MoS with manganese enables ultrasensitive detection of dopamine: Experimental and computational approach. <i>Science Advances</i> , 2020 , 6, eabc4250	14.3	57
469	Tunable Fano Resonance and Plasmon-Exciton Coupling in Single Au Nanotriangles on Monolayer WS at Room Temperature. <i>Advanced Materials</i> , 2018 , 30, e1705779	24	56
468	Ultrasensitive Pressure Detection of Few-Layer MoS. Advanced Materials, 2017, 29, 1603266	24	56
467	How to Identify Haeckelite Structures: A Theoretical Study of Their Electronic and Vibrational Properties. <i>Nano Letters</i> , 2004 , 4, 805-810	11.5	56
466	Stable BC2N nanostructures: low-temperature production of segregated C/BN layered materials. <i>Chemical Physics Letters</i> , 1999 , 310, 459-465	2.5	56
465	Tunable and label-free virus enrichment for ultrasensitive virus detection using carbon nanotube arrays. <i>Science Advances</i> , 2016 , 2, e1601026	14.3	55
464	Quantum transport in graphene nanonetworks. <i>Nano Letters</i> , 2011 , 11, 3058-64	11.5	55
463	Marked adsorption irreversibility of graphitic nanoribbons for CO2 and H2O. <i>Journal of the American Chemical Society</i> , 2011 , 133, 14880-3	16.4	55
462	Simultaneous adsorption of Cd2+ and phenol on modified N-doped carbon nanotubes: experimental and DFT studies. <i>Journal of Colloid and Interface Science</i> , 2009 , 334, 124-31	9.3	55

461	MBsbauer Study of Iron-Containing Carbon Nanotubes. <i>Hyperfine Interactions</i> , 2002 , 139/140, 535-542	0.8	55	
460	Tunable Resonance Coupling in Single Si Nanoparticle-Monolayer WS Structures. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 16690-16697	9.5	54	
459	Low-Temperature Solution Synthesis of Transition Metal Dichalcogenide Alloys with Tunable Optical Properties. <i>Journal of the American Chemical Society</i> , 2017 , 139, 11096-11105	16.4	54	
458	Controlling high coercivities of ferromagnetic nanowires encapsulated in carbon nanotubes. <i>Journal of Materials Chemistry</i> , 2010 , 20, 5906		54	
457	Robust, Conducting, and Transparent Polymer Composites Using Surface-Modified and Individualized Double-Walled Carbon Nanotubes. <i>Advanced Materials</i> , 2008 , 20, 4509-4512	24	54	
456	Doped Carbon Nanotubes: Synthesis, Characterization and Applications. <i>Topics in Applied Physics</i> , 2007 , 531-566	0.5	54	
455	Metallic behaviour of boron-containing carbon nanotubes. <i>Chemical Physics Letters</i> , 2000 , 323, 572-579	2.5	54	
454	Morphology, structure and growth of WS2nanotubes. <i>Journal of Materials Chemistry</i> , 2000 , 10, 2570-25	77	54	
453	Discovery of wall-selective carbon nanotube growth conditions via automated experimentation. <i>ACS Nano</i> , 2014 , 8, 10214-22	16.7	53	
452	Viability studies of pure carbon- and nitrogen-doped nanotubes with Entamoeba histolytica: from amoebicidal to biocompatible structures. <i>Small</i> , 2007 , 3, 1723-9	11	53	
451	Production and State-of-the-Art Characterization of Aligned Nanotubes with Homogeneous BCxN (1 肽 因) Compositions. <i>Advanced Materials</i> , 2003 , 15, 1899-1903	24	53	
450	The Role Of Defects In Graphitic Structures. <i>Fullerenes, Nanotubes, and Carbon Nanostructures</i> , 1996 , 4, 517-533		53	
449	Stable Sulfur-Intercalated 1T? MoS2 on Graphitic Nanoribbons as Hydrogen Evolution Electrocatalyst. <i>Advanced Functional Materials</i> , 2018 , 28, 1802744	15.6	53	
448	Towards the understanding of the graphene oxide structure: How to control the formation of humic- and fulvic-like oxidized debris. <i>Carbon</i> , 2015 , 84, 299-309	10.4	52	
447	Spin polarized conductance in hybrid graphene nanoribbons using 5-7 defects. ACS Nano, 2009, 3, 3606-	1126.7	52	
446	Nitrogen-doped porous carbon monoliths from polyacrylonitrile (PAN) and carbon nanotubes as electrodes for supercapacitors. <i>Scientific Reports</i> , 2017 , 7, 40259	4.9	51	
445	Nanotube brushes: polystyrene grafted covalently on CNx nanotubes by nitroxide-mediated radical polymerization. <i>Chemical Communications</i> , 2005 , 5349-51	5.8	51	
444	Wafer-Scale Epitaxial Growth of Unidirectional WS Monolayers on Sapphire. <i>ACS Nano</i> , 2021 , 15, 2532-2	5:461 7	51	

443	Enhanced electrical conductivities of N-doped carbon nanotubes by controlled heat treatment. <i>Nanoscale</i> , 2011 , 3, 4359-64	7.7	50
442	Controlling edge morphology in graphene layers using electron irradiation: from sharp atomic edges to coalesced layers forming loops. <i>Physical Review Letters</i> , 2010 , 105, 045501	7.4	50
441	Efficient coating of N-doped carbon nanotubes with polystyrene using atomic transfer radical polymerization. <i>Chemical Physics Letters</i> , 2006 , 419, 567-573	2.5	50
440	Structure, Chirality, and Formation of Giant Icosahedral Fullerenes and Spherical Graphitic Onions. <i>Structural Chemistry</i> , 2002 , 13, 373-384	1.8	50
439	pKa determination of graphene-like materials: Validating chemical functionalization. <i>Journal of Colloid and Interface Science</i> , 2016 , 467, 239-244	9.3	49
438	Intricate Resonant Raman Response in Anisotropic ReS. <i>Nano Letters</i> , 2017 , 17, 5897-5907	11.5	49
437	Photoluminescence Segmentation within Individual Hexagonal Monolayer Tungsten Disulfide Domains Grown by Chemical Vapor Deposition. <i>ACS Applied Materials & Domains Grown By Chemical Vapor Deposition</i> . <i>ACS Applied Materials & Domains Grown By Chemical Vapor Deposition</i> .	90514	48
436	Defect Dynamics in 2-D MoS Probed by Using Machine Learning, Atomistic Simulations, and High-Resolution Microscopy. <i>ACS Nano</i> , 2018 , 12, 8006-8016	16.7	48
435	Clean nanotube unzipping by abrupt thermal expansion of molecular nitrogen: graphene nanoribbons with atomically smooth edges. <i>ACS Nano</i> , 2012 , 6, 2261-72	16.7	48
434	Guiding electrical current in nanotube circuits using structural defects: a step forward in nanoelectronics. <i>ACS Nano</i> , 2008 , 2, 2585-91	16.7	48
433	Metallic edges in zinc oxide nanoribbons. <i>Chemical Physics Letters</i> , 2007 , 448, 258-263	2.5	48
432	Electrochemical production of low-melting metal nanowires. <i>Chemical Physics Letters</i> , 1999 , 301, 159-16	5 6 .5	48
431	Controlling Nitrogen Doping in Graphene with Atomic Precision: Synthesis and Characterization. <i>Nanomaterials</i> , 2019 , 9,	5.4	47
430	Molecular Dynamics Study of Carbon Nanotubes/Polyamide Reverse Osmosis Membranes: Polymerization, Structure, and Hydration. <i>ACS Applied Materials & Description of Carbon Nanotubes</i> , 7, 24566-75	9.5	47
429	Production and characterization of coaxial nanotube junctions and networks of CNx/CNT. <i>Nano Letters</i> , 2007 , 7, 2220-6	11.5	47
428	Heteroatom doping of two-dimensional materials: From graphene to chalcogenides. <i>Nano Today</i> , 2020 , 30, 100829	17.9	45
427	Universal Substitutional Doping of Transition Metal Dichalcogenides by Liquid-Phase Precursor-Assisted Synthesis. <i>ACS Nano</i> , 2020 , 14, 4326-4335	16.7	44
426	Millimeter-long carbon nanotubes: outstanding electron-emitting sources. ACS Nano, 2011, 5, 5072-7	16.7	44

(2003-2009)

425	The Role of Sulfur in the Synthesis of Novel Carbon Morphologies: From Covalent Y-Junctions to Sea-Urchin-Like Structures. <i>Advanced Functional Materials</i> , 2009 , 19, 1193-1199	15.6	44	
424	Ultrafast Intrinsic Photoresponse and Direct Evidence of Sub-gap States in Liquid Phase Exfoliated MoS2Thin Films. <i>Scientific Reports</i> , 2015 , 5, 11272	4.9	43	
423	Carbon-Based Nanomaterials From a Historical Perspective. <i>Proceedings of the IEEE</i> , 2013 , 101, 1522-15	35 4.3	43	
422	Enhanced Nonlinear Transmittance by Complementary Nonlinear Mechanisms: A Reverse-Saturable Absorbing Dye Blended with Nonlinear-Scattering Carbon Nanotubes. <i>Advanced Materials</i> , 2005 , 17, 1239-1243	24	43	
421	Interface-mediated noble metal deposition on transition metal dichalcogenide nanostructures. <i>Nature Chemistry</i> , 2020 , 12, 284-293	17.6	42	
420	Electron emission from individual nitrogen-doped multi-walled carbon nanotubes. <i>Chemical Physics Letters</i> , 2004 , 396, 126-130	2.5	42	
419	Considerations for Utilizing Sodium Chloride in Epitaxial Molybdenum Disulfide. <i>ACS Applied Materials & Company: Interfaces</i> , 2018 , 10, 40831-40837	9.5	42	
418	Transfer of monolayer TMD WS and Raman study of substrate effects. Scientific Reports, 2017, 7, 43037	4.9	41	
417	Hybrid films with graphene oxide and metal nanoparticles could now replace indium tin oxide. <i>ACS Nano</i> , 2012 , 6, 4565-72	16.7	41	
416	Electrochemical formation of novel nanowires and their dynamic effects. <i>Chemical Physics Letters</i> , 1998 , 284, 177-183	2.5	41	
415	Selective tuning of the electronic properties of coaxial nanocables through exohedral doping. <i>Nano Letters</i> , 2007 , 7, 2383-8	11.5	41	
414	Nb-doped WS2 nanotubes. <i>Chemical Physics Letters</i> , 2001 , 342, 15-21	2.5	41	
413	Banning carbon nanotubes would be scientifically unjustified and damaging to innovation. <i>Nature Nanotechnology</i> , 2020 , 15, 164-166	28.7	40	
412	Super-robust, lightweight, conducting carbon nanotube blocks cross-linked by de-fluorination. <i>ACS Nano</i> , 2008 , 2, 348-56	16.7	40	
411	Nanoscale Encapsulation of Molybdenum Carbide in Carbon Clusters. <i>Chemistry of Materials</i> , 1996 , 8, 6-8	9.6	40	
410	Spontaneous Formation of Atomically Thin Stripes in Transition Metal Dichalcogenide Monolayers. <i>Nano Letters</i> , 2016 , 16, 6982-6987	11.5	40	
409	Ordered and Atomically Perfect Fragmentation of Layered Transition Metal Dichalcogenides via Mechanical Instabilities. <i>ACS Nano</i> , 2017 , 11, 9191-9199	16.7	39	
408	The carbon nanocosmos: novel materials for the twenty-first century. <i>Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences</i> , 2003 , 361, 2789-806	3	39	

407	Synthesis and state of art characterization of BN bamboo-like nanotubes: Evidence of a root growth mechanism catalyzed by Fe. <i>Chemical Physics Letters</i> , 2005 , 416, 342-348	2.5	38
406	The formation of ReS(2) inorganic fullerene-like structures containing Re(4) parallelogram units and metal-metal bonds. <i>Journal of the American Chemical Society</i> , 2002 , 124, 11580-1	16.4	38
405	Properties of one-dimensional molybdenum nanowires in a confined environment. <i>Nano Letters</i> , 2009 , 9, 1487-92	11.5	37
404	Decorating carbon nanotubes with nanostructured nickel particles via chemical methods. <i>Chemical Physics Letters</i> , 2006 , 431, 104-109	2.5	37
403	Peroxyformic Acid Pulping of Eucalyptus Grandis Wood Chips and Sugar Cane Bagasse in one Stage and Characterization of the Isolated Lignins. <i>Journal of Wood Chemistry and Technology</i> , 1998 , 18, 333-3	<i>6</i> 5	36
402	Electrolytic Formation of Carbon-Sheathed Mixed Sn B b Nanowires. <i>Chemistry of Materials</i> , 1999 , 11, 1747-1751	9.6	36
401	Nitrogen-doped porous carbon monoliths from molecular-level dispersion of carbon nanotubes into polyacrylonitrile (PAN) and the effect of carbonization process for supercapacitors. <i>Carbon</i> , 2019 , 143, 776-785	10.4	36
400	Carbon science perspective in 2020: Current research and future challenges. <i>Carbon</i> , 2020 , 161, 373-391	10.4	35
399	Third order nonlinear optical response exhibited by mono- and few-layers of WS 2. <i>2D Materials</i> , 2016 , 3, 021005	5.9	35
398	Acid modified bamboo-type carbon nanotubes and cup-stacked-type carbon nanofibres as adsorbent materials: cadmium removal from aqueous solution. <i>Journal of Chemical Technology and Biotechnology</i> , 2009 , 84, 519-524	3.5	35
397	Bright photoluminescence from the inner tubes of "peapod"-derived double-walled carbon nanotubes. <i>Small</i> , 2009 , 5, 2678-82	11	35
396	Quantitative density-functional study of nested fullerenes. <i>Physical Review B</i> , 1998 , 57, 13339-13342	3.3	35
395	Excitonic Effects in Tungsten Disulfide Monolayers on Two-Layer Graphene. ACS Nano, 2016, 10, 7840-6	16.7	34
394	Quasiperiodic icosahedral graphite sheets and high-genus fullereneswith nonpositive Gaussian curvature. <i>Physical Review B</i> , 1997 , 55, 9969-9974	3.3	34
393	Nonlinear optical absorption and reflection of single wall carbon nanotube thin films by Z-scan technique. <i>Applied Physics Letters</i> , 2008 , 92, 081902	3.4	34
392	Simple synthesis of multiwalled carbon nanotubes from natural resources. ChemSusChem, 2008, 1, 820-	28.3	34
391	Pyrolytic synthesis of long strands of large diameter single-walled carbon nanotubes at atmospheric pressure in the absence of sulphur and hydrogen. <i>Chemical Physics Letters</i> , 2005 , 410, 384-	3 ³ 98	34
390	Carbon Nanotubes as Nanoreactors for Boriding Iron Nanowires. <i>Advanced Materials</i> , 2000 , 12, 1356-13	5294	34

(2016-2016)

389	Polymer-coated graphene films as anti-reflective transparent electrodes for Schottky junction solar cells. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 13795-13802	13	34
388	Bilayers of transition metal dichalcogenides: Different stackings and heterostructures. <i>Journal of Materials Research</i> , 2014 , 29, 373-382	2.5	33
387	Catalytic Twist-Spun Yarns of Nitrogen-Doped Carbon Nanotubes. <i>Advanced Functional Materials</i> , 2012 , 22, 1069-1075	15.6	33
386	Design of graphene electronic devices using nanoribbons of different widths. <i>Applied Physics Letters</i> , 2009 , 95, 182104	3.4	33
385	Transitional behaviour in the transformation from active end planes to stable loops caused by annealing. <i>New Journal of Physics</i> , 2003 , 5, 121-121	2.9	33
384	Magnetism in Corrugated Carbon Nanotori: The Importance of Symmetry, Defects, and Negative Curvature. <i>Nano Letters</i> , 2004 , 4, 2179-2183	11.5	33
383	Monolayer Vanadium-Doped Tungsten Disulfide: A Room-Temperature Dilute Magnetic Semiconductor. <i>Advanced Science</i> , 2020 , 7, 2001174	13.6	33
382	Defect Coupling and Sub-Angstrom Structural Distortions in WMoS Monolayers. <i>Nano Letters</i> , 2017 , 17, 2802-2808	11.5	32
381	Robust water desalination membranes against degradation using high loads of carbon nanotubes. <i>Scientific Reports</i> , 2018 , 8, 2748	4.9	32
380	High electrical conductivity of double-walled carbon nanotube fibers by hydrogen peroxide treatments. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 74-82	13	32
379	Mechanical properties of hypothetical graphene foams: Giant Schwarzites. <i>Carbon</i> , 2016 , 96, 1191-1199	10.4	32
378	Antiorganic Fouling and Low-Protein Adhesion on Reverse-Osmosis Membranes Made of Carbon Nanotubes and Polyamide Nanocomposite. <i>ACS Applied Materials & ACS APPLIED & ACS</i>	9.5	32
377	Differential Response of Doped/Defective Graphene and Dopamine to Electric Fields: A Density Functional Theory Study. <i>Journal of Physical Chemistry C</i> , 2015 , 119, 13972-13978	3.8	32
376	Enhanced ferromagnetism in ZnO nanoribbons and clusters passivated with sulfur. <i>Nano Research</i> , 2008 , 1, 420-426	10	32
375	Formation of indium-doped zinc oxide thin films using chemical spray techniques: The importance of acetic acid content in the aerosol solution and the substrate temperature for enhancing electrical transport. <i>Thin Solid Films</i> , 2006 , 503, 212-218	2.2	32
374	Cables of BN-insulated BIIN nanotubes. <i>Applied Physics Letters</i> , 2003 , 82, 1275-1277	3.4	32
373	Mixed-Phase WxMoyCzS2 Nanotubes. <i>Chemistry of Materials</i> , 2000 , 12, 3541-3546	9.6	32
372	Correlation in structure and properties of highly-porous graphene monoliths studied with a thermal treatment method. <i>Carbon</i> , 2016 , 96, 174-183	10.4	31

371	Composites of Proteins and 2D Nanomaterials. Advanced Functional Materials, 2018, 28, 1704990	15.6	31
370	Nanostructured carbon materials for enhanced nitrobenzene adsorption: Physical vs. chemical surface properties. <i>Carbon</i> , 2018 , 139, 833-844	10.4	31
369	Theoretical characterization of several models of nanoporous carbon. <i>New Journal of Physics</i> , 2003 , 5, 123-123	2.9	31
368	Aligned carbon nanotube/zinc oxide nanowire hybrids as high performance electrodes for supercapacitor applications. <i>Journal of Applied Physics</i> , 2017 , 121, 124303	2.5	30
367	Deep-Eutectic Solvents as MWCNT Delivery Vehicles in the Synthesis of Functional Poly(HIPE) Nanocomposites for Applications as Selective Sorbents. <i>ACS Applied Materials & Company Systems</i> , 2016, 8, 31295-31303	9.5	30
366	Graphene oxide films, fibers, and membranes. <i>Nanotechnology Reviews</i> , 2016 , 5,	6.3	30
365	Electronic and vibrational properties of defective transition metal dichalcogenide Haeckelites: new 2D semi-metallic systems. <i>2D Materials</i> , 2014 , 1, 011003	5.9	30
364	Ultrashort optical pulse characterization using WSImonolayers. <i>Optics Letters</i> , 2014 , 39, 383-5	3	30
363	Strong and stable photoluminescence from the semiconducting inner tubes within double walled carbon nanotubes. <i>Applied Physics Letters</i> , 2009 , 94, 083106	3.4	30
362	Spectroscopic characterization of N-doped single-walled carbon nanotube strands: an X-ray photoelectron spectroscopy and Raman study. <i>Journal of Nanoscience and Nanotechnology</i> , 2010 , 10, 3959-64	1.3	30
361	Preparation of aligned multi-walled BN and B/C/N nanotubular arrays and their characterization using HRTEM, EELS and energy-filtered TEM. <i>Physica B: Condensed Matter</i> , 2002 , 323, 60-66	2.8	30
360	Controlled Fragmentation of Single-Atom-Thick Polycrystalline Graphene. <i>Matter</i> , 2020 , 2, 666-679	12.7	30
359	Electrochemically Exfoliated Graphene Electrode for High-Performance Rechargeable Chloroaluminate and Dual-Ion Batteries. <i>ACS Applied Materials & Dual-Ion Batteries</i> , 2019, 11, 23261-23270	9.5	29
358	Atomically Thin Layers of Graphene and Hexagonal Boron Nitride Made by Solvent Exfoliation of Their Phosphoric Acid Intercalation Compounds. <i>ACS Nano</i> , 2017 , 11, 6746-6754	16.7	29
357	Optically and biologically active mussel protein-coated double-walled carbon nanotubes. <i>Small</i> , 2011 , 7, 3292-7	11	29
356	Nitrogen-Doped Graphitic Nanoribbons: Synthesis, Characterization, and Transport. <i>Advanced Functional Materials</i> , 2013 , 23, 3755-3762	15.6	28
355	Electrical behavior of polymer grafted nanotubes/polymer nanocomposites using N-doped carbon nanotubes. <i>Chemical Physics Letters</i> , 2007 , 444, 1-8	2.5	28
354	Microscopy Study of the Growth Process and Structural Features of Silicon Oxide Nanoflowers. <i>Chemistry of Materials</i> , 1999 , 11, 2709-2715	9.6	28

353	Double-walled carbon nanotubes: synthesis, structural characterization, and application. <i>Carbon Letters</i> , 2014 , 15, 77-88	2.3	28	
352	Linear carbon chains inside multi-walled carbon nanotubes: Growth mechanism, thermal stability and electrical properties. <i>Carbon</i> , 2016 , 107, 217-224	10.4	28	
351	New Insights in the Natural Organic Matter Fouling Mechanism of Polyamide and Nanocomposite Multiwalled Carbon Nanotubes-Polyamide Membranes. <i>Environmental Science & Environmental &</i>	10.3	27	
350	Efficient photovoltaic conversion of graphenellarbon nanotube hybrid films grown from solid precursors. <i>2D Materials</i> , 2015 , 2, 034003	5.9	27	
349	Gate-modulated conductance of few-layer WSe2 field-effect transistors in the subgap regime: Schottky barrier transistor and subgap impurity states. <i>Applied Physics Letters</i> , 2015 , 106, 152104	3.4	27	
348	Chirality-dependent transport in double-walled carbon nanotube assemblies: the role of inner tubes. <i>ACS Nano</i> , 2011 , 5, 7547-54	16.7	27	
347	Femtosecond laser nanosurgery of defects in carbon nanotubes. <i>Nano Letters</i> , 2005 , 5, 1361-5	11.5	27	
346	Nanocomposites: synthesis and elemental mapping of aligned BCN nanotubes. <i>Chemical Physics Letters</i> , 2002 , 360, 1-7	2.5	27	
345	Creation of helical vortices during magnetization of aligned carbon nanotubes filled with Fe: theory and experiment. <i>Physical Review Letters</i> , 2005 , 94, 216102	7.4	27	
344	Pressure-Induced Selectivity for Probing Inner Tubes in Double- and Triple-Walled Carbon Nanotubes: A Resonance Raman Study. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 8153-8158	3.8	26	
343	Plasmon-trion and plasmon-exciton resonance energy transfer from a single plasmonic nanoparticle to monolayer MoS. <i>Nanoscale</i> , 2017 , 9, 13947-13955	7.7	26	
342	Fabrication and characterization of ultraviolet photosensors from ZnO nanowires prepared using chemical bath deposition method. <i>Journal of Applied Physics</i> , 2016 , 119, 084306	2.5	26	
341	The effect of CNT functionalization on electrical and relaxation phenomena in MWCNT/chitosan composites. <i>Materials Chemistry and Physics</i> , 2015 , 155, 252-261	4.4	25	
340	Effects of nitrogen-doped multi-walled carbon nanotubes compared to pristine multi-walled carbon nanotubes on human small airway epithelial cells. <i>Toxicology</i> , 2015 , 333, 25-36	4.4	25	
339	Study of the growth of CeO2 nanoparticles onto titanate nanotubes. <i>Journal of Physics and Chemistry of Solids</i> , 2015 , 87, 213-220	3.9	25	
338	Edge-edge interactions in stacked graphene nanoplatelets. ACS Nano, 2013, 7, 2834-41	16.7	25	
337	Lithiation induced corrosive fracture in defective carbon nanotubes. <i>Applied Physics Letters</i> , 2013 , 103, 153901	3.4	25	
336	The Role of Boron Nitride in Graphite Plasma Arcs. <i>Fullerenes, Nanotubes, and Carbon Nanostructures</i> , 1998 , 6, 787-800		25	

335	Scalable BEOL compatible 2D tungsten diselenide. 2D Materials, 2020, 7, 015029	5.9	25
334	Tunable Ferromagnetism and Thermally Induced Spin Flip in Vanadium-Doped Tungsten Diselenide Monolayers at Room Temperature. <i>Advanced Materials</i> , 2020 , 32, e2003607	24	25
333	High flex cycle testing of CVD monolayer WS 2 TFTs on thin flexible polyimide. <i>2D Materials</i> , 2016 , 3, 021008	5.9	25
332	Structural and electrochemical properties of babassu coconut mesocarp-generated activated carbon and few-layer graphene. <i>Carbon</i> , 2019 , 145, 175-186	10.4	25
331	On the Role of Transition Metal Salts During Electrochemical Exfoliation of Graphite: Antioxidants or Metal Oxide Decorators for Energy Storage Applications. <i>Advanced Functional Materials</i> , 2018 , 28, 1804357	15.6	25
330	Programmable molecular composites of tandem proteins with graphene oxide for efficient bimorph actuators. <i>Carbon</i> , 2017 , 118, 404-412	10.4	24
329	Graphene nanoribbon ceramic composites. <i>Carbon</i> , 2015 , 90, 207-214	10.4	24
328	Dynamics of cleaning, passivating and doping monolayer MoS 2 by controlled laser irradiation. <i>2D Materials</i> , 2019 , 6, 045031	5.9	24
327	Raman and fluorescence spectroscopic studies of a DNA-dispersed double-walled carbon nanotube solution. <i>ACS Nano</i> , 2010 , 4, 1060-6	16.7	24
326	Loop formation in graphitic nanoribbon edges using furnace heating or Joule heating. <i>Journal of Vacuum Science & Technology B</i> , 2009 , 27, 1996		24
325	Photoreactivity of lignin model compounds in the photobleaching of chemical pulps 2. Study of the degradation of 4-hydroxy-3-methoxy-benzaldehyde and two lignin fragments induced by singlet oxygen. <i>Journal of Photochemistry and Photobiology A: Chemistry</i> , 1997 , 110, 99-106	4.7	24
324	An anticorrosive magnesium/carbon nanotube composite. <i>Applied Physics Letters</i> , 2008 , 92, 063105	3.4	24
323	Raman Characterization of Nitrogen Doped Multiwalled Carbon Nanotubes. <i>Materials Research Society Symposia Proceedings</i> , 2003 , 772, 781		24
322	Bulk synthesis of narrow diameter and highly crystalline triple-walled carbon nanotubes by coalescing fullerene peapods. <i>Advanced Materials</i> , 2011 , 23, 1761-4	24	23
321	Wall-to-wall stress induced in (6,5) semiconducting nanotubes by encapsulation in metallic outer tubes of different diameters: a resonance Raman study of individual C60-derived double-wall carbon nanotubes. <i>Nanoscale</i> , 2010 , 2, 406-11	7.7	23
320	Electron transport properties of ordered networks using carbon nanotubes. <i>Nanotechnology</i> , 2008 , 19, 315704	3.4	23
319	The two peaks G? band in carbon nanotubes. <i>Physica Status Solidi (B): Basic Research</i> , 2008 , 245, 2197-23	2003	23
318	The possible way to evaluate the purity of double-walled carbon nanotubes over single wall carbon nanotubes by chemical doping. <i>Chemical Physics Letters</i> , 2006 , 420, 377-381	2.5	23

317	C-MoS2 and C-WS2 nanocomposites. <i>Applied Physics Letters</i> , 2000 , 77, 4130-4132	3.4	23
316	Carbon nanotubes and manganese oxide hybrid nanostructures as high performance fiber supercapacitors. <i>Communications Chemistry</i> , 2018 , 1,	6.3	22
315	Mechanical properties of nanocomposites reinforced by carbon nanotube sponges. <i>Journal of Materiomics</i> , 2018 , 4, 157-164	6.7	22
314	Electron transport study on functionalized armchair graphene nanoribbons: DFT calculations. <i>RSC Advances</i> , 2016 , 6, 21954-21960	3.7	22
313	Research Update: Recent progress on 2D materials beyond graphene: From ripples, defects, intercalation, and valley dynamics to straintronics and power dissipation. <i>APL Materials</i> , 2018 , 6, 080701	₁ 5·7	22
312	Spontaneous chemical functionalization via coordination of Au single atoms on monolayer MoS. <i>Science Advances</i> , 2020 , 6,	14.3	22
311	The influence of carbon nanotubes characteristics in their performance as positive electrodes in vanadium redox flow batteries. <i>Sustainable Energy Technologies and Assessments</i> , 2015 , 9, 105-110	4.7	21
310	Strain Modulated Superlattices in Graphene. <i>Nano Letters</i> , 2020 , 20, 3113-3121	11.5	21
309	Effective Antiscaling Performance of Reverse-Osmosis Membranes Made of Carbon Nanotubes and Polyamide Nanocomposites. <i>ACS Omega</i> , 2018 , 3, 6047-6055	3.9	21
308	Aligned carbon nanotube/silicon carbide hybrid materials with high electrical conductivity, superhydrophobicity and superoleophilicity. <i>Carbon</i> , 2014 , 80, 120-126	10.4	21
307	Synthesis, characterization and magnetic properties of Co@Au core-shell nanoparticles encapsulated by nitrogen-doped multiwall carbon nanotubes. <i>Carbon</i> , 2014 , 77, 722-737	10.4	21
306	Carbon nanotube bundles self-assembled in double helix microstructures. <i>Carbon</i> , 2012 , 50, 3688-3693	10.4	21
305	Btructural instabilityInduced high-performance NiFe layered double hydroxides as oxygen evolution reaction catalysts for pH-near-neutral borate electrolyte: The role of intercalates. <i>Applied Catalysis B: Environmental</i> , 2020 , 263, 118343	21.8	21
304	Nonlinear Dark-Field Imaging of One-Dimensional Defects in Monolayer Dichalcogenides. <i>Nano Letters</i> , 2020 , 20, 284-291	11.5	21
303	Two-dimensional and three-dimensional hybrid assemblies based on graphene oxide and other layered structures: A carbon science perspective. <i>Carbon</i> , 2017 , 125, 437-453	10.4	20
302	Oil sorption by exfoliated graphite from dilute oil water emulsion for practical applications in produced water treatments. <i>Journal of Water Process Engineering</i> , 2015 , 8, 91-98	6.7	20
301	Thicker carbon-nanotube/manganese-oxide hybridized nanostructures as electrodes for the creation of fiber-shaped high-energy-density supercapacitors. <i>Carbon</i> , 2019 , 154, 169-177	10.4	20
300	Controlling the Optical, Electrical and Chemical Properties of Carbon Inverse Opal by Nitrogen Doping. <i>Advanced Functional Materials</i> , 2014 , 24, 2612-2619	15.6	20

299	Electronic properties of fullerenes with nonpositive Gaussian curvature: Finite zeolites. <i>Physical Review B</i> , 1997 , 56, 12143-12146	3.3	20
298	Carbon nanotube supported single phospholipid bilayer. <i>Langmuir</i> , 2006 , 22, 10909-11	4	20
297	KCl crystallization within the space between carbon nanotube walls. <i>Chemical Physics Letters</i> , 2000 , 317, 77-82	2.5	20
296	Ultralight Flexible Electrodes of Nitrogen-Doped Carbon Macrotube Sponges for High-Performance Supercapacitors. <i>Small</i> , 2021 , 17, e2004827	11	20
295	Carbon-rich shungite as a natural resource for efficient Li-ion battery electrodes. <i>Carbon</i> , 2018 , 130, 105	5-1614	19
294	Towards band structure and band offset engineering of monolayer Mo (1 $\!$ k) W (x) S 2 via Strain. 2D Materials, 2018 , 5, 015008	5.9	19
293	CO2 Sensing by in-situ Raman spectroscopy using activated carbon generated from mesocarp of babassu coconut. <i>Vibrational Spectroscopy</i> , 2018 , 98, 111-118	2.1	19
292	Effect of boron doping on the electrical conductivity of metallicity-separated single walled carbon nanotubes. <i>Nanoscale</i> , 2018 , 10, 12723-12733	7.7	19
291	Nanoscale mapping of quasiparticle band alignment. <i>Nature Communications</i> , 2019 , 10, 3283	17.4	19
290	An efficient method for the carboxylation of few-wall carbon nanotubes with little damage to their sidewalls. <i>Materials Chemistry and Physics</i> , 2013 , 140, 499-507	4.4	19
289	Structural evolution of hydrothermal carbon spheres induced by high temperatures and their electrical properties under compression. <i>Carbon</i> , 2017 , 121, 426-433	10.4	19
288	NitrogenBilicon Heterodoping of Carbon Nanotubes. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 8481-84	19 <i>0</i> 8	19
287	Tunable Raman spectroscopy study of CVD and peapod-derived bundled and individual double-wall carbon nanotubes. <i>Physical Review B</i> , 2010 , 82,	3.3	19
286	Fullerenes and nanotubes with non-positive Gaussian curvature. <i>Carbon</i> , 1998 , 36, 725-730	10.4	19
285	Photochemical bleaching of chemical pulps catalyzed by titanium dioxide. <i>Journal of Photochemistry and Photobiology A: Chemistry</i> , 1998 , 115, 73-80	4.7	19
284	Magnetic response in finite carbon graphene sheets and nanotubes. <i>Optical Materials</i> , 2006 , 29, 110-11	53.3	19
283	Nanocages of layered BN: Super-high-pressure nanocells for formation of solid nitrogen. <i>Journal of Chemical Physics</i> , 2002 , 116, 8523	3.9	19
282	TungstenBiobiumBulfur composite nanotubes. <i>Chemical Communications</i> , 2001 , 121-122	5.8	19

281	Intrinsic Chirality Origination in Carbon Nanotubes. ACS Nano, 2017, 11, 9941-9949	16.7	18
280	Beryllium doping graphene, graphene-nanoribbons, C60-fullerene, and carbon nanotubes. <i>Carbon</i> , 2015 , 84, 317-326	10.4	18
279	Understanding Interlayer Coupling in TMD-hBN Heterostructure by Raman Spectroscopy. <i>IEEE Transactions on Electron Devices</i> , 2018 , 65, 4059-4067	2.9	18
278	Few-layer graphene coated current collectors for safe and powerful lithium ion batteries. <i>Carbon</i> , 2019 , 153, 495-503	10.4	18
277	Boron, nitrogen and phosphorous substitutionally doped single-wall carbon nanotubes studied by resonance Raman spectroscopy. <i>Physica Status Solidi (B): Basic Research</i> , 2009 , 246, 2432-2435	1.3	18
276	Enhanced X-Ray Shielding Effects of Carbon Nanotubes. <i>Materials Express</i> , 2011 , 1, 273-278	1.3	18
275	Doping (10, 0)-Semiconductor Nanotubes with Nitrogen and Vacancy Defects. <i>Materials Express</i> , 2011 , 1, 127-135	1.3	18
274	Effect of impurities on the electronic and magnetic properties of zinc oxide nanostructures. <i>Chemical Physics Letters</i> , 2010 , 492, 82-88	2.5	18
273	Synthesis and structural characterization of novel flower-like titanium dioxide nanostructures. <i>Physica B: Condensed Matter</i> , 2007 , 390, 143-146	2.8	18
272	Magnetic and hysteretic properties of Fe-filled nanotubes. <i>IEEE Transactions on Magnetics</i> , 2001 , 37, 2117-2119	2	18
271	New Horizons in Carbon Chemistry and Materials Science. MRS Bulletin, 1994, 19, 51-55	3.2	18
270	Avian and human influenza virus compatible sialic acid receptors in little brown bats. <i>Scientific Reports</i> , 2017 , 7, 660	4.9	17
269	Clean Transfer of 2D Transition Metal Dichalcogenides Using Cellulose Acetate for Atomic Resolution Characterizations. <i>ACS Applied Nano Materials</i> , 2019 , 2, 5320-5328	5.6	17
268	Defect-Assisted Heavily and Substitutionally Boron-Doped Thin Multiwalled Carbon Nanotubes Using High-Temperature Thermal Diffusion. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 4454-4459	3.8	17
267	Electronic, magnetic, optical, and edge-reactivity properties of semiconducting and metallic WS 2 nanoribbons. <i>2D Materials</i> , 2015 , 2, 015002	5.9	17
266	Defect-enhanced dispersion of carbon nanotubes in DNA solutions. <i>ChemPhysChem</i> , 2009 , 10, 2414-7	3.2	17
265	Electrochemical Polishing of Two-Dimensional Materials. ACS Nano, 2019, 13, 78-86	16.7	17
264	Dark-Exciton-Mediated Fano Resonance from a Single Gold Nanostructure on Monolayer WS at Room Temperature. <i>Small</i> , 2019 , 15, e1900982	11	16

263	Microwave plasma-induced graphene-sheet fibers from waste coffee grounds. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 14545-14549	13	16
262	Surfactant-Mediated Growth and Patterning of Atomically Thin Transition Metal Dichalcogenides. <i>ACS Nano</i> , 2020 , 14, 6570-6581	16.7	16
261	Water Diffusion Mechanism in Carbon Nanotube and Polyamide Nanocomposite Reverse Osmosis Membranes: A Possible Percolation-Hopping Mechanism. <i>Physical Review Applied</i> , 2018 , 9,	4.3	16
260	Effect of doping in carbon nanotubes on the viability of biomimetic chitosan-carbon nanotubes-hydroxyapatite scaffolds. <i>Journal of Biomedical Materials Research - Part A</i> , 2014 , 102, 3341-	-5 ^{§.4}	16
259	Geometric and Electronic Structure of Closed Graphene Edges. <i>Journal of Physical Chemistry Letters</i> , 2012 , 3, 2097-2102	6.4	16
258	Electronic properties of giant fullerenes and complex graphitic nanostructures with novel morphologies. <i>Chemical Physics Letters</i> , 2003 , 381, 683-690	2.5	16
257	Electro-graphitization and exfoliation of graphene on carbon nanofibers. <i>Carbon</i> , 2017 , 117, 201-207	10.4	15
256	Solution synthesis of few-layer WTe2 and MoxW1NTe2 nanostructures. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 11317-11323	7.1	15
255	Chemical and Bio Sensing Using Graphene-Enhanced Raman Spectroscopy. <i>Nanomaterials</i> , 2019 , 9,	5.4	15
254	Graphene nanoribbons inducing cube-shaped Ag nanoparticle assemblies. <i>Carbon</i> , 2015 , 93, 800-811	10.4	15
253	Pyrolytic carbon supported alloying metal dichalcogenides as free-standing electrodes for efficient hydrogen evolution. <i>Carbon</i> , 2018 , 132, 512-519	10.4	15
252	Photoconductivity of few-layered p -WSe 2 phototransistors via multi-terminal measurements. <i>2D Materials</i> , 2016 , 3, 041004	5.9	15
251	Low-Temperature Solution Synthesis of Few-Layer 1T ?-MoTe2 Nanostructures Exhibiting Lattice Compression. <i>Angewandte Chemie</i> , 2016 , 128, 2880-2884	3.6	15
250	Diameter-selective separation of double-walled carbon nanotubes. <i>Applied Physics Letters</i> , 2008 , 93, 223107	3.4	15
249	Production and detailed characterization of bean husk-based carbon: efficient cadmium (II) removal from aqueous solutions. <i>Water Research</i> , 2008 , 42, 3473-9	12.5	15
248	Synthesis and characterization of selenium-carbon nanocables. <i>Nano Letters</i> , 2008 , 8, 3651-5	11.5	15
247	Synthesis of SWCNT rings made by two Y junctions and possible applications in electron interferometry. <i>Small</i> , 2007 , 3, 1900-5	11	15
246	Shape and complexity at the atomic scale: the case of layered nanomaterials. <i>Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences</i> , 2004 , 362, 2039-63	3	15

(2003-2005)

245	Controlling nanotube chirality and crystallinity by doping. Small, 2005, 1, 1032-4	11	15
244	Self-assembly of Si nanostructures. <i>Chemical Physics Letters</i> , 2000 , 322, 312-320	2.5	15
243	Raman spectroscopy revealing noble gas adsorption on single-walled carbon nanotube bundles. <i>Carbon</i> , 2018 , 127, 312-319	10.4	15
242	Transferrable polymeric carbon nitride/nitrogen-doped graphene films for solid state optoelectronics. <i>Carbon</i> , 2018 , 138, 69-75	10.4	15
241	. IEEE Nanotechnology Magazine, 2017 , 11, 18-32	1.7	14
240	Nanoscale doping heterogeneity in few-layer WSe 2 exfoliated onto noble metals revealed by correlated SPM and TERS imaging. <i>2D Materials</i> , 2018 , 5, 035003	5.9	14
239	Morphology-controlled fabrication of a three-dimensional mesoporous poly(vinyl alcohol) monolith through the incorporation of graphene oxide. <i>Carbon</i> , 2016 , 98, 334-342	10.4	14
238	Mitsui-7, heat-treated, and nitrogen-doped multi-walled carbon nanotubes elicit genotoxicity in human lung epithelial cells. <i>Particle and Fibre Toxicology</i> , 2019 , 16, 36	8.4	14
237	CO2 adsorption on crystalline graphitic nanostructures. <i>Journal of CO2 Utilization</i> , 2014 , 5, 60-65	7.6	14
236	3D Nanocomposites of Covalently Interconnected Multiwalled Carbon Nanotubes with SiC with Enhanced Thermal and Electrical Properties. <i>Advanced Functional Materials</i> , 2015 , 25, 4985-4993	15.6	14
235	Photodelignification of Eucalyptus grandis organosolv chemical pulp. <i>Journal of Photochemistry and Photobiology A: Chemistry</i> , 1996 , 94, 253-262	4.7	14
234	2D Materials for Universal Thermal Imaging of Micro- and Nanodevices: An Application to Gallium Oxide Electronics. <i>ACS Applied Electronic Materials</i> , 2020 , 2, 2945-2953	4	14
233	Potassium intercalated multiwalled carbon nanotubes. <i>Carbon</i> , 2016 , 105, 90-95	10.4	14
232	Defect-mediated selective hydrogenation of nitroarenes on nanostructured WS. <i>Chemical Science</i> , 2019 , 10, 10310-10317	9.4	14
231	Resonant Raman study on bulk and isolated graphitic nanoribbons. <i>Small</i> , 2009 , 5, 2698-702	11	13
230	Graphene oxide nanoplatelets of different crystallinity synthesized from helical-ribbon carbon nanofibers and multiwall carbon nanotubes. <i>Journal of Materials Research</i> , 2011 , 26, 2632-2641	2.5	13
229	Raman spectroscopy study of heat-treated and boron-doped double wall carbon nanotubes. <i>Physical Review B</i> , 2009 , 80,	3.3	13
228	. IEEE Nanotechnology Magazine, 2003 , 2, 349-354	2.6	13

227	Defect creation in WSe with a microsecond photoluminescence lifetime by focused ion beam irradiation. <i>Nanoscale</i> , 2020 , 12, 2047-2056	7.7	13
226	Phase Modulators Based on High Mobility Ambipolar ReSe Field-Effect Transistors. <i>Scientific Reports</i> , 2018 , 8, 12745	4.9	13
225	Photoluminescence Enhancement of Titanate Nanotubes by Insertion of Rare Earth Ions in Their Interlayer Spaces. <i>Journal of Nanomaterials</i> , 2017 , 2017, 1-9	3.2	12
224	Light-Emitting Transition Metal Dichalcogenide Monolayers under Cellular Digestion. <i>Advanced Materials</i> , 2018 , 30, 1703321	24	12
223	Three dimensional porous monoliths from multi-walled carbon nanotubes and polyacrylonitrile. <i>Carbon</i> , 2016 , 101, 377-381	10.4	12
222	Optoelectronic modulation by multi-wall carbon nanotubes. <i>Nanotechnology</i> , 2013 , 24, 045201	3.4	12
221	ROS evaluation for a series of CNTs and their derivatives using an ESR method with DMPO. <i>Journal of Physics: Conference Series</i> , 2013 , 429,	0.3	12
220	Anomalous paramagnetism in doped carbon nanostructures. <i>Small</i> , 2007 , 3, 120-5	11	12
219	Ground-state electronic structure of nanoscale carbon cones. <i>Physical Review B</i> , 2005 , 72,	3.3	12
218	Synthesis and electronic properties of coalesced graphitic nanocones. <i>Chemical Physics Letters</i> , 2005 , 407, 327-332	2.5	12
217	WxMoyCzS2 nanotubes. <i>Carbon</i> , 2001 , 39, 1107-1111	10.4	12
216	Nanostructured carbon-based membranes: nitrogen doping effects on reverse osmosis performance. <i>NPG Asia Materials</i> , 2016 , 8, e258-e258	10.3	12
215	Elucidating the local interfacial structure of highly photoresponsive carbon nanotubes/PbS-QDs based nanohybrids grown by pulsed laser deposition. <i>Carbon</i> , 2016 , 96, 145-152	10.4	11
214	Pressure Sensors: Ultrasensitive Pressure Detection of Few-Layer MoS2 (Adv. Mater. 4/2017). <i>Advanced Materials</i> , 2017 , 29,	24	11
213	Temperature- and power-dependent phonon properties of suspended continuous WS2 monolayer films. <i>Vibrational Spectroscopy</i> , 2016 , 86, 270-276	2.1	11
212	Nitrogen-doped-CNTs/Si3N4 nanocomposites with high electrical conductivity. <i>Journal of the European Ceramic Society</i> , 2014 , 34, 1097-1104	6	11
211	Negative Differential Conductance & Hot-Carrier Avalanching in Monolayer WS2 FETs. <i>Scientific Reports</i> , 2017 , 7, 11256	4.9	11
210	Novel Nanocarbons for Adsorption 2012 , 3-34		11

(2000-2008)

209	Magnetic properties of individual carbon clusters, clusters inside fullerenes and graphitic nanoribbons. <i>Journal of Materials Chemistry</i> , 2008 , 18, 1535		11
208	CdSe quantum dot-decorated double walled carbon nanotubes: The effect of chemical moieties. <i>Applied Physics Letters</i> , 2008 , 93, 051901	3.4	11
207	Oxidation and thermal stability of linear carbon chains contained in thermally treated double-walled carbon nanotubes. <i>Small</i> , 2007 , 3, 788-92	11	11
206	Effects of novel and stable intermolecular connections in the mechanical and electronic properties of C60 polymerized structures. <i>Chemical Physics Letters</i> , 2008 , 458, 128-133	2.5	11
205	Solid-phase production of carbon nanotubes. <i>Applied Physics A: Materials Science and Processing</i> , 1999 , 68, 493-495	2.6	11
204	Monolayer MoS2 on sapphire: an azimuthal reflection high-energy electron diffraction perspective. <i>2D Materials</i> , 2021 , 8, 025003	5.9	11
203	Quantification and Healing of Defects in Atomically Thin Molybdenum Disulfide: Beyond the Controlled Creation of Atomic Defects. <i>ACS Nano</i> , 2021 , 15, 9658-9669	16.7	11
202	Intentional carbon doping reveals CH as an abundant charged impurity in nominally undoped synthetic WS2 and WSe2. <i>2D Materials</i> , 2020 , 7, 031003	5.9	11
201	Hydro-deoxygenation of CO on functionalized carbon nanotubes for liquid fuels production. <i>Carbon</i> , 2017 , 121, 274-284	10.4	10
200	Functional hetero-interfaces in atomically thin materials. <i>Materials Today</i> , 2020 , 37, 74-92	21.8	10
199	Functional hetero-interfaces in atomically thin materials. <i>Materials Today</i> , 2020 , 37, 74-92 Locally Induced Spin States on Graphene by Chemical Attachment of Boron Atoms. <i>Nano Letters</i> , 2018 , 18, 5482-5487	21.8 11.5	10
	Locally Induced Spin States on Graphene by Chemical Attachment of Boron Atoms. <i>Nano Letters</i> ,		
199	Locally Induced Spin States on Graphene by Chemical Attachment of Boron Atoms. <i>Nano Letters</i> , 2018 , 18, 5482-5487 Synthesis of V-MoS2 Layered Alloys as Stable Li-Ion Battery Anodes. <i>ACS Applied Energy Materials</i> ,	11.5	10
199 198	Locally Induced Spin States on Graphene by Chemical Attachment of Boron Atoms. <i>Nano Letters</i> , 2018 , 18, 5482-5487 Synthesis of V-MoS2 Layered Alloys as Stable Li-Ion Battery Anodes. <i>ACS Applied Energy Materials</i> , 2019 , 2, 8625-8632 A reversible strain-induced electrical conductivity in cup-stacked carbon nanotubes. <i>Nanoscale</i> ,	11.5 6.1	10
199 198 197	Locally Induced Spin States on Graphene by Chemical Attachment of Boron Atoms. <i>Nano Letters</i> , 2018 , 18, 5482-5487 Synthesis of V-MoS2 Layered Alloys as Stable Li-Ion Battery Anodes. <i>ACS Applied Energy Materials</i> , 2019 , 2, 8625-8632 A reversible strain-induced electrical conductivity in cup-stacked carbon nanotubes. <i>Nanoscale</i> , 2013 , 5, 10212-8 Controlled interlayer spacing of scrolled reduced graphene nanotubes by thermal annealing. <i>RSC</i>	11.5 6.1 7.7	10 10 10
199 198 197 196	Locally Induced Spin States on Graphene by Chemical Attachment of Boron Atoms. <i>Nano Letters</i> , 2018 , 18, 5482-5487 Synthesis of V-MoS2 Layered Alloys as Stable Li-Ion Battery Anodes. <i>ACS Applied Energy Materials</i> , 2019 , 2, 8625-8632 A reversible strain-induced electrical conductivity in cup-stacked carbon nanotubes. <i>Nanoscale</i> , 2013 , 5, 10212-8 Controlled interlayer spacing of scrolled reduced graphene nanotubes by thermal annealing. <i>RSC Advances</i> , 2013 , 3, 4161 Architectures from aligned nanotubes using controlled micropatterning of silicon substrates and	11.5 6.1 7.7 3.7	10 10 10
199 198 197 196	Locally Induced Spin States on Graphene by Chemical Attachment of Boron Atoms. <i>Nano Letters</i> , 2018 , 18, 5482-5487 Synthesis of V-MoS2 Layered Alloys as Stable Li-Ion Battery Anodes. <i>ACS Applied Energy Materials</i> , 2019 , 2, 8625-8632 A reversible strain-induced electrical conductivity in cup-stacked carbon nanotubes. <i>Nanoscale</i> , 2013 , 5, 10212-8 Controlled interlayer spacing of scrolled reduced graphene nanotubes by thermal annealing. <i>RSC Advances</i> , 2013 , 3, 4161 Architectures from aligned nanotubes using controlled micropatterning of silicon substrates and electrochemical methods. <i>Small</i> , 2007 , 3, 1157-63	11.5 6.1 7.7 3.7	10 10 10 10 10

191	High Performance and Chlorine Resistant Carbon Nanotube/Aromatic Polyamide Reverse Osmosis Nanocomposite Membrane. <i>MRS Advances</i> , 2016 , 1, 1469-1476	0.7	10
190	Biotin molecules on nitrogen-doped carbon nanotubes enhance the uniform anchoring and formation of Ag nanoparticles. <i>Carbon</i> , 2015 , 88, 51-59	10.4	9
189	Photoluminescence of monolayer transition metal dichalcogenides integrated with VO. <i>Journal of Physics Condensed Matter</i> , 2016 , 28, 504001	1.8	9
188	Self-Assembly Synthesis of Decorated Nitrogen-Doped Carbon Nanotubes with ZnO Nanoparticles: Anchoring Mechanism and the Effects of Sulfur. <i>Journal of Physical Chemistry C</i> , 2015 , 119, 741-747	3.8	9
187	Efficient vapor sensors using foils of dispersed nitrogen-doped and pure carbon multiwalled nanotubes. <i>Journal of Nanoscience and Nanotechnology</i> , 2010 , 10, 3965-72	1.3	9
186	Experimental verification of the dominant influence of extended carbon networks on the structural, electrical and magnetic properties of a common soot. <i>Journal of Physics Condensed Matter</i> , 1997 , 9, 10661-10673	1.8	9
185	Colloidal Nanostructures of Transition-Metal Dichalcogenides. <i>Accounts of Chemical Research</i> , 2021 , 54, 1517-1527	24.3	9
184	Second- and third-order optical susceptibilities across excitons states in 2D monolayer transition metal dichalcogenides. <i>2D Materials</i> , 2021 , 8, 035010	5.9	9
183	A carbon nanotube integrated microfluidic device for blood plasma extraction. <i>Scientific Reports</i> , 2018 , 8, 13623	4.9	9
182	Anomalous Corrosion of Bulk Transition Metal Diselenides Leading to Stable Monolayers. <i>ACS Applied Materials & Diselenials & Di</i>	9.5	8
181	A Spray Pyrolysis Method to Grow Carbon Nanotubes on Carbon Fibres, Steel and Ceramic Bricks. Journal of Nanoscience and Nanotechnology, 2015 , 15, 2858-64	1.3	8
180	Rapid Size-Based Isolation of Extracellular Vesicles by Three-Dimensional Carbon Nanotube Arrays. <i>ACS Applied Materials & Discourse (Materials & Discourse)</i> 12, 13134-13139	9.5	8
179	Incorporating Niobium in MoS2 at BEOL-Compatible Temperatures and its Impact on Copper Diffusion Barrier Performance. <i>Advanced Materials Interfaces</i> , 2019 , 6, 1901055	4.6	8
178	Enhanced Solubilization of Carbon Nanotubes in Aqueous Suspensions of AnionicNonionic Surfactant Mixtures. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 25138-25145	3.8	8
177	Iron Particle Nanodrilling of Few Layer Graphene at Low Electron Beam Accelerating Voltages. <i>Particle and Particle Systems Characterization</i> , 2013 , 30, 76-82	3.1	8
176	Homogeneously dispersed CeO2 nanoparticles on exfoliated hexaniobate nanosheets. <i>Journal of Physics and Chemistry of Solids</i> , 2017 , 111, 335-342	3.9	8
175	Unusually high dispersion of nitrogen-doped carbon nanotubes in DNA solution. <i>Journal of Physical Chemistry B</i> , 2011 , 115, 14295-300	3.4	8
174	The importance of defects for carbon nanoribbon based electronics. <i>Physica Status Solidi - Rapid Research Letters</i> , 2009 , 3, 181-183	2.5	8

(2019-2008)

173	Vibration sample magnetometry, a good tool for the study of nanomagnetic inclusions. Superlattices and Microstructures, 2008 , 43, 482-486	2.8	8	
172	Facile synthesis of graphene sheets intercalated by carbon spheres for high-performance supercapacitor electrodes. <i>Carbon</i> , 2020 , 167, 11-18	10.4	8	
171	Epitaxial growth of few-layer 🛭 n2Se3 thin films by metalorganic chemical vapor deposition. <i>Journal of Crystal Growth</i> , 2020 , 533, 125471	1.6	8	
170	Electric field induced metallic behavior in thin crystals of ferroelectric <code>Hn2Se3</code> . <i>Applied Physics Letters</i> , 2020 , 117, 052901	3.4	8	
169	Effect of underlying boron nitride thickness on photocurrent response in molybdenum disulfide I boron nitride heterostructures. <i>Journal of Materials Research</i> , 2016 , 31, 893-899	2.5	8	
168	Transition metal C raphene oxide nanohybrid materials as counter electrodes for high efficiency quantum dot solar cells. <i>Catalysis Today</i> , 2020 , 355, 860-869	5.3	8	
167	Preparation of novel tetrahedral Ag3PO4 crystals and the sunlight-responsive photocatalytic properties using graphene oxide as the template. <i>Carbon</i> , 2017 , 119, 522-526	10.4	7	
166	Properties of Functionalized Carbon Nanotubes and Their Interaction with a Metallic Substrate Investigated by Scanning Tunneling Microscopy. <i>Journal of Physical Chemistry C</i> , 2017 , 121, 24264-2427	1 ^{3.8}	7	
165	Hyperelasticity of three-dimensional carbon nanotube sponge controlled by the stiffness of covalent junctions. <i>Carbon</i> , 2015 , 95, 640-645	10.4	7	
164	Carbon nanotube-Cu hybrids enhanced catalytic activity in aqueous media. <i>Carbon</i> , 2014 , 78, 10-18	10.4	7	
163	Magnetic and Electrical Properties of Nitrogen-Doped Multiwall Carbon Nanotubes Fabricated by a Modified Chemical Vapor Deposition Method. <i>Journal of Nanomaterials</i> , 2015 , 2015, 1-14	3.2	7	
162	Controlled growth of one-dimensional clusters of molybdenum atoms using double-walled carbon nanotube templating. <i>Applied Physics Letters</i> , 2009 , 94, 113105	3.4	7	
161	Composition and morphological characteristics of chemically sprayed fluorine-doped zinc oxide thin films deposited on Si(100). <i>Physica B: Condensed Matter</i> , 2007 , 390, 10-16	2.8	7	
160	The Improvement of the Bleaching of Peroxyformic Sugar Cane Bagasse Pulp by Photocatalysis and Photosensitization. <i>Journal of the Brazilian Chemical Society</i> , 1999 , 10, 197-202	1.5	7	
159	Large-Scale Synthesis of Carbon Nanotubes by Pyrolysis 1999 , 143-152		7	
158	Light-Controlled Room Temperature Ferromagnetism in Vanadium-Doped Tungsten Disulfide Semiconducting Monolayers. <i>Advanced Electronic Materials</i> , 2021 , 7, 2100030	6.4	7	
157	Electric-Field-Assisted Directed Assembly of Transition Metal Dichalcogenide Monolayer Sheets. <i>ACS Nano</i> , 2016 , 10, 5006-14	16.7	7	
156	Facile 1D graphene fiber synthesis from an agricultural by-product: A silicon-mediated graphenization route. <i>Carbon</i> , 2019 , 142, 78-88	10.4	7	

155	Probing the interaction of noble gases with pristine and nitrogen-doped graphene through Raman spectroscopy. <i>Physical Review B</i> , 2018 , 97,	3.3	7
154	Controlled synthesis of N-type single-walled carbon nanotubes with 100% of quaternary nitrogen. <i>Carbon</i> , 2020 , 167, 881-887	10.4	6
153	Directional Electrical Transport in Tough Multifunctional Layered Ceramic/Graphene Composites. <i>Advanced Electronic Materials</i> , 2015 , 1, 1500132	6.4	6
152	Controlling the shapes and assemblages of graphene. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2012 , 109, 7951-2	11.5	6
151	Soft purification of N-doped and undoped multi-wall carbon nanotubes. <i>Nanotechnology</i> , 2008 , 19, 155	79.14	6
150	Raman study on electrochemical lithium insertion into multiwalled carbon nanotubes. <i>Journal of Raman Spectroscopy</i> , 2008 , 39, 1183-1188	2.3	6
149	Determination of chiralities of single-walled carbon nanotubes by neutron powder diffraction technique. <i>Diamond and Related Materials</i> , 2007 , 16, 473-476	3.5	6
148	Sodium chloride-catalyzed oxidation of multiwalled carbon nanotubes for environmental benefit. Journal of Physical Chemistry B, 2006 , 110, 12017-21	3.4	6
147	Growth of double-walled carbon nanotubes using a conditioning catalyst. <i>Journal of Nanoscience and Nanotechnology</i> , 2005 , 5, 404-8	1.3	6
146	SiO2-coated carbon nanotubes: theory and experiment. <i>International Journal of Materials Research</i> , 2002 , 93, 455-458		6
145	Doping and connecting carbon nanotubes. <i>Molecular Crystals and Liquid Crystals</i> , 2002 , 387, 51-62	0.5	6
144	The effects of substitutional Fe-doping on magnetism in MoS2 and WS2 monolayers. <i>Nanotechnology</i> , 2020 ,	3.4	6
143	Temperature- and power-dependent phonon properties of suspended few layers of tungsten diselenide. <i>Vibrational Spectroscopy</i> , 2020 , 111, 103169	2.1	6
142	Second harmonic generation in two-dimensional transition metal dichalcogenides with growth and post-synthesis defects. <i>2D Materials</i> , 2020 , 7, 045020	5.9	6
141	Temperature Dependence of Sensors Based on Silver-Decorated Nitrogen-Doped Multiwalled Carbon Nanotubes. <i>Journal of Sensors</i> , 2016 , 2016, 1-10	2	6
140	Controllable and Predictable Viscoelastic Behavior of 3D Boron-Doped Multiwalled Carbon Nanotube Sponges. <i>Particle and Particle Systems Characterization</i> , 2016 , 33, 21-26	3.1	6
139	Confined Crack Propagation in MoS Monolayers by Creating Atomic Vacancies. ACS Nano, 2021, 15, 121	0£62/16	5 6
138	(Ga,In)P nanowires grown without intentional catalyst. <i>Journal of Crystal Growth</i> , 2015 , 431, 72-78	1.6	5

(2016-2018)

137	Solvothermal synthesis of porous conjugated polymer with high surface area for efficient adsorption of organic and biomolecules. <i>Journal of Porous Materials</i> , 2018 , 25, 1659-1668	2.4	5
136	H2O2/UV layer-by-layer oxidation of multiwall carbon nanotubes: The Bnion effectIand the control of the degree of surface crystallinity and diameter. <i>Carbon</i> , 2018 , 139, 1027-1034	10.4	5
135	Excitonic processes in atomically-thin MoSe 2 /MoS 2 vertical heterostructures. 2D Materials, 2018 , 5, 031016	5.9	5
134	Boron-assisted coalescence of parallel multi-walled carbon nanotubes. <i>RSC Advances</i> , 2013 , 3, 26266	3.7	5
133	Determination of the stacking order of curved few-layered graphene systems. <i>Nanoscale</i> , 2012 , 4, 6419	- 3 :47	5
132	Novel Carbon-Based Nanomaterials 2013 , 61-87		5
131	Sensors: Photosensor Device Based on Few-Layered WS2 Films (Adv. Funct. Mater. 44/2013). <i>Advanced Functional Materials</i> , 2013 , 23, 5510-5510	15.6	5
130	Sensitive G-band Raman features for the electrical conductivity of multi-walled carbon nanotubes. Journal of Nanoscience and Nanotechnology, 2010 , 10, 3940-4	1.3	5
129	Electrical transport through single-wall carbon nanotube-anodic aluminum oxide-aluminum heterostructures. <i>Nanotechnology</i> , 2010 , 21, 035707	3.4	5
128	Magnetic properties of encapsulated nanoparticles in nitrogen-doped multiwalled cabon nanotubes embedded in SiOx matrices. <i>Journal of Nanoscience and Nanotechnology</i> , 2010 , 10, 5576-82	1.3	5
127	Synthetic Routes to Novel Nanomaterials. <i>Fullerenes, Nanotubes, and Carbon Nanostructures</i> , 1997 , 5, 813-827		5
126	Formation of off-centered double-walled carbon nanotubes exhibiting wide interlayer spacing from bi-cables. <i>Chemical Physics Letters</i> , 2006 , 432, 240-244	2.5	5
125	Magnetic and transport properties of Fe nanowires encapsulated in carbon nanotubes. <i>Journal of Magnetism and Magnetic Materials</i> , 2004 , 272-276, E1255-E1257	2.8	5
124	Low temperature activation of inert hexagonal boron nitride for metal deposition and single atom catalysis. <i>Materials Today</i> , 2021 ,	21.8	5
123	Structure, Chirality, and Formation of Giant Icosahedral Fullerenes and Spherical Graphitic Onions 2015 , 101-112		5
122	Improved supercapacitors by implanting ultra-long single-walled carbon nanotubes into manganese oxide domains. <i>Journal of Power Sources</i> , 2020 , 479, 228795	8.9	5
121	Directional Modulation of Exciton Emission Using Single Dielectric Nanospheres. <i>Advanced Materials</i> , 2021 , 33, e2007236	24	5
120	Transport properties through hexagonal boron nitride clusters embedded in graphene nanoribbons. <i>Nanotechnology</i> , 2016 , 27, 185203	3.4	5

119	Fullerene and nanotube growth: new insights using first principles and molecular dynamics. <i>Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences,</i> 2016 , 374,	3	5
118	Photodegradation Protection in 2D In-Plane Heterostructures Revealed by Hyperspectral Nanoimaging: The Role of Nanointerface 2D Alloys. <i>ACS Nano</i> , 2021 , 15, 2447-2457	16.7	5
117	Graphene oxide membranes for lactose-free milk. <i>Carbon</i> , 2021 , 181, 118-129	10.4	5
116	Secure Electronics Enabled by Atomically Thin and Photosensitive Two-Dimensional Memtransistors <i>ACS Nano</i> , 2021 , 15, 19815-19827	16.7	5
115	Mouse pulmonary dose- and time course-responses induced by exposure to nitrogen-doped multi-walled carbon nanotubes. <i>Inhalation Toxicology</i> , 2020 , 32, 24-38	2.7	4
114	Enhancing the superconducting temperature of MgB2 by SWCNT dilution. <i>Physica C:</i> Superconductivity and Its Applications, 2014 , 497, 43-48	1.3	4
113	Doped Graphene: Theory, Synthesis, Characterization, and Applications 2013 , 183-207		4
112	Metal-semiconductor transition like behavior of naphthalene-doped single wall carbon nanotube bundles. <i>Faraday Discussions</i> , 2014 , 173, 145-56	3.6	4
111	Pine-tree-like morphologies of nitrogen-doped carbon nanotubes: Electron field emission enhancement. <i>Journal of Materials Research</i> , 2014 , 29, 2441-2450	2.5	4
110	An Atomistic Branching Mechanism for Carbon Nanotubes: Sulfur as the Triggering Agent. <i>Angewandte Chemie</i> , 2008 , 120, 2990-2995	3.6	4
109	Metal and alloy nanowires: Iron and invar inside carbon nanotubes. <i>AIP Conference Proceedings</i> , 2001 ,	О	4
108	Fullerenes with Non-Positive Gaussian Curvature: Holey-Balls and Holey-Tubes. <i>Fullerenes, Nanotubes, and Carbon Nanostructures</i> , 1998 , 6, 751-767		4
107	Nanotechnology of nanotubes and nanowires: From aligned carbon nanotubes to silicon oxide nanowires 1998 ,		4
106	New advances in the creation of nanostructural materials. <i>Pure and Applied Chemistry</i> , 1999 , 71, 2125-2	1 <u>30</u>	4
105	Thermal and Photo Sensing Capabilities of Mono- and Few-Layer Thick Transition Metal Dichalcogenides. <i>Micromachines</i> , 2020 , 11,	3.3	4
104	Superconductivity enhancement in phase-engineered molybdenum carbide/disulfide vertical heterostructures. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 19685-19693	11.5	4
103	Catalysis-free transformation of non-graphitising carbons into highly crystalline graphite. <i>Communications Materials</i> , 2020 , 1,	6	4
102	Direct growth of monolayer 1TIH MoS2 heterostructures using KCl-assisted CVD process. <i>2D Materials</i> , 2021 , 8, 025033	5.9	4

(2021-2021)

101	Single-Step Direct Laser Writing of Multimetal Oxygen Evolution Catalysts from Liquid Precursors. <i>ACS Nano</i> , 2021 , 15, 9796-9807	16.7	4
100	Interaction of gases with monolayer WS: an spectroscopy study. <i>Nanoscale</i> , 2021 , 13, 11470-11477	7.7	4
99	Broadband, Ultra-High-Responsive Monolayer MoS/SnS Quantum-Dot-Based Mixed-Dimensional Photodetector ACS Applied Materials & Interfaces, 2022,	9.5	4
98	A perspective on two-dimensional van der Waals opto-spin-caloritronics. <i>Applied Physics Letters</i> , 2021 , 119, 250501	3.4	4
97	Polysulphone composite membranes modified with two types of carbon additives as a potential material for bone tissue regeneration. <i>Bulletin of Materials Science</i> , 2017 , 40, 201-212	1.7	3
96	Stable and solid pellets of functionalized multi-walled carbon nanotubes produced under high pressure and temperature. <i>Journal of Nanoparticle Research</i> , 2015 , 17, 1	2.3	3
95	Pyrrolic nitrogen-doped multiwall carbon nanotubes using ball-milled slag-SiC mixtures as a catalyst by aerosol assisted chemical vapor deposition. <i>Materials Research Express</i> , 2020 ,	1.7	3
94	The amorphization of metal nanoparticles in graphitic shells under laser pulses. <i>Carbon</i> , 2020 , 161, 495-	5001.4	3
93	Lithium-Ion Batteries: Graphene Sandwiched Mesostructured Li-Ion Battery Electrodes (Adv. Mater. 35/2016). <i>Advanced Materials</i> , 2016 , 28, 7695-7695	24	3
92	BNC nanoshells: a novel structure for atomic storage. <i>Nanotechnology</i> , 2017 , 28, 465201	3.4	3
91	Individual Mo Dopant Atoms in WS2 Monolayers: Atomic Structure and Induced Strain. <i>Microscopy and Microanalysis</i> , 2015 , 21, 435-436	0.5	3
90	Synthesis and Characterization of Nitrogen Doped Carbon Nanotubes. <i>Materials Science Forum</i> , 2010 , 636-637, 714-721	0.4	3
89	Self-diffraction properties in nanotubes (CNTs) 2009,		3
88	Selective Fabrication of Carbon Nanotube and Their Applications. <i>Journal of Biomedical Nanotechnology</i> , 2006 , 2, 106-108	4	3
87	Pure and aligned carbon nanotubes produced by the pyrolysis of benzene-based aerosols. <i>AIP Conference Proceedings</i> , 2001 ,	0	3
86	Origin of the complex Raman tensor elements in single-layer triclinic ReSe2. 2D Materials, 2021 , 8, 0250	0;2 9	3
85	Probing exciton species in atomically thin WS2graphene heterostructures. <i>JPhys Materials</i> , 2019 , 2, 025001	4.2	3
84	Luminescence enhancement and Raman characterization of defects in WS2 monolayers treated with low-power N2 plasma. <i>Applied Surface Science</i> , 2021 , 535, 147685	6.7	3

83	Microwave plasma-induced growth of vertical graphene from fullerene soot. <i>Carbon</i> , 2021 , 172, 26-30	10.4	3
82	Catalytic Nanocarbons: Defect Engineering and Surface Functionalization of Nanocarbons for Metal-Free Catalysis (Adv. Mater. 13/2019). <i>Advanced Materials</i> , 2019 , 31, 1970096	24	2
81	Random anion distribution in MS Se (M = Mo, W) crystals and nanosheets <i>RSC Advances</i> , 2018 , 8, 9871-	9 §.7 8	2
80	Phenomenological Modeling of Confined Phonon States in TMD Quantum Dots. <i>MRS Advances</i> , 2018 , 3, 339-344	0.7	2
79	Resource Letter N-1: Nanotechnology. <i>American Journal of Physics</i> , 2014 , 82, 8-22	0.7	2
78	Synthesis, Characterization and Magnetic Properties of Defective Nitrogen-Doped Multiwall Carbon Nanotubes Encapsulating Ferromagnetic Nanoparticles. <i>Journal of Nano Research</i> , 2014 , 28, 39-	49	2
77	Atomic-scale Observation of Grains and Grain Boundaries in Monolayers of WS2. <i>Microscopy and Microanalysis</i> , 2014 , 20, 1084-1085	0.5	2
76	Microfluidic device with carbon nanotube channel walls for blood plasma extraction 2013,		2
75	Covalent Networks: 3D Nanocomposites of Covalently Interconnected Multiwalled Carbon Nanotubes with SiC with Enhanced Thermal and Electrical Properties (Adv. Funct. Mater. 31/2015). <i>Advanced Functional Materials</i> , 2015 , 25, 4922-4922	15.6	2
74	Three-dimensional Nanotube Networks and a New Horizon of Applications 2014 , 457-493		2
73	Modified Carbon Nanotubes 2013 , 189-232		2
72	Magnetic properties of carbon nanostructures. International Journal of Nanotechnology, 2007, 4, 651	1.5	2
71	Banhart, Hernfidez, and Terrones Reply:. <i>Physical Review Letters</i> , 2004 , 92,	7.4	2
70	Science and Technology of the Twenty-First Century: Synthesis, Properties, and Applications of Carbon Nanotubes. <i>ChemInform</i> , 2004 , 35, no		2
69	Advances on the growth and properties of N- and B-doped carbon nanotubes. <i>AIP Conference Proceedings</i> , 2001 ,	О	2
68	Spatially resolved EELS applied to the study of a one-dimensional solid solution of AgCl1Idix formed within single wall carbon nanotubes. <i>AIP Conference Proceedings</i> , 2002 ,	Ο	2
67	Carbon Nanotubes and Nanofibres: Exotic Materials of Carbon. <i>Tanso</i> , 2000 , 2000, 424-433	0.1	2
66	Integration of Nitrogen-Doped Graphene Oxide Dots with Au Nanoparticles for Enhanced Electrocatalytic Hydrogen Evolution. <i>ACS Applied Nano Materials</i> ,	5.6	2

(2001-2020)

65	Enhanced desalination performance in compacted carbon-based reverse osmosis membranes. <i>Nanoscale Advances</i> , 2020 , 2, 3444-3451	5.1	2
64	Multiple excitations and temperature study of the disorder-induced Raman bands in MoS2. <i>2D Materials</i> , 2021 , 8, 035042	5.9	2
63	Probing the origin of lateral heterogeneities in synthetic monolayer molybdenum disulfide. <i>2D Materials</i> , 2019 , 6, 025008	5.9	2
62	Atomistic-Scale Simulations on Graphene Bending Near a Copper Surface. <i>Catalysts</i> , 2021 , 11, 208	4	2
61	Properties and Applications of Doped Carbon Nanotubes 2009 , 223-269		2
60	Room-temperature Observation of Near-intrinsic Exciton Linewidth in Monolayer WS <i>Advanced Materials</i> , 2022 , e2108721	24	2
59	Coaxial fabrication of Ni-Co layered double hydroxide into 3D carbon nanotube networks for high-performance flexible fiber supercapacitors. <i>Journal of Alloys and Compounds</i> , 2022 , 909, 164664	5.7	2
58	Spin-dependent vibronic response of a carbon radical ion in two-dimensional WS <i>Nature Communications</i> , 2021 , 12, 7287	17.4	2
57	Hollow graphenelmicrotubes using polyacrylonitrile nanofiber template and potential applications of field emission. <i>Carbon</i> , 2020 , 167, 439-445	10.4	1
56	A Review of Defects in Metal Dichalcogenides: Doping, Alloys, Interfaces, Vacancies and Their Effects in Catalysis & Dopical Emission. <i>Microscopy and Microanalysis</i> , 2018 , 24, 1556-1557	0.5	1
55	Porous Materials: Controlling the Optical, Electrical and Chemical Properties of Carbon Inverse Opal by Nitrogen Doping (Adv. Funct. Mater. 18/2014). <i>Advanced Functional Materials</i> , 2014 , 24, 2611-2	6 ¹ 15 ^{.6}	1
54	Carbon Nanotubes: Catalytic Twist-Spun Yarns of Nitrogen-Doped Carbon Nanotubes (Adv. Funct. Mater. 5/2012). <i>Advanced Functional Materials</i> , 2012 , 22, 1098-1098	15.6	1
53	A VACNT integrated handheld device for label-free virus capture, detection and enrichment for genomic analysis 2015 ,		1
52	Selective synthesis of double helices of carbon nanotube bundles grown on treated metallic substrates. <i>Physica Status Solidi (B): Basic Research</i> , 2012 , 249, 2382-2385	1.3	1
51	Transparent Foamlike 2D Networks of Nitrogen-Doped Multiwalled Carbon Nanotubes Obtained by Self-Assembly. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 11447-11452	3.8	1
50	The Formation of ReS2 Inorganic Fullerene-Like Structures Containing Re4 Parallelogram Units and MetalMetal Bonds <i>ChemInform</i> , 2010 , 33, no-no		1
49	Advances in Cnx Nanotube Growth. <i>Materials Research Society Symposia Proceedings</i> , 2003 , 772, 251		1
48	Defects and coalescence in carbon nanotubes. AIP Conference Proceedings, 2001,	Ο	1

47	Understanding the influence of nanocarbon conducting modes on the rate performance of LiFePO4 cathodes in lithium-ion batteries. <i>Journal of Alloys and Compounds</i> , 2022 , 905, 164205	5.7	1
46	Review of optical properties of two-dimensional transition metal dichalcogenides 2018,		1
45	Carbon Nanotubes and Other Carbon Materials 2008 , 691-706		1
44	MoS2 Monolayers on Nanocavities: Enhanced Light-Matter Interaction within Atomic Monolayers 2016 ,		1
43			
42	Observation of a Quasi-ordered Structure in Monolayer W x Mo (1-x) S 2 Alloys. <i>Microscopy and Microanalysis</i> , 2016 , 22, 1548-1549	0.5	1
41	Spin dependent transport in hybrid one dimensional BNC systems. <i>Semiconductor Science and Technology</i> , 2019 , 34, 015004	1.8	1
40	A Simple Route to Silicon-Based Nanostructures 1999 , 11, 844		1
39	Graphene oxide-CuFe2O4 nanohybrid material as an adsorbent of Congo red dye. <i>Carbon Trends</i> , 2022 , 7, 100147	О	0
38	Data Science Applied to Carbon Materials: Synthesis, Characterization, and Applications. <i>Advanced Theory and Simulations</i> ,2100205	3.5	Ο
37	Dielectric Nanospheres: Directional Modulation of Exciton Emission Using Single Dielectric Nanospheres (Adv. Mater. 20/2021). <i>Advanced Materials</i> , 2021 , 33, 2170153	24	0
36	Functional Pd/reduced graphene oxide nanocomposites: effect of reduction degree and doping in hydrodechlorination catalytic activity. <i>Journal of Nanoparticle Research</i> , 2019 , 21, 1	2.3	O
35	Multi-walled carbon nanotubes enhance the genetic transformation of Bifidobacterium longum. <i>Carbon</i> , 2021 , 184, 902-909	10.4	0
34	Large-scale preparation of electrically conducting cellulose nanofiber/carbon nanotube aerogels: Ambient-dried, recyclable, and 3D-Printable. <i>Carbon</i> , 2022 , 194, 23-33	10.4	Ο
33	Temperature-Dependent RF Characteristics of All DEPassivated WSell MOSFETs. <i>IEEE Electron Device Letters</i> , 2020 , 41, 1134-1137	4.4	
32	Fullerene Formation 2017 ,		
31	Anchorage of EAl2O3 nanoparticles on nitrogen-doped multiwalled carbon nanotubes. <i>Scripta Materialia</i> , 2016 , 123, 17-20	5.6	
30	Magnetic quenching of photonic activity in Fe3O4-elastomer composite. <i>Journal of Nanophotonics</i> , 2016 , 10, 016017	1.1	

29	Dark Excitons: Dark-Exciton-Mediated Fano Resonance from a Single Gold Nanostructure on Monolayer WS2 at Room Temperature (Small 31/2019). <i>Small</i> , 2019 , 15, 1970164	11
28	Interactions of Molecular Species with Graphene and Graphene Sensing 2019 , 509-533	
27	Nanoribbons: Nitrogen-Doped Graphitic Nanoribbons: Synthesis, Characterization, and Transport (Adv. Funct. Mater. 30/2013). <i>Advanced Functional Materials</i> , 2013 , 23, 3714-3714	15.6
26	Nanodrilling: Iron Particle Nanodrilling of Few Layer Graphene at Low Electron Beam Accelerating Voltages (Part. Part. Syst. Charact. 1/2013). <i>Particle and Particle Systems Characterization</i> , 2013 , 30, 75-	7§.1
25	Graphene: Large-Area Si-Doped Graphene: Controllable Synthesis and Enhanced Molecular Sensing (Adv. Mater. 45/2014). <i>Advanced Materials</i> , 2014 , 26, 7676-7676	24
24	Polarized Induced Magnetic Broadening of Photonic Activities in Fe3O4-Elastomer Composites. <i>Materials Research Society Symposia Proceedings</i> , 2013 , 1509, 1	
23	Heterogeneous Nanotubes: (X*CNTs, X*BNNTs) 2011 , 323-409	
22	Structural changes to aid science in developing countries. <i>Nature</i> , 2010 , 464, 486	50.4
21	Magnetoresistance and Phase Breaking Behavior of a Nitrogen Doped Multi-Walled Carbon Nanotube. <i>Japanese Journal of Applied Physics</i> , 2010 , 49, 02BD01	1.4
20	Optical spectroscopic studies of thermally coalesced single-walled carbon nanotubes. <i>Journal of Nanoscience and Nanotechnology</i> , 2010 , 10, 3878-83	1.3
19	Formation of Twisted AB-Graphitic and Fullerene-Related Tubular Structures During Soot Deposition from the Flaming Combustion of Polymers. <i>Combustion and Flame</i> , 1998 , 114, 591-593	5.3
18	Philosophical transactions. Introduction. <i>Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences</i> , 2004 , 362, 2035-7	3
17	Tetrahedral magnetic cluster embedded in metallic matrix: electron-correlation effects. <i>IEEE Transactions on Magnetics</i> , 2005 , 41, 3428-3430	2
16	Māsbauer Study of Iron-Containing Carbon Nanotubes 2002 , 535-542	
15	Novel Nanostructures: from Metal-Filled Carbon Nanotubes to MgO Nanoferns 2002 , 11-19	
14	Fullerene Formation 2001 , 3372-3379	
13	Data Science Applied to Carbon Materials: Synthesis, Characterization, and Applications (Adv. Theory Simul. 2/2022). <i>Advanced Theory and Simulations</i> , 2022 , 5, 2270004	3.5
12	In-situ electron irradiation studies of metal-carbon nanostructures 2008 , 121-122	

11	Compression, Nanotube Growth and Morphology Manipulation 2008 , 155-156	
10	Controlled Production of Tubular Carbon and BCN Architecture 2001 , 171-185	
9	Novel Nanostructures: from Metal-Filled Carbon Nanotubes to MgO Nanoferns 2002 , 11-19	
8	Carbon Nanotubes and Other Carbon Materials 2014 , 628-642	
7	The application of low-dimensional materials in virology and in the study of living organisms 2020 , 403	3-441
6	Nanocarbons 2021 , 885-944	
5	Graphene Oxide Membranes for Water Filtration. <i>Membrane</i> , 2021 , 46, 184-186	0
4	Electrochemical Exfoliation: On the Role of Transition Metal Salts During Electrochemical Exfoliation of Graphite: Antioxidants or Metal Oxide Decorators for Energy Storage Applications (Adv. Funct. Mater. 48/2018). <i>Advanced Functional Materials</i> , 2018 , 28, 1870345	15.6
3	Fano Resonances: Tunable Fano Resonance and Plasmon E xciton Coupling in Single Au Nanotriangles on Monolayer WS2 at Room Temperature (Adv. Mater. 22/2018). <i>Advanced Materials</i> , 2018 , 30, 1870155	24
2	Evolution of spectroscopy features in layered MoSxSe(2-x) solid solutions. <i>Materials Research Express</i> , 2022 , 9, 046301	1.7
1	Room-Temperature Observation of Near-Intrinsic Exciton Linewidth in Monolayer WS 2 (Adv. Mater. 15/2022). <i>Advanced Materials</i> , 2022 , 34, 2270115	24

Electron Irradiation Effects in Carbon Nanostructures: Surface Reconstruction, Extreme