
## Mauricio Terrones

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7186025/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Progress, Challenges, and Opportunities in Two-Dimensional Materials Beyond Graphene. ACS Nano, 2013, 7, 2898-2926.                                                                                                    | 14.6 | 4,062     |
| 2  | Recent Advances in Two-Dimensional Materials beyond Graphene. ACS Nano, 2015, 9, 11509-11539.                                                                                                                          | 14.6 | 2,069     |
| 3  | Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nature Materials, 2014, 13, 1135-1142.                                                                                                                | 27.5 | 1,918     |
| 4  | Extraordinary Room-Temperature Photoluminescence in Triangular WS <sub>2</sub> Monolayers.<br>Nano Letters, 2013, 13, 3447-3454.                                                                                       | 9.1  | 1,375     |
| 5  | Identification of individual and few layers of WS2 using Raman Spectroscopy. Scientific Reports, 2013, 3, .                                                                                                            | 3.3  | 1,185     |
| 6  | Transition Metal Dichalcogenides and Beyond: Synthesis, Properties, and Applications of Single- and<br>Few-Layer Nanosheets. Accounts of Chemical Research, 2015, 48, 56-64.                                           | 15.6 | 1,089     |
| 7  | Evaluating the characteristics of multiwall carbon nanotubes. Carbon, 2011, 49, 2581-2602.                                                                                                                             | 10.3 | 951       |
| 8  | Science and Technology of the Twenty-First Century: Synthesis, Properties, and Applications of Carbon<br>Nanotubes. Annual Review of Materials Research, 2003, 33, 419-501.                                            | 9.3  | 871       |
| 9  | Graphene and graphite nanoribbons: Morphology, properties, synthesis, defects and applications. Nano<br>Today, 2010, 5, 351-372.                                                                                       | 11.9 | 817       |
| 10 | Controlled production of aligned-nanotube bundles. Nature, 1997, 388, 52-55.                                                                                                                                           | 27.8 | 763       |
| 11 | Defect engineering of two-dimensional transition metal dichalcogenides. 2D Materials, 2016, 3, 022002.                                                                                                                 | 4.4  | 736       |
| 12 | Identification of Electron Donor States in N-Doped Carbon Nanotubes. Nano Letters, 2001, 1, 457-460.                                                                                                                   | 9.1  | 727       |
| 13 | Molecular Junctions by Joining Single-Walled Carbon Nanotubes. Physical Review Letters, 2002, 89,<br>075505.                                                                                                           | 7.8  | 656       |
| 14 | Controlled Formation of Sharp Zigzag and Armchair Edges in Graphitic Nanoribbons. Science, 2009, 323, 1701-1705.                                                                                                       | 12.6 | 655       |
| 15 | Fast and Efficient Preparation of Exfoliated 2H MoS <sub>2</sub> Nanosheets by Sonication-Assisted<br>Lithium Intercalation and Infrared Laser-Induced 1T to 2H Phase Reversion. Nano Letters, 2015, 15,<br>5956-5960. | 9.1  | 603       |
| 16 | Bulk Production of a New Form of sp <sup>2</sup> Carbon: Crystalline Graphene Nanoribbons. Nano<br>Letters, 2008, 8, 2773-2778.                                                                                        | 9.1  | 588       |
| 17 | Nitrogen-doped graphene: beyond single substitution and enhanced molecular sensing. Scientific<br>Reports, 2012, 2, 586.                                                                                               | 3.3  | 563       |
| 18 | Effect of defects on the intrinsic strength and stiffness of graphene. Nature Communications, 2014, 5, 3186.                                                                                                           | 12.8 | 560       |

2

| #  | Article                                                                                                                                                                             | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | â€~Buckypaper' from coaxial nanotubes. Nature, 2005, 433, 476-476.                                                                                                                  | 27.8 | 548       |
| 20 | Photosensor Device Based on Few‣ayered WS <sub>2</sub> Films. Advanced Functional Materials, 2013, 23, 5511-5517.                                                                   | 14.9 | 546       |
| 21 | Ultrahigh humidity sensitivity of graphene oxide. Scientific Reports, 2013, 3, 2714.                                                                                                | 3.3  | 542       |
| 22 | Beyond Graphene: Progress in Novel Two-Dimensional Materials and van der Waals Solids. Annual<br>Review of Materials Research, 2015, 45, 1-27.                                      | 9.3  | 537       |
| 23 | Controlled Synthesis and Transfer of Large-Area WS <sub>2</sub> Sheets: From Single Layer to Few Layers. ACS Nano, 2013, 7, 5235-5242.                                              | 14.6 | 534       |
| 24 | Selective Attachment of Gold Nanoparticles to Nitrogen-Doped Carbon Nanotubes. Nano Letters, 2003,<br>3, 275-277.                                                                   | 9.1  | 518       |
| 25 | Structure and Electronic Properties ofMoS2Nanotubes. Physical Review Letters, 2000, 85, 146-149.                                                                                    | 7.8  | 497       |
| 26 | New Metallic Allotropes of Planar and Tubular Carbon. Physical Review Letters, 2000, 84, 1716-1719.                                                                                 | 7.8  | 485       |
| 27 | The role of defects and doping in 2D graphene sheets and 1D nanoribbons. Reports on Progress in Physics, 2012, 75, 062501.                                                          | 20.1 | 475       |
| 28 | Coalescence of Single-Walled Carbon Nanotubes. Science, 2000, 288, 1226-1229.                                                                                                       | 12.6 | 469       |
| 29 | Band Gap Engineering and Layer-by-Layer Mapping of Selenium-Doped Molybdenum Disulfide. Nano<br>Letters, 2014, 14, 442-449.                                                         | 9.1  | 463       |
| 30 | Three-dimensionally bonded spongy graphene material with super compressive elasticity and near-zero<br>Poisson's ratio. Nature Communications, 2015, 6, 6141.                       | 12.8 | 458       |
| 31 | Novel hetero-layered materials with tunable direct band gaps by sandwiching different metal diselenides. Scientific Reports, 2013, 3, 1549.                                         | 3.3  | 437       |
| 32 | Graphene edges: a review of their fabrication and characterization. Nanoscale, 2011, 3, 86-95.                                                                                      | 5.6  | 410       |
| 33 | 2D materials advances: from large scale synthesis and controlled heterostructures to improved characterization techniques, defects and applications. 2D Materials, 2016, 3, 042001. | 4.4  | 408       |
| 34 | N-doping and coalescence of carbon nanotubes: synthesis and electronic properties. Applied Physics A:<br>Materials Science and Processing, 2002, 74, 355-361.                       | 2.3  | 392       |
| 35 | Carbon Nanotubes and Related Nanomaterials: Critical Advances and Challenges for Synthesis toward<br>Mainstream Commercial Applications. ACS Nano, 2018, 12, 11756-11784.           | 14.6 | 388       |
| 36 | Ex-MWNTs: Graphene Sheets and Ribbons Produced by Lithium Intercalation and Exfoliation of Carbon<br>Nanotubes. Nano Letters, 2009, 9, 1527-1533.                                   | 9.1  | 369       |

| #  | Article                                                                                                                                                         | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | New First Order Raman-active Modes in Few Layered Transition Metal Dichalcogenides. Scientific Reports, 2014, 4, 4215.                                          | 3.3  | 367       |
| 38 | Structural characterization of cup-stacked-type nanofibers with an entirely hollow core. Applied Physics Letters, 2002, 80, 1267-1269.                          | 3.3  | 361       |
| 39 | Manganese Doping of Monolayer MoS <sub>2</sub> : The Substrate Is Critical. Nano Letters, 2015, 15, 6586-6591.                                                  | 9.1  | 357       |
| 40 | Protein immobilization on carbon nanotubes via a two-step process of diimide-activated amidation.<br>Journal of Materials Chemistry, 2004, 14, 37.              | 6.7  | 354       |
| 41 | Field-Effect Transistors Based on Few-Layered α-MoTe <sub>2</sub> . ACS Nano, 2014, 8, 5911-5920.                                                               | 14.6 | 333       |
| 42 | Biocompatibility and Toxicological Studies of Carbon Nanotubes Doped with Nitrogen. Nano Letters,<br>2006, 6, 1609-1616.                                        | 9.1  | 332       |
| 43 | Covalently bonded three-dimensional carbon nanotube solids via boron induced nanojunctions.<br>Scientific Reports, 2012, 2, 363.                                | 3.3  | 329       |
| 44 | Longitudinal Cutting of Pure and Doped Carbon Nanotubes to Form Graphitic Nanoribbons Using<br>Metal Clusters as Nanoscalpels. Nano Letters, 2010, 10, 366-372. | 9.1  | 323       |
| 45 | Flexible Piezoelectric ZnO–Paper Nanocomposite Strain Sensor. Small, 2010, 6, 1641-1646.                                                                        | 10.0 | 318       |
| 46 | Effective NaCl and dye rejection of hybrid graphene oxide/graphene layered membranes. Nature<br>Nanotechnology, 2017, 12, 1083-1088.                            | 31.5 | 307       |
| 47 | Enhanced magnetic coercivities in Fe nanowires. Applied Physics Letters, 1999, 75, 3363-3365.                                                                   | 3.3  | 303       |
| 48 | Defects and impurities in graphene-like materials. Materials Today, 2012, 15, 98-109.                                                                           | 14.2 | 298       |
| 49 | Spectroscopic Signatures for Interlayer Coupling in MoS <sub>2</sub> –WSe <sub>2</sub> van der<br>Waals Stacking. ACS Nano, 2014, 8, 9649-9656.                 | 14.6 | 288       |
| 50 | Carbon Nanotubes as High-Pressure Cylinders and Nanoextruders. Science, 2006, 312, 1199-1202.                                                                   | 12.6 | 283       |
| 51 | Metal particle catalysed production of nanoscale BN structures. Chemical Physics Letters, 1996, 259, 568-573.                                                   | 2.6  | 282       |
| 52 | Condensed-phase nanotubes. Nature, 1995, 377, 687-687.                                                                                                          | 27.8 | 277       |
| 53 | Interphases in Graphene Polymerâ€based Nanocomposites: Achievements and Challenges. Advanced<br>Materials, 2011, 23, 5302-5310.                                 | 21.0 | 272       |
| 54 | Electron and phonon renormalization near charged defects in carbon nanotubes. Nature Materials,<br>2008, 7, 878-883.                                            | 27.5 | 263       |

Mauricio Terrones

| #  | Article                                                                                                                                                | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Extraordinary Second Harmonic Generation in Tungsten Disulfide Monolayers. Scientific Reports, 2014, 4, 5530.                                          | 3.3  | 262       |
| 56 | Carbon science in 2016: Status, challenges and perspectives. Carbon, 2016, 98, 708-732.                                                                | 10.3 | 261       |
| 57 | Nanotubes in a FlashIgnition and Reconstruction. Science, 2002, 296, 705-705.                                                                          | 12.6 | 256       |
| 58 | Direct Synthesis of van der Waals Solids. ACS Nano, 2014, 8, 3715-3723.                                                                                | 14.6 | 253       |
| 59 | Carbon Nitride Nanocomposites: Formation of Aligned CxNy Nanofibers. Advanced Materials, 1999, 11, 655-658.                                            | 21.0 | 252       |
| 60 | Raman Spectroscopy of Boron-Doped Single-Layer Graphene. ACS Nano, 2012, 6, 6293-6300.                                                                 | 14.6 | 245       |
| 61 | Efficient route to large arrays of CNx nanofibers by pyrolysis of ferrocene/melamine mixtures. Applied<br>Physics Letters, 1999, 75, 3932-3934.        | 3.3  | 242       |
| 62 | Carbon nanotubes: synthesis and properties, electronic devices and other emerging applications.<br>International Materials Reviews, 2004, 49, 325-377. | 19.3 | 231       |
| 63 | Toxicity Evaluation for Safe Use of Nanomaterials: Recent Achievements and Technical Challenges.<br>Advanced Materials, 2009, 21, 1549-1559.           | 21.0 | 231       |
| 64 | Electronic Transport and Mechanical Properties of Phosphorus- and Phosphorusâ^'Nitrogen-Doped<br>Carbon Nanotubes. ACS Nano, 2009, 3, 1913-1921.       | 14.6 | 228       |
| 65 | Conducting linear chains of sulphur inside carbon nanotubes. Nature Communications, 2013, 4, 2162.                                                     | 12.8 | 228       |
| 66 | In situ nucleation of carbon nanotubes by the injection of carbon atoms into metal particles. Nature<br>Nanotechnology, 2007, 2, 307-311.              | 31.5 | 226       |
| 67 | New direction in nanotube science. Materials Today, 2004, 7, 30-45.                                                                                    | 14.2 | 225       |
| 68 | Pyrolytically grown BxCyNz nanomaterials: nanofibres and nanotubes. Chemical Physics Letters, 1996, 257, 576-582.                                      | 2.6  | 223       |
| 69 | Covalent 2D and 3D Networks from 1D Nanostructures:Â Designing New Materials. Nano Letters, 2007, 7,<br>570-576.                                       | 9.1  | 223       |
| 70 | Electrolytic formation of carbon nanostructures. Chemical Physics Letters, 1996, 262, 161-166.                                                         | 2.6  | 221       |
| 71 | Thermal stability and structural changes of double-walled carbon nanotubes by heat treatment.<br>Chemical Physics Letters, 2004, 398, 87-92.           | 2.6  | 213       |
| 72 | Optical identification of sulfur vacancies: Bound excitons at the edges of monolayer tungsten disulfide. Science Advances, 2017, 3, e1602813.          | 10.3 | 213       |

| #  | Article                                                                                                                                                                       | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Applications of carbon nanotubes in the twenty–first century. Philosophical Transactions Series A,<br>Mathematical, Physical, and Engineering Sciences, 2004, 362, 2223-2238. | 3.4  | 212       |
| 74 | Selective and Efficient Impregnation of Metal Nanoparticles on Cup-Stacked-Type Carbon Nanofibers.<br>Nano Letters, 2003, 3, 723-726.                                         | 9.1  | 208       |
| 75 | Nitrogen-Mediated Carbon Nanotube Growth: Diameter Reduction, Metallicity, Bundle Dispersability, and Bamboo-like Structure Formation. ACS Nano, 2007, 1, 369-375.            | 14.6 | 207       |
| 76 | Excited Excitonic States in 1L, 2L, 3L, and Bulk WSe <sub>2</sub> Observed by Resonant Raman Spectroscopy. ACS Nano, 2014, 8, 9629-9635.                                      | 14.6 | 207       |
| 77 | Controlled Exfoliation of MoS <sub>2</sub> Crystals into Trilayer Nanosheets. Journal of the American Chemical Society, 2016, 138, 5143-5149.                                 | 13.7 | 207       |
| 78 | Pyrolytic production of aligned carbon nanotubes from homogeneously dispersed benzene-based aerosols. Chemical Physics Letters, 2001, 338, 101-107.                           | 2.6  | 205       |
| 79 | A roadmap for electronic grade 2D materials. 2D Materials, 2019, 6, 022001.                                                                                                   | 4.4  | 205       |
| 80 | Pure and doped boron nitride nanotubes. Materials Today, 2007, 10, 30-38.                                                                                                     | 14.2 | 204       |
| 81 | Synthesis and characterization of long strands of nitrogen-doped single-walled carbon nanotubes.<br>Chemical Physics Letters, 2006, 424, 345-352.                             | 2.6  | 198       |
| 82 | Towards new graphene materials: Doped graphene sheets and nanoribbons. Materials Letters, 2012, 78, 209-218.                                                                  | 2.6  | 196       |
| 83 | Intervalley scattering by acoustic phonons in two-dimensional MoS2 revealed by double-resonance Raman spectroscopy. Nature Communications, 2017, 8, 14670.                    | 12.8 | 196       |
| 84 | CVD-grown monolayered MoS <sub>2</sub> as an effective photosensor operating at low-voltage. 2D<br>Materials, 2014, 1, 011004.                                                | 4.4  | 195       |
| 85 | Heterodoped Nanotubes: Theory, Synthesis, and Characterization of Phosphorusâ´'Nitrogen Doped<br>Multiwalled Carbon Nanotubes. ACS Nano, 2008, 2, 441-448.                    | 14.6 | 192       |
| 86 | Dislocation motion and grain boundary migration in two-dimensional tungsten disulphide. Nature<br>Communications, 2014, 5, 4867.                                              | 12.8 | 192       |
| 87 | Wetting of Mono and Few-Layered WS <sub>2</sub> and MoS <sub>2</sub> Films Supported on Si/SiO <sub>2</sub> Substrates. ACS Nano, 2015, 9, 3023-3031.                         | 14.6 | 186       |
| 88 | Fullerene Coalescence in Nanopeapods:  A Path to Novel Tubular Carbon. Nano Letters, 2003, 3,<br>1037-1042.                                                                   | 9.1  | 185       |
| 89 | Metallic and ferromagnetic edges in molybdenum disulfide nanoribbons. Nanotechnology, 2009, 20,<br>325703.                                                                    | 2.6  | 185       |
| 90 | Rice Huskâ€Đerived Graphene with Nanoâ€Sized Domains and Clean Edges. Small, 2014, 10, 2766-2770.                                                                             | 10.0 | 181       |

| #   | Article                                                                                                                                                                                                                                                                | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Synthesis of thick and crystalline nanotube arrays by spray pyrolysis. Applied Physics Letters, 2000, 77, 3385-3387.                                                                                                                                                   | 3.3  | 179       |
| 92  | Fabrication of vapor and gas sensors using films of aligned CNx nanotubes. Chemical Physics Letters, 2004, 386, 137-143.                                                                                                                                               | 2.6  | 178       |
| 93  | Ultrasensitive gas detection of large-area boron-doped graphene. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 14527-14532.                                                                                              | 7.1  | 177       |
| 94  | Non-oxidative intercalation and exfoliation of graphite by BrÃ,nsted acids. Nature Chemistry, 2014, 6,<br>957-963.                                                                                                                                                     | 13.6 | 175       |
| 95  | Microstructural changes induced in "stacked cup―carbon nanofibers by heat treatment. Carbon, 2003,<br>41, 1941-1947.                                                                                                                                                   | 10.3 | 174       |
| 96  | Ultrasensitive molecular sensor using N-doped graphene through enhanced Raman scattering. Science<br>Advances, 2016, 2, e1600322.                                                                                                                                      | 10.3 | 174       |
| 97  | Curved nanostructured materials. New Journal of Physics, 2003, 5, 126-126.                                                                                                                                                                                             | 2.9  | 170       |
| 98  | Thermal stability studies of CVD-grown graphene nanoribbons: Defect annealing and loop formation.<br>Chemical Physics Letters, 2009, 469, 177-182.                                                                                                                     | 2.6  | 170       |
| 99  | Super-stretchable Graphene Oxide Macroscopic Fibers with Outstanding Knotability Fabricated by Dry<br>Film Scrolling. ACS Nano, 2014, 8, 5959-5967.                                                                                                                    | 14.6 | 170       |
| 100 | Production and Characterization of Single-Crystal FeCo Nanowires Inside Carbon Nanotubes. Nano<br>Letters, 2005, 5, 467-472.                                                                                                                                           | 9.1  | 167       |
| 101 | Synthetic routes to nanoscale BxCyNz architectures. Carbon, 2002, 40, 1665-1684.                                                                                                                                                                                       | 10.3 | 164       |
| 102 | Synthesis of Mesoporous BN and BCN Exhibiting Large Surface Areas via Templating Methods.<br>Chemistry of Materials, 2005, 17, 5887-5890.                                                                                                                              | 6.7  | 164       |
| 103 | Low-temperature Synthesis of Heterostructures of Transition Metal Dichalcogenide Alloys<br>(W <sub><i>x</i></sub> Mo <sub>1–<i>x</i></sub> S <sub>2</sub> ) and Graphene with Superior Catalytic<br>Performance for Hydrogen Evolution. ACS Nano, 2017, 11, 5103-5112. | 14.6 | 157       |
| 104 | A rapid and label-free platform for virus capture and identification from clinical samples.<br>Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 895-901.                                                                    | 7.1  | 157       |
| 105 | Tungsten oxide tree-like structures. Chemical Physics Letters, 1999, 309, 327-334.                                                                                                                                                                                     | 2.6  | 152       |
| 106 | Hydrogen storage in nanoporous carbon materials: myth and facts. Physical Chemistry Chemical Physics, 2007, 9, 1786-1792.                                                                                                                                              | 2.8  | 151       |
| 107 | Novel nanotubes and encapsulated nanowires. Applied Physics A: Materials Science and Processing, 1998, 66, 307-317.                                                                                                                                                    | 2.3  | 150       |
| 108 | Graphitic cones in palladium catalysed carbon nanofibres. Chemical Physics Letters, 2001, 343, 241-250.                                                                                                                                                                | 2.6  | 150       |

7

Mauricio Terrones

| #   | Article                                                                                                                                                                                                                                                                                               | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | Magnetic Behavior in Zinc Oxide Zigzag Nanoribbons. Nano Letters, 2008, 8, 1562-1565.                                                                                                                                                                                                                 | 9.1  | 150       |
| 110 | Graphene Shape Control by Multistage Cutting and Transfer. Advanced Materials, 2009, 21, 4487-4491.                                                                                                                                                                                                   | 21.0 | 149       |
| 111 | Wafer-Scale Epitaxial Growth of Unidirectional WS <sub>2</sub> Monolayers on Sapphire. ACS Nano, 2021, 15, 2532-2541.                                                                                                                                                                                 | 14.6 | 149       |
| 112 | Efficient Anchoring of Silver Nanoparticles on N-Doped Carbon Nanotubes. Small, 2006, 2, 346-350.                                                                                                                                                                                                     | 10.0 | 143       |
| 113 | Building Complex Hybrid Carbon Architectures by Covalent Interconnections: Graphene–Nanotube<br>Hybrids and More. ACS Nano, 2014, 8, 4061-4069.                                                                                                                                                       | 14.6 | 140       |
| 114 | Defect Engineering and Surface Functionalization of Nanocarbons for Metalâ€Free Catalysis. Advanced<br>Materials, 2019, 31, e1805717.                                                                                                                                                                 | 21.0 | 139       |
| 115 | Enhanced Electron Field Emission in B-doped Carbon Nanotubes. Nano Letters, 2002, 2, 1191-1195.                                                                                                                                                                                                       | 9.1  | 136       |
| 116 | Single-atom doping of MoS <sub>2</sub> with manganese enables ultrasensitive detection of dopamine: Experimental and computational approach. Science Advances, 2020, 6, eabc4250.                                                                                                                     | 10.3 | 136       |
| 117 | Synthesis, Electronic Structure, and Raman Scattering of Phosphorus-Doped Single-Wall Carbon<br>Nanotubes. Nano Letters, 2009, 9, 2267-2272.                                                                                                                                                          | 9.1  | 134       |
| 118 | Nanotubes: A Revolution in Materials Science and Electronics. Topics in Current Chemistry, 1999, ,<br>189-234.                                                                                                                                                                                        | 4.0  | 133       |
| 119 | Observation of magnetic edge state in graphene nanoribbons. Physical Review B, 2010, 81, .                                                                                                                                                                                                            | 3.2  | 132       |
| 120 | Selective Co-catalysed growth of novel MgO fishbone fractal nanostructures. Chemical Physics<br>Letters, 2001, 347, 337-343.                                                                                                                                                                          | 2.6  | 130       |
| 121 | Angstrom-Size Defect Creation and Ionic Transport through Pores in Single-Layer MoS <sub>2</sub> .<br>Nano Letters, 2018, 18, 1651-1659.                                                                                                                                                              | 9.1  | 129       |
| 122 | Novel nanoscale gas containers: encapsulation of N2 in CNx nanotubes. Chemical Communications, 2000, , 2335-2336.                                                                                                                                                                                     | 4.1  | 128       |
| 123 | Nanotubes unzipped. Nature, 2009, 458, 845-846.                                                                                                                                                                                                                                                       | 27.8 | 128       |
| 124 | Resonance effects on the Raman spectra of graphene superlattices. Physical Review B, 2013, 88, .                                                                                                                                                                                                      | 3.2  | 128       |
| 125 | Nanotube composites: novel SiO2 coated carbon nanotubesElectronic supplementary information (ESI) available: TGA studies, SEM image of an MWNT/SiOx composite after TEM measurement, and mechanical properties. See http://www.rsc.org/suppdata/cc/b1/b109441f/. Chemical Communications, 2002 34-35. | 4.1  | 125       |
| 126 | Tellurium-Assisted Low-Temperature Synthesis of MoS <sub>2</sub> and WS <sub>2</sub> Monolayers.<br>ACS Nano, 2015, 9, 11658-11666.                                                                                                                                                                   | 14.6 | 123       |

| #   | Article                                                                                                                                                                                 | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 127 | Extraordinary toughening enhancement and flexural strength in Si3N4 composites using graphene sheets. Journal of the European Ceramic Society, 2014, 34, 161-169.                       | 5.7  | 122       |
| 128 | Electrochemical Characterization of Liquid Phase Exfoliated Two-Dimensional Layers of Molybdenum<br>Disulfide. ACS Applied Materials & Interfaces, 2014, 6, 2125-2130.                  | 8.0  | 121       |
| 129 | On the electronic structure of WS2 nanotubes. Solid State Communications, 2000, 114, 245-248.                                                                                           | 1.9  | 120       |
| 130 | Boron-Mediated Growth of Long Helicity-Selected Carbon Nanotubes. Physical Review Letters, 1999, 83, 5078-5081.                                                                         | 7.8  | 119       |
| 131 | Carbon doping of WS <sub>2</sub> monolayers: Bandgap reduction and p-type doping transport.<br>Science Advances, 2019, 5, eaav5003.                                                     | 10.3 | 119       |
| 132 | Atypical Exciton–Phonon Interactions in WS <sub>2</sub> and WSe <sub>2</sub> Monolayers Revealed by Resonance Raman Spectroscopy. Nano Letters, 2016, 16, 2363-2368.                    | 9.1  | 118       |
| 133 | Largeâ€Area Siâ€Doped Graphene: Controllable Synthesis and Enhanced Molecular Sensing. Advanced<br>Materials, 2014, 26, 7593-7599.                                                      | 21.0 | 116       |
| 134 | Hysteresis shift in Fe-filled carbon nanotubes due to $\hat{I}^3$ -Fe. Physical Review B, 2002, 65, .                                                                                   | 3.2  | 114       |
| 135 | Chemical Vapor Deposition Synthesis of N-, P-, and Si-Doped Single-Walled Carbon Nanotubes. ACS<br>Nano, 2010, 4, 1696-1702.                                                            | 14.6 | 113       |
| 136 | Aligned CN[sub x] nanotubes by pyrolysis of ferrocene/C[sub 60] under NH[sub 3] atmosphere. Applied<br>Physics Letters, 2000, 77, 1807.                                                 | 3.3  | 112       |
| 137 | Boron-doping effects in carbon nanotubes. Journal of Materials Chemistry, 2000, 10, 1425-1429.                                                                                          | 6.7  | 112       |
| 138 | Extremeâ€Performance Rubber Nanocomposites for Probing and Excavating Deep Oil Resources Using<br>Multiâ€Walled Carbon Nanotubes. Advanced Functional Materials, 2008, 18, 3403-3409.   | 14.9 | 112       |
| 139 | The Rise of Two-Dimensional Materials. Accounts of Chemical Research, 2015, 48, 1-2.                                                                                                    | 15.6 | 111       |
| 140 | Heterojunctions between metals and carbon nanotubes as ultimate nanocontacts. Proceedings of the<br>National Academy of Sciences of the United States of America, 2009, 106, 4591-4595. | 7.1  | 110       |
| 141 | Three-Dimensional Nitrogen-Doped Multiwall Carbon Nanotube Sponges with Tunable Properties.<br>Nano Letters, 2013, 13, 5514-5520.                                                       | 9.1  | 110       |
| 142 | Effects of 45-nm silver nanoparticles on coronary endothelial cells and isolated rat aortic rings.<br>Toxicology Letters, 2009, 191, 305-313.                                           | 0.8  | 109       |
| 143 | Production of WS2Nanotubes. Chemistry of Materials, 2000, 12, 1190-1194.                                                                                                                | 6.7  | 108       |
| 144 | Intrinsic carrier mobility of multi-layered MoS2 field-effect transistors on SiO2. Applied Physics<br>Letters, 2013, 102, 123105.                                                       | 3.3  | 108       |

| #   | Article                                                                                                                                                     | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 145 | 3D Silicon oxide nanostructures: from nanoflowers to radiolaria. Journal of Materials Chemistry, 1998, 8, 1859-1864.                                        | 6.7  | 107       |
| 146 | Hall and field-effect mobilities in few layered p-WSe2 field-effect transistors. Scientific Reports, 2015, 5, 8979.                                         | 3.3  | 107       |
| 147 | Two-dimensional transition metal dichalcogenides: Clusters, ribbons, sheets and more. Nano Today, 2015, 10, 559-592.                                        | 11.9 | 107       |
| 148 | Defect-Controlled Nucleation and Orientation of WSe <sub>2</sub> on hBN: A Route to Single-Crystal Epitaxial Monolayers. ACS Nano, 2019, 13, 3341-3352.     | 14.6 | 107       |
| 149 | SiOx-coating of carbon nanotubes at room temperature. Chemical Physics Letters, 2001, 339, 41-46.                                                           | 2.6  | 106       |
| 150 | In situ processing of electrically conducting graphene/SiC nanocomposites. Journal of the European<br>Ceramic Society, 2013, 33, 1665-1674.                 | 5.7  | 105       |
| 151 | One-dimensional extended lines of divacancy defects in graphene. Nanoscale, 2011, 3, 2868.                                                                  | 5.6  | 104       |
| 152 | Monolayer Vanadiumâ€Doped Tungsten Disulfide: A Roomâ€Temperature Dilute Magnetic Semiconductor.<br>Advanced Science, 2020, 7, 2001174.                     | 11.2 | 104       |
| 153 | Extreme Superheating and Supercooling of Encapsulated Metals in Fullerenelike Shells. Physical<br>Review Letters, 2003, 90, 185502.                         | 7.8  | 103       |
| 154 | Enhanced thermal conductivity of carbon fiber/phenolic resin composites by the introduction of carbon nanotubes. Applied Physics Letters, 2007, 90, 093125. | 3.3  | 103       |
| 155 | Formation and Interlayer Decoupling of Colloidal MoSe <sub>2</sub> Nanoflowers. Chemistry of Materials, 2015, 27, 3167-3175.                                | 6.7  | 103       |
| 156 | Pentagonal rings and nitrogen excess in fullerene-based BN cages and nanotube caps. Chemical Physics<br>Letters, 1999, 299, 359-367.                        | 2.6  | 102       |
| 157 | Phosphorus and phosphorus–nitrogen doped carbon nanotubes for ultrasensitive and selective molecular detection. Nanoscale, 2011, 3, 1008-1013.              | 5.6  | 102       |
| 158 | Monolayer WS <sub>2</sub> Nanopores for DNA Translocation with Light-Adjustable Sizes. ACS Nano, 2017, 11, 1937-1945.                                       | 14.6 | 102       |
| 159 | Preparation of aligned carbon nanotubes catalysed by laser-etched cobalt thin films. Chemical Physics<br>Letters, 1998, 285, 299-305.                       | 2.6  | 101       |
| 160 | Fabrication of High-Purity, Double-Walled Carbon Nanotube Buckypaper. Chemical Vapor Deposition, 2006, 12, 327-330.                                         | 1.3  | 101       |
| 161 | High-performance multi-functional reverse osmosis membranes obtained by carbon nanotube·polyamide nanocomposite. Scientific Reports, 2015, 5, 13562.        | 3.3  | 101       |
| 162 | Metal to Insulator Quantum-Phase Transition in Few-Layered ReS <sub>2</sub> . Nano Letters, 2015, 15, 8377-8384.                                            | 9.1  | 101       |

| #   | Article                                                                                                                                                                                                                  | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 163 | Sharpening the Chemical Scissors to Unzip Carbon Nanotubes: Crystalline Graphene Nanoribbons. ACS<br>Nano, 2010, 4, 1775-1781.                                                                                           | 14.6 | 100       |
| 164 | Universal <i>In Situ</i> Substitutional Doping of Transition Metal Dichalcogenides by Liquid-Phase<br>Precursor-Assisted Synthesis. ACS Nano, 2020, 14, 4326-4335.                                                       | 14.6 | 100       |
| 165 | Synthesis of macroporous poly(acrylic acid)–carbon nanotube composites by frontal polymerization in deep-eutectic solvents. Journal of Materials Chemistry A, 2013, 1, 3970.                                             | 10.3 | 97        |
| 166 | Covalent three-dimensional networks of graphene and carbon nanotubes: synthesis and environmental applications. Nano Today, 2017, 12, 116-135.                                                                           | 11.9 | 97        |
| 167 | Novel NbS2 metallic nanotubes. Solid State Communications, 2000, 115, 635-638.                                                                                                                                           | 1.9  | 95        |
| 168 | Distinct photoluminescence and Raman spectroscopy signatures for identifying highly crystalline<br>WS <sub>2</sub> monolayers produced by different growth methods. Journal of Materials Research,<br>2016, 31, 931-944. | 2.6  | 95        |
| 169 | Magnetism in Fe-based and carbon nanostructures: Theory and applications. Solid State Sciences, 2006, 8, 303-320.                                                                                                        | 3.2  | 94        |
| 170 | Growth and Tunable Surface Wettability of Vertical MoS <sub>2</sub> Layers for Improved Hydrogen<br>Evolution Reactions. ACS Applied Materials & Interfaces, 2016, 8, 22190-22195.                                       | 8.0  | 94        |
| 171 | Cutting Single-Walled Carbon Nanotubes with an Electron Beam: Evidence for Atom Migration Inside<br>Nanotubes. Small, 2005, 1, 953-956.                                                                                  | 10.0 | 93        |
| 172 | Facile synthesis of MoS2 and MoxW1-xS2 triangular monolayers. APL Materials, 2014, 2, .                                                                                                                                  | 5.1  | 93        |
| 173 | A Simple Route to Silicon-Based Nanostructures. Advanced Materials, 1999, 11, 844-847.                                                                                                                                   | 21.0 | 91        |
| 174 | Comparison study of semi-crystalline and highly crystalline multiwalled carbon nanotubes. Applied<br>Physics Letters, 2001, 79, 1531-1533.                                                                               | 3.3  | 91        |
| 175 | Efficient anchorage of Pt clusters on N-doped carbon nanotubes and their catalytic activity. Chemical<br>Physics Letters, 2008, 463, 124-129.                                                                            | 2.6  | 91        |
| 176 | Importance of open, heteroatom-decorated edges in chemically doped-graphene for supercapacitor applications. Journal of Materials Chemistry A, 2014, 2, 9532-9540.                                                       | 10.3 | 91        |
| 177 | Heteroatom doping of two-dimensional materials: From graphene to chalcogenides. Nano Today, 2020,<br>30, 100829.                                                                                                         | 11.9 | 91        |
| 178 | Structure, transport and field-emission properties of compound nanotubes: CN x vs. BNC x ( x <0.1).<br>Applied Physics A: Materials Science and Processing, 2003, 76, 499-507.                                           | 2.3  | 89        |
| 179 | Direct observation of the structure of gold nanoparticles by total scattering powder neutron diffraction. Chemical Physics Letters, 2004, 393, 385-388.                                                                  | 2.6  | 89        |
| 180 | Electrically functional 3D-architectured graphene/SiC composites. Carbon, 2016, 100, 318-328.                                                                                                                            | 10.3 | 89        |

| #   | Article                                                                                                                                                                                  | IF                | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------|
| 181 | Experimental and Theoretical Studies Suggesting the Possibility of Metallic Boron Nitride Edges in<br>Porous Nanourchins. Nano Letters, 2008, 8, 1026-1032.                              | 9.1               | 88        |
| 182 | Reversible Intercalation of Hexagonal Boron Nitride with BrÃ,nsted Acids. Journal of the American<br>Chemical Society, 2013, 135, 8372-8381.                                             | 13.7              | 88        |
| 183 | Second Harmonic Generation in WSe <sub>2</sub> . 2D Materials, 2015, 2, 045015.                                                                                                          | 4.4               | 88        |
| 184 | Tunable Fano Resonance and Plasmon–Exciton Coupling in Single Au Nanotriangles on Monolayer<br>WS <sub>2</sub> at Room Temperature. Advanced Materials, 2018, 30, e1705779.              | 21.0              | 88        |
| 185 | The transformation of polyhedral particles into graphitic onions. Journal of Physics and Chemistry of Solids, 1997, 58, 1789-1796.                                                       | 4.0               | 86        |
| 186 | Graphene Sandwiched Mesostructured Liâ€lon Battery Electrodes. Advanced Materials, 2016, 28,<br>7696-7702.                                                                               | 21.0              | 86        |
| 187 | Resonance Raman study of linear carbon chains formed by the heat treatment of double-wall carbon nanotubes. Physical Review B, 2006, 73, .                                               | 3.2               | 85        |
| 188 | Large Area Films of Alternating Graphene–Carbon Nanotube Layers Processed in Water. ACS Nano,<br>2013, 7, 10788-10798.                                                                   | 14.6              | 85        |
| 189 | Activation routes for high surface area graphene monoliths from graphene oxide colloids. Carbon, 2014, 76, 220-231.                                                                      | 10.3              | 85        |
| 190 | Doping two-dimensional materials: ultra-sensitive sensors, band gap tuning and ferromagnetic monolayers. Nanoscale Horizons, 2017, 2, 72-80.                                             | 8.0               | 85        |
| 191 | Alloy nanowires: Invar inside carbon nanotubes. Chemical Communications, 2001, , 471-472.                                                                                                | 4.1               | 84        |
| 192 | Lowâ€Temperature Solution Synthesis of Few‣ayer 1T ′â€MoTe <sub>2</sub> Nanostructures Exhibitin<br>Lattice Compression. Angewandte Chemie - International Edition, 2016, 55, 2830-2834. | g <sub>13.8</sub> | 84        |
| 193 | Generation of hollow crystalline tungsten oxide fibres. Applied Physics A: Materials Science and Processing, 2000, 70, 231-233.                                                          | 2.3               | 83        |
| 194 | An Alternative Route to Molybdenum Disulfide Nanotubes. Journal of the American Chemical Society, 2000, 122, 10155-10158.                                                                | 13.7              | 83        |
| 195 | Pore structure and oxidation stability of double-walled carbon nanotube-derived bucky paper.<br>Chemical Physics Letters, 2005, 414, 444-448.                                            | 2.6               | 83        |
| 196 | Effects of Uniaxial and Biaxial Strain on Few-Layered Terrace Structures of MoS <sub>2</sub> Grown<br>by Vapor Transport. ACS Nano, 2016, 10, 3186-3197.                                 | 14.6              | 83        |
| 197 | Raman Spectroscopy Study of Isolated Double-Walled Carbon Nanotubes with Different Metallic and Semiconducting Configurations. Nano Letters, 2008, 8, 3879-3886.                         | 9.1               | 82        |
| 198 | Ultrasensitive Pressure Detection of Few‣ayer MoS <sub>2</sub> . Advanced Materials, 2017, 29,<br>1603266.                                                                               | 21.0              | 82        |

| #   | Article                                                                                                                                                                         | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 199 | Tunable Resonance Coupling in Single Si Nanoparticle–Monolayer WS <sub>2</sub> Structures. ACS<br>Applied Materials & Interfaces, 2018, 10, 16690-16697.                        | 8.0  | 82        |
| 200 | Nanocarbons from rice husk by microwave plasma irradiation: From graphene and carbon nanotubes<br>to graphenated carbon nanotube hybrids. Carbon, 2015, 94, 479-484.            | 10.3 | 81        |
| 201 | Synthesis of conducting graphene/Si3N4 composites by spark plasma sintering. Carbon, 2013, 57, 425-432.                                                                         | 10.3 | 80        |
| 202 | Formation of Nitrogen-Doped Graphene Nanoribbons <i>via</i> Chemical Unzipping. ACS Nano, 2013, 7, 2192-2204.                                                                   | 14.6 | 80        |
| 203 | A carbon science perspective in 2018: Current achievements and future challenges. Carbon, 2018, 132, 785-801.                                                                   | 10.3 | 80        |
| 204 | Electrical Transport and Field-Effect Transistors Using Inkjet-Printed SWCNT Films Having Different<br>Functional Side Groups. ACS Nano, 2010, 4, 3318-3324.                    | 14.6 | 79        |
| 205 | Stable Sulfurâ€Intercalated 1T′ MoS <sub>2</sub> on Graphitic Nanoribbons as Hydrogen Evolution<br>Electrocatalyst. Advanced Functional Materials, 2018, 28, 1802744.           | 14.9 | 79        |
| 206 | Zipper Mechanism of Nanotube Fusion: Theory and Experiment. Physical Review Letters, 2004, 92, 075504.                                                                          | 7.8  | 78        |
| 207 | Ultra-light carbon nanotube sponge as an efficient electromagnetic shielding material in the GHz<br>range. Physica Status Solidi - Rapid Research Letters, 2014, 8, 698-704.    | 2.4  | 78        |
| 208 | Nonlinear Behavior in the Thermopower of Doped Carbon Nanotubes Due to Strong, Localized States.<br>Nano Letters, 2003, 3, 839-842.                                             | 9.1  | 77        |
| 209 | Nanotube Coalescence-Inducing Mode: A Novel Vibrational Mode in Carbon Systems. Small, 2006, 2, 1031-1036.                                                                      | 10.0 | 77        |
| 210 | Carbon science perspective in 2020: Current research and future challenges. Carbon, 2020, 161, 373-391.                                                                         | 10.3 | 77        |
| 211 | Advances in the Creation of Filled Nanotubes and Novel Nanowires. MRS Bulletin, 1999, 24, 43-49.                                                                                | 3.5  | 76        |
| 212 | An Atomistic Branching Mechanism for Carbon Nanotubes: Sulfur as the Triggering Agent.<br>Angewandte Chemie - International Edition, 2008, 47, 2948-2953.                       | 13.8 | 76        |
| 213 | Mechanical behavior of polystyrene grafted carbon nanotubes/polystyrene nanocomposites.<br>Composites Science and Technology, 2008, 68, 3265-3271.                              | 7.8  | 76        |
| 214 | Coalescence of Double-Walled Carbon Nanotubes:  Formation of Novel Carbon Bicables. Nano Letters,<br>2004, 4, 1451-1454.                                                        | 9.1  | 75        |
| 215 | Development of highly microporous activated carbon from the alcoholic beverage industry organic by-products. Biomass and Bioenergy, 2011, 35, 103-112.                          | 5.7  | 74        |
| 216 | Zone-center phonons of bulk, few-layer, and monolayer1Tâ^'TaS2: Detection of commensurate charge<br>density wave phase through Raman scattering. Physical Review B, 2016, 93, . | 3.2  | 74        |

| #   | Article                                                                                                                                                                                                  | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 217 | In Situ Raman Study on Single- and Double-Walled Carbon Nanotubes as a Function of Lithium<br>Insertion. Small, 2006, 2, 667-676.                                                                        | 10.0 | 73        |
| 218 | Flexible ZnO–Cellulose Nanocomposite for Multisource Energy Conversion. Small, 2011, 7, 2173-2178.                                                                                                       | 10.0 | 73        |
| 219 | Tunable and label-free virus enrichment for ultrasensitive virus detection using carbon nanotube<br>arrays. Science Advances, 2016, 2, e1601026.                                                         | 10.3 | 73        |
| 220 | pKa determination of graphene-like materials: Validating chemical functionalization. Journal of<br>Colloid and Interface Science, 2016, 467, 239-244.                                                    | 9.4  | 73        |
| 221 | Nobleâ€Metalâ€Free Hybrid Membranes for Highly Efficient Hydrogen Evolution. Advanced Materials, 2017,<br>29, 1603617.                                                                                   | 21.0 | 73        |
| 222 | Interface-mediated noble metal deposition on transition metal dichalcogenide nanostructures. Nature Chemistry, 2020, 12, 284-293.                                                                        | 13.6 | 73        |
| 223 | SiC–SiOx heterojunctions in nanowires. Journal of Materials Chemistry, 1999, 9, 3173-3178.                                                                                                               | 6.7  | 72        |
| 224 | Efficient encapsulation of gaseous nitrogen inside carbon nanotubes with bamboo-like structure using aerosol thermolysis. Chemical Physics Letters, 2004, 396, 167-173.                                  | 2.6  | 72        |
| 225 | MoS <sub>2</sub> monolayers on nanocavities: enhancement in light–matter interaction. 2D<br>Materials, 2016, 3, 025017.                                                                                  | 4.4  | 72        |
| 226 | Defect Dynamics in 2-D MoS <sub>2</sub> Probed by Using Machine Learning, Atomistic Simulations, and High-Resolution Microscopy. ACS Nano, 2018, 12, 8006-8016.                                          | 14.6 | 72        |
| 227 | Atomic Nanotube Welders:  Boron Interstitials Triggering Connections in Double-Walled Carbon<br>Nanotubes. Nano Letters, 2005, 5, 1099-1105.                                                             | 9.1  | 72        |
| 228 | NanoTeflons:  Structure and EELS Characterization of Fluorinated Carbon Nanotubes and Nanofibers.<br>Nano Letters, 2002, 2, 491-496.                                                                     | 9.1  | 71        |
| 229 | Quantum Transport in Graphene Nanonetworks. Nano Letters, 2011, 11, 3058-3064.                                                                                                                           | 9.1  | 71        |
| 230 | Hydroxyl-Functionalized and N-Doped Multiwalled Carbon Nanotubes Decorated with Silver Nanoparticles Preserve Cellular Function. ACS Nano, 2011, 5, 2458-2466.                                           | 14.6 | 71        |
| 231 | METAL ATOMS IN CARBON NANOTUBES AND RELATED NANOPARTICLES. International Journal of Modern Physics B, 2001, 15, 4037-4069.                                                                               | 2.0  | 70        |
| 232 | A theoretical and experimental study on manipulating the structure and properties of carbon<br>nanotubes using substitutional dopants. International Journal of Quantum Chemistry, 2009, 109,<br>97-118. | 2.0  | 70        |
| 233 | Discovery of Wall-Selective Carbon Nanotube Growth Conditions <i>via</i> Automated Experimentation. ACS Nano, 2014, 8, 10214-10222.                                                                      | 14.6 | 70        |
| 234 | Beyond C60: graphite structures for the future. Chemical Society Reviews, 1995, 24, 341.                                                                                                                 | 38.1 | 69        |

| #   | Article                                                                                                                                                                                                  | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 235 | Fabrication of Transparent, Tough, and Conductive Shapeâ€Memory Polyurethane Films by Incorporating<br>a Small Amount of Highâ€Quality Graphene. Macromolecular Rapid Communications, 2012, 33, 628-634. | 3.9  | 69        |
| 236 | Banning carbon nanotubes would be scientifically unjustified and damaging to innovation. Nature Nanotechnology, 2020, 15, 164-166.                                                                       | 31.5 | 69        |
| 237 | Low-Temperature Solution Synthesis of Transition Metal Dichalcogenide Alloys with Tunable Optical Properties. Journal of the American Chemical Society, 2017, 139, 11096-11105.                          | 13.7 | 68        |
| 238 | Tunable Ferromagnetism and Thermally Induced Spin Flip in Vanadiumâ€Doped Tungsten Diselenide<br>Monolayers at Room Temperature. Advanced Materials, 2020, 32, e2003607.                                 | 21.0 | 68        |
| 239 | Collapsing carbon nanotubes and diamond formation under shock waves. Chemical Physics Letters, 1998, 287, 689-693.                                                                                       | 2.6  | 67        |
| 240 | Thermolysis of C 60 thin films yields Ni-filled tapered nanotubes. Applied Physics A: Materials Science and Processing, 1998, 67, 595-598.                                                               | 2.3  | 67        |
| 241 | Stable BC2N nanostructures: low-temperature production of segregated C/BN layered materials.<br>Chemical Physics Letters, 1999, 310, 459-465.                                                            | 2.6  | 67        |
| 242 | Morphology, structure and growth of WS2 nanotubes. Journal of Materials Chemistry, 2000, 10, 2570-2577.                                                                                                  | 6.7  | 67        |
| 243 | Metastable One-Dimensional AgCl1-xIxSolid-Solution Wurzite "Tunnel―Crystals Formed within<br>Single-Walled Carbon Nanotubes. Journal of the American Chemical Society, 2002, 124, 2116-2117.             | 13.7 | 67        |
| 244 | Controlling Nitrogen Doping in Graphene with Atomic Precision: Synthesis and Characterization.<br>Nanomaterials, 2019, 9, 425.                                                                           | 4.1  | 67        |
| 245 | Controlling the dimensions, reactivity and crystallinity of multiwalled carbon nanotubes using low ethanol concentrations. Chemical Physics Letters, 2008, 453, 55-61.                                   | 2.6  | 66        |
| 246 | Intricate Resonant Raman Response in Anisotropic ReS <sub>2</sub> . Nano Letters, 2017, 17, 5897-5907.                                                                                                   | 9.1  | 66        |
| 247 | Metallic behaviour of boron-containing carbon nanotubes. Chemical Physics Letters, 2000, 323, 572-579.                                                                                                   | 2.6  | 65        |
| 248 | How to Identify Haeckelite Structures: A Theoretical Study of Their Electronic and Vibrational<br>Properties. Nano Letters, 2004, 4, 805-810.                                                            | 9.1  | 64        |
| 249 | Selective Optical Property Modification of Double-Walled Carbon Nanotubes by Fluorination. ACS Nano, 2008, 2, 485-488.                                                                                   | 14.6 | 64        |
| 250 | Hydrogen storage in spherical nanoporous carbons. Chemical Physics Letters, 2005, 403, 363-366.                                                                                                          | 2.6  | 63        |
| 251 | Guiding Electrical Current in Nanotube Circuits Using Structural Defects: A Step Forward in Nanoelectronics. ACS Nano, 2008, 2, 2585-2591.                                                               | 14.6 | 63        |
| 252 | A novel route to aligned nanotubes and nanofibres using laser-patterned catalytic substrates. Applied<br>Physics A: Materials Science and Processing, 2000, 70, 175-183.                                 | 2.3  | 62        |

| #   | Article                                                                                                                                                                                          | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 253 | Production and Characterization of Coaxial Nanotube Junctions and Networks of CN <sub>x</sub> /CNT. Nano Letters, 2007, 7, 2220-2226.                                                            | 9.1  | 62        |
| 254 | Marked Adsorption Irreversibility of Graphitic Nanoribbons for CO <sub>2</sub> and H <sub>2</sub> O.<br>Journal of the American Chemical Society, 2011, 133, 14880-14883.                        | 13.7 | 62        |
| 255 | Synthesis and Isolation of Molybdenum Atomic Wires. Nano Letters, 2008, 8, 237-240.                                                                                                              | 9.1  | 61        |
| 256 | Simultaneous adsorption of Cd2+ and phenol on modified N-doped carbon nanotubes: Experimental and DFT studies. Journal of Colloid and Interface Science, 2009, 334, 124-131.                     | 9.4  | 61        |
| 257 | Mössbauer Study of Iron-Containing Carbon Nanotubes. Hyperfine Interactions, 2002, 139/140, 535-542.                                                                                             | 0.5  | 60        |
| 258 | Spin Polarized Conductance in Hybrid Graphene Nanoribbons Using 5â^'7 Defects. ACS Nano, 2009, 3,<br>3606-3612.                                                                                  | 14.6 | 60        |
| 259 | Enhanced electrical conductivities of N-doped carbon nanotubes by controlled heat treatment.<br>Nanoscale, 2011, 3, 4359.                                                                        | 5.6  | 60        |
| 260 | Doped Carbon Nanotubes: Synthesis, Characterization and Applications. Topics in Applied Physics, 2007, , 531-566.                                                                                | 0.8  | 59        |
| 261 | Viability Studies of Pure Carbon―and Nitrogenâ€Doped Nanotubes with <i>Entamoeba histolytica</i> :<br>From Amoebicidal to Biocompatible Structures. Small, 2007, 3, 1723-1729.                   | 10.0 | 59        |
| 262 | Controlling high coercivities of ferromagnetic nanowires encapsulated in carbon nanotubes. Journal of Materials Chemistry, 2010, 20, 5906.                                                       | 6.7  | 59        |
| 263 | Towards the understanding of the graphene oxide structure: How to control the formation of humic- and fulvic-like oxidized debris. Carbon, 2015, 84, 299-309.                                    | 10.3 | 59        |
| 264 | Nitrogen-doped porous carbon monoliths from polyacrylonitrile (PAN) and carbon nanotubes as electrodes for supercapacitors. Scientific Reports, 2017, 7, 40259.                                  | 3.3  | 59        |
| 265 | Photoluminescence Segmentation within Individual Hexagonal Monolayer Tungsten Disulfide Domains<br>Grown by Chemical Vapor Deposition. ACS Applied Materials & Interfaces, 2017, 9, 15005-15014. | 8.0  | 59        |
| 266 | Ultralight Flexible Electrodes of Nitrogenâ€Doped Carbon Macrotube Sponges for Highâ€Performance<br>Supercapacitors. Small, 2021, 17, e2004827.                                                  | 10.0 | 59        |
| 267 | Robust, Conducting, and Transparent Polymer Composites Using Surfaceâ€Modified and Individualized<br>Doubleâ€Walled Carbon Nanotubes. Advanced Materials, 2008, 20, 4509-4512.                   | 21.0 | 58        |
| 268 | Molecular Dynamics Study of Carbon Nanotubes/Polyamide Reverse Osmosis Membranes:<br>Polymerization, Structure, and Hydration. ACS Applied Materials & Interfaces, 2015, 7, 24566-24575.         | 8.0  | 58        |
| 269 | Considerations for Utilizing Sodium Chloride in Epitaxial Molybdenum Disulfide. ACS Applied<br>Materials & Interfaces, 2018, 10, 40831-40837.                                                    | 8.0  | 58        |
| 270 | Nanotube brushes: polystyrene grafted covalently on CNx nanotubes by nitroxide-mediated radical polymerization. Chemical Communications, 2005, , 5349.                                           | 4.1  | 57        |

| #   | Article                                                                                                                                                                                   | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 271 | Ultrafast Intrinsic Photoresponse and Direct Evidence of Sub-gap States in Liquid Phase Exfoliated<br>MoS2Thin Films. Scientific Reports, 2015, 5, 11272.                                 | 3.3  | 57        |
| 272 | Production and State-of-the-Art Characterization of Aligned Nanotubes with Homogeneous BCxN<br>(1 â‰ <b>â</b> €‰x â‰ <b>â</b> €‰5) Compositions. Advanced Materials, 2003, 15, 1899-1903. | 21.0 | 56        |
| 273 | Controlling Edge Morphology in Graphene Layers Using Electron Irradiation: From Sharp Atomic<br>Edges to Coalesced Layers Forming Loops. Physical Review Letters, 2010, 105, 045501.      | 7.8  | 56        |
| 274 | Carbon-Based Nanomaterials From a Historical Perspective. Proceedings of the IEEE, 2013, 101, 1522-1535.                                                                                  | 21.3 | 56        |
| 275 | Spontaneous chemical functionalization via coordination of Au single atoms on monolayer MoS<br><sub>2</sub> . Science Advances, 2020, 6, .                                                | 10.3 | 56        |
| 276 | The Role Of Defects In Graphitic Structures. Fullerenes, Nanotubes, and Carbon Nanostructures, 1996,<br>4, 517-533.                                                                       | 0.6  | 55        |
| 277 | Nanostructured carbon materials for enhanced nitrobenzene adsorption: Physical vs. chemical surface properties. Carbon, 2018, 139, 833-844.                                               | 10.3 | 55        |
| 278 | Clean Nanotube Unzipping by Abrupt Thermal Expansion of Molecular Nitrogen: Graphene Nanoribbons<br>with Atomically Smooth Edges. ACS Nano, 2012, 6, 2261-2272.                           | 14.6 | 54        |
| 279 | Electrochemical production of low-melting metal nanowires. Chemical Physics Letters, 1999, 301, 159-166.                                                                                  | 2.6  | 53        |
| 280 | Structure, Chirality, and Formation of Giant Icosahedral Fullerenes and Spherical Graphitic Onions.<br>Structural Chemistry, 2002, 13, 373-384.                                           | 2.0  | 53        |
| 281 | Efficient coating of N-doped carbon nanotubes with polystyrene using atomic transfer radical polymerization. Chemical Physics Letters, 2006, 419, 567-573.                                | 2.6  | 53        |
| 282 | Metallic edges in zinc oxide nanoribbons. Chemical Physics Letters, 2007, 448, 258-263.                                                                                                   | 2.6  | 53        |
| 283 | Ordered and Atomically Perfect Fragmentation of Layered Transition Metal Dichalcogenides <i>via</i> Mechanical Instabilities. ACS Nano, 2017, 11, 9191-9199.                              | 14.6 | 53        |
| 284 | Structural and electrochemical properties of babassu coconut mesocarp-generated activated carbon and few-layer graphene. Carbon, 2019, 145, 175-186.                                      | 10.3 | 52        |
| 285 | The Role of Sulfur in the Synthesis of Novel Carbon Morphologies: From Covalent Yâ€Junctions to<br>Seaâ€Urchinâ€Like Structures. Advanced Functional Materials, 2009, 19, 1193-1199.      | 14.9 | 51        |
| 286 | Transfer of monolayer TMD WS2 and Raman study of substrate effects. Scientific Reports, 2017, 7,<br>43037.                                                                                | 3.3  | 51        |
| 287 | Electrochemical formation of novel nanowires and their dynamic effects. Chemical Physics Letters, 1998, 284, 177-183.                                                                     | 2.6  | 50        |
| 288 | Millimeter-Long Carbon Nanotubes: Outstanding Electron-Emitting Sources. ACS Nano, 2011, 5, 5072-5077.                                                                                    | 14.6 | 50        |

| #   | Article                                                                                                                                                                                                                | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 289 | The Formation of ReS2 Inorganic Fullerene-like Structures Containing Re4 Parallelogram Units and<br>Metalâ^'Metal Bonds. Journal of the American Chemical Society, 2002, 124, 11580-11581.                             | 13.7 | 49        |
| 290 | Hybrid Films with Graphene Oxide and Metal Nanoparticles Could Now Replace Indium Tin Oxide. ACS<br>Nano, 2012, 6, 4565-4572.                                                                                          | 14.6 | 49        |
| 291 | Enhanced Nonlinear Transmittance by Complementary Nonlinear Mechanisms: A Reverse-Saturable<br>Absorbing Dye Blended with Nonlinear-Scattering Carbon Nanotubes. Advanced Materials, 2005, 17,<br>1239-1243.           | 21.0 | 48        |
| 292 | Spontaneous Formation of Atomically Thin Stripes in Transition Metal Dichalcogenide Monolayers.<br>Nano Letters, 2016, 16, 6982-6987.                                                                                  | 9.1  | 48        |
| 293 | Nb-doped WS2 nanotubes. Chemical Physics Letters, 2001, 342, 15-21.                                                                                                                                                    | 2.6  | 47        |
| 294 | Super-Robust, Lightweight, Conducting Carbon Nanotube Blocks Cross-Linked by De-fluorination. ACS<br>Nano, 2008, 2, 348-356.                                                                                           | 14.6 | 46        |
| 295 | Third order nonlinear optical response exhibited by mono- and few-layers of WS 2. 2D Materials, 2016, 3, 021005.                                                                                                       | 4.4  | 46        |
| 296 | Nitrogen-doped porous carbon monoliths from molecular-level dispersion of carbon nanotubes into<br>polyacrylonitrile (PAN) and the effect of carbonization process for supercapacitors. Carbon, 2019, 143,<br>776-785. | 10.3 | 46        |
| 297 | Strain Modulated Superlattices in Graphene. Nano Letters, 2020, 20, 3113-3121.                                                                                                                                         | 9.1  | 46        |
| 298 | Nanoscale Encapsulation of Molybdenum Carbide in Carbon Clusters. Chemistry of Materials, 1996, 8,<br>6-8.                                                                                                             | 6.7  | 45        |
| 299 | Electrolytic Formation of Carbon-Sheathed Mixed Snâ^'Pb Nanowires. Chemistry of Materials, 1999, 11, 1747-1751.                                                                                                        | 6.7  | 45        |
| 300 | Electron emission from individual nitrogen-doped multi-walled carbon nanotubes. Chemical Physics<br>Letters, 2004, 396, 126-130.                                                                                       | 2.6  | 45        |
| 301 | Controlled Fragmentation of Single-Atom-Thick Polycrystalline Graphene. Matter, 2020, 2, 666-679.                                                                                                                      | 10.0 | 45        |
| 302 | Mixed-Phase WxMoyCzS2Nanotubes. Chemistry of Materials, 2000, 12, 3541-3546.                                                                                                                                           | 6.7  | 44        |
| 303 | The carbon nanocosmos: novel materials for the twenty-first century. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2003, 361, 2789-2806.                                      | 3.4  | 44        |
| 304 | Differential Response of Doped/Defective Graphene and Dopamine to Electric Fields: A Density<br>Functional Theory Study. Journal of Physical Chemistry C, 2015, 119, 13972-13978.                                      | 3.1  | 44        |
| 305 | Polymer-coated graphene films as anti-reflective transparent electrodes for Schottky junction solar cells. Journal of Materials Chemistry A, 2016, 4, 13795-13802.                                                     | 10.3 | 44        |
| 306 | Secure Electronics Enabled by Atomically Thin and Photosensitive Two-Dimensional Memtransistors.<br>ACS Nano, 2021, 15, 19815-19827.                                                                                   | 14.6 | 44        |

| #   | Article                                                                                                                                                                                                         | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 307 | Selective Tuning of the Electronic Properties of Coaxial Nanocables through Exohedral Doping. Nano<br>Letters, 2007, 7, 2383-2388.                                                                              | 9.1  | 43        |
| 308 | Simple Synthesis of Multiwalled Carbon Nanotubes from Natural Resources. ChemSusChem, 2008, 1, 820-822.                                                                                                         | 6.8  | 43        |
| 309 | Properties of One-Dimensional Molybdenum Nanowires in a Confined Environment. Nano Letters, 2009,<br>9, 1487-1492.                                                                                              | 9.1  | 43        |
| 310 | Peroxyformic Acid Pulping of Eucalyptus Grandis Wood Chips and Sugar Cane Bagasse in one Stage<br>and Characterization of the Isolated Lignins. Journal of Wood Chemistry and Technology, 1998, 18,<br>333-365. | 1.7  | 42        |
| 311 | Synthesis and state of art characterization of BN bamboo-like nanotubes: Evidence of a root growth mechanism catalyzed by Fe. Chemical Physics Letters, 2005, 416, 342-348.                                     | 2.6  | 42        |
| 312 | Mechanical properties of hypothetical graphene foams: Giant Schwarzites. Carbon, 2016, 96, 1191-1199.                                                                                                           | 10.3 | 42        |
| 313 | Defect Coupling and Sub-Angstrom Structural Distortions in<br>W <sub>1–<i>x</i></sub> Mo <sub><i>x</i></sub> S <sub>2</sub> Monolayers. Nano Letters, 2017, 17,<br>2802-2808.                                   | 9.1  | 42        |
| 314 | Graphene oxide films, fibers, and membranes. Nanotechnology Reviews, 2016, 5, .                                                                                                                                 | 5.8  | 41        |
| 315 | High electrical conductivity of double-walled carbon nanotube fibers by hydrogen peroxide<br>treatments. Journal of Materials Chemistry A, 2016, 4, 74-82.                                                      | 10.3 | 41        |
| 316 | Robust water desalination membranes against degradation using high loads of carbon nanotubes.<br>Scientific Reports, 2018, 8, 2748.                                                                             | 3.3  | 41        |
| 317 | Scalable BEOL compatible 2D tungsten diselenide. 2D Materials, 2020, 7, 015029.                                                                                                                                 | 4.4  | 41        |
| 318 | Decorating carbon nanotubes with nanostructured nickel particles via chemical methods. Chemical Physics Letters, 2006, 431, 104-109.                                                                            | 2.6  | 40        |
| 319 | Design of graphene electronic devices using nanoribbons of different widths. Applied Physics Letters, 2009, 95, .                                                                                               | 3.3  | 40        |
| 320 | Bilayers of transition metal dichalcogenides: Different stackings and heterostructures. Journal of<br>Materials Research, 2014, 29, 373-382.                                                                    | 2.6  | 40        |
| 321 | Dynamics of cleaning, passivating and doping monolayer MoS <sub>2</sub> by controlled laser irradiation. 2D Materials, 2019, 6, 045031.                                                                         | 4.4  | 40        |
| 322 | Electrochemically Exfoliated Graphene Electrode for High-Performance Rechargeable<br>Chloroaluminate and Dual-Ion Batteries. ACS Applied Materials & Interfaces, 2019, 11, 23261-23270.                         | 8.0  | 40        |
| 323 | Broadband, Ultra-High-Responsive Monolayer MoS <sub>2</sub> /SnS <sub>2</sub> Quantum-Dot-Based<br>Mixed-Dimensional Photodetector. ACS Applied Materials & Interfaces, 2022, 14, 15415-15425.                  | 8.0  | 40        |
| 324 | Excitonic Effects in Tungsten Disulfide Monolayers on Two-Layer Graphene. ACS Nano, 2016, 10,<br>7840-7846.                                                                                                     | 14.6 | 39        |

| #   | Article                                                                                                                                                                                                                                               | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 325 | "Structural instability―induced high-performance NiFe layered double hydroxides as oxygen<br>evolution reaction catalysts for pH-near-neutral borate electrolyte: The role of intercalates. Applied<br>Catalysis B: Environmental, 2020, 263, 118343. | 20.2 | 39        |
| 326 | Quantitative density-functional study of nested fullerenes. Physical Review B, 1998, 57, 13339-13342.                                                                                                                                                 | 3.2  | 38        |
| 327 | Bright Photoluminescence from the Inner Tubes of "Peapodâ€â€Derived Doubleâ€Walled Carbon Nanotubes.<br>Small, 2009, 5, 2678-2682.                                                                                                                    | 10.0 | 38        |
| 328 | Catalytic Twistâ€Spun Yarns of Nitrogenâ€Doped Carbon Nanotubes. Advanced Functional Materials, 2012,<br>22, 1069-1075.                                                                                                                               | 14.9 | 38        |
| 329 | Efficient photovoltaic conversion of graphene–carbon nanotube hybrid films grown from solid<br>precursors. 2D Materials, 2015, 2, 034003.                                                                                                             | 4.4  | 38        |
| 330 | Deep-Eutectic Solvents as MWCNT Delivery Vehicles in the Synthesis of Functional Poly(HIPE)<br>Nanocomposites for Applications as Selective Sorbents. ACS Applied Materials & Interfaces, 2016, 8,<br>31295-31303.                                    | 8.0  | 38        |
| 331 | Composites of Proteins and 2D Nanomaterials. Advanced Functional Materials, 2018, 28, 1704990.                                                                                                                                                        | 14.9 | 38        |
| 332 | New Insights in the Natural Organic Matter Fouling Mechanism of Polyamide and Nanocomposite<br>Multiwalled Carbon Nanotubes-Polyamide Membranes. Environmental Science & Technology, 2019,<br>53, 6255-6263.                                          | 10.0 | 38        |
| 333 | Carbon Nanotubes as Nanoreactors for Boriding Iron Nanowires. Advanced Materials, 2000, 12, 1356-1359.                                                                                                                                                | 21.0 | 37        |
| 334 | Nonlinear optical absorption and reflection of single wall carbon nanotube thin films by Z-scan technique. Applied Physics Letters, 2008, 92, .                                                                                                       | 3.3  | 37        |
| 335 | Acid modified bambooâ€type carbon nanotubes and cupâ€stackedâ€type carbon nanofibres as adsorbent<br>materials: cadmium removal from aqueous solution. Journal of Chemical Technology and<br>Biotechnology, 2009, 84, 519-524.                        | 3.2  | 37        |
| 336 | Effect of boron doping on the electrical conductivity of metallicity-separated single walled carbon nanotubes. Nanoscale, 2018, 10, 12723-12733.                                                                                                      | 5.6  | 37        |
| 337 | Quantification and Healing of Defects in Atomically Thin Molybdenum Disulfide: Beyond the Controlled Creation of Atomic Defects. ACS Nano, 2021, 15, 9658-9669.                                                                                       | 14.6 | 37        |
| 338 | Quasiperiodic icosahedral graphite sheets and high-genus fullereneswith nonpositive Gaussian<br>curvature. Physical Review B, 1997, 55, 9969-9974.                                                                                                    | 3.2  | 36        |
| 339 | Cables of BN-insulated B–C–N nanotubes. Applied Physics Letters, 2003, 82, 1275-1277.                                                                                                                                                                 | 3.3  | 36        |
| 340 | Enhanced ferromagnetism in ZnO nanoribbons and clusters passivated with sulfur. Nano Research, 2008, 1, 420-426.                                                                                                                                      | 10.4 | 36        |
| 341 | Antiorganic Fouling and Low-Protein Adhesion on Reverse-Osmosis Membranes Made of Carbon<br>Nanotubes and Polyamide Nanocomposite. ACS Applied Materials & Interfaces, 2017, 9, 32192-32201.                                                          | 8.0  | 36        |
| 342 | Few-layer graphene coated current collectors for safe and powerful lithium ion batteries. Carbon, 2019, 153, 495-503.                                                                                                                                 | 10.3 | 36        |

| #   | Article                                                                                                                                                                                                                                                | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 343 | Transitional behaviour in the transformation from active end planes to stable loops caused by annealing. New Journal of Physics, 2003, 5, 121-121.                                                                                                     | 2.9  | 35        |
| 344 | Magnetism in Corrugated Carbon Nanotori:  The Importance of Symmetry, Defects, and Negative<br>Curvature. Nano Letters, 2004, 4, 2179-2183.                                                                                                            | 9.1  | 35        |
| 345 | Formation of indium-doped zinc oxide thin films using chemical spray techniques: The importance of acetic acid content in the aerosol solution and the substrate temperature for enhancing electrical transport. Thin Solid Films, 2006, 503, 212-218. | 1.8  | 35        |
| 346 | Electronic and vibrational properties of defective transition metal dichalcogenide Haeckelites: new 2D semi-metallic systems. 2D Materials, 2014, 1, 011003.                                                                                           | 4.4  | 35        |
| 347 | Aligned carbon nanotube/zinc oxide nanowire hybrids as high performance electrodes for supercapacitor applications. Journal of Applied Physics, 2017, 121, .                                                                                           | 2.5  | 35        |
| 348 | Plasmon–trion and plasmon–exciton resonance energy transfer from a single plasmonic nanoparticle<br>to monolayer MoS2. Nanoscale, 2017, 9, 13947-13955.                                                                                                | 5.6  | 35        |
| 349 | Atomically Thin Layers of Graphene and Hexagonal Boron Nitride Made by Solvent Exfoliation of Their<br>Phosphoric Acid Intercalation Compounds. ACS Nano, 2017, 11, 6746-6754.                                                                         | 14.6 | 35        |
| 350 | Double-walled carbon nanotubes: synthesis, structural characterization, and application. Carbon Letters, 2014, 15, 77-88.                                                                                                                              | 5.9  | 35        |
| 351 | Preparation of aligned multi-walled BN and B/C/N nanotubular arrays and their characterization using HRTEM, EELS and energy-filtered TEM. Physica B: Condensed Matter, 2002, 323, 60-66.                                                               | 2.7  | 34        |
| 352 | Pyrolytic synthesis of long strands of large diameter single-walled carbon nanotubes at atmospheric pressure in the absence of sulphur and hydrogen. Chemical Physics Letters, 2005, 410, 384-390.                                                     | 2.6  | 34        |
| 353 | Strong and stable photoluminescence from the semiconducting inner tubes within double walled carbon nanotubes. Applied Physics Letters, 2009, 94, 083106.                                                                                              | 3.3  | 34        |
| 354 | Spectroscopic Characterization of N-Doped Single-Walled Carbon Nanotube Strands: An X-ray<br>Photoelectron Spectroscopy and Raman Study. Journal of Nanoscience and Nanotechnology, 2010, 10,<br>3959-3964.                                            | 0.9  | 34        |
| 355 | Correlation in structure and properties of highly-porous graphene monoliths studied with a thermal treatment method. Carbon, 2016, 96, 174-183.                                                                                                        | 10.3 | 34        |
| 356 | Nonlinear Dark-Field Imaging of One-Dimensional Defects in Monolayer Dichalcogenides. Nano Letters,<br>2020, 20, 284-291.                                                                                                                              | 9.1  | 34        |
| 357 | Ultrashort optical pulse characterization using WS_2 monolayers. Optics Letters, 2014, 39, 383.                                                                                                                                                        | 3.3  | 33        |
| 358 | Linear carbon chains inside multi-walled carbon nanotubes: Growth mechanism, thermal stability and electrical properties. Carbon, 2016, 107, 217-224.                                                                                                  | 10.3 | 33        |
| 359 | Fabrication and characterization of ultraviolet photosensors from ZnO nanowires prepared using chemical bath deposition method. Journal of Applied Physics, 2016, 119, 084306.                                                                         | 2.5  | 33        |
| 360 | Clean Transfer of 2D Transition Metal Dichalcogenides Using Cellulose Acetate for Atomic<br>Resolution Characterizations. ACS Applied Nano Materials, 2019, 2, 5320-5328.                                                                              | 5.0  | 33        |

| #   | Article                                                                                                                                                                                                               | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 361 | Electrochemical Polishing of Two-Dimensional Materials. ACS Nano, 2019, 13, 78-86.                                                                                                                                    | 14.6 | 33        |
| 362 | Theoretical characterization of several models of nanoporous carbon. New Journal of Physics, 2003, 5, 123-123.                                                                                                        | 2.9  | 32        |
| 363 | An anticorrosive magnesium/carbon nanotube composite. Applied Physics Letters, 2008, 92, 063105.                                                                                                                      | 3.3  | 32        |
| 364 | Pressure-Induced Selectivity for Probing Inner Tubes in Double- and Triple-Walled Carbon Nanotubes:<br>A Resonance Raman Study. Journal of Physical Chemistry C, 2014, 118, 8153-8158.                                | 3.1  | 32        |
| 365 | Carbon nanotubes and manganese oxide hybrid nanostructures as high performance fiber supercapacitors. Communications Chemistry, 2018, 1, .                                                                            | 4.5  | 32        |
| 366 | Mechanical properties of nanocomposites reinforced by carbon nanotube sponges. Journal of Materiomics, 2018, 4, 157-164.                                                                                              | 5.7  | 32        |
| 367 | On the Role of Transition Metal Salts During Electrochemical Exfoliation of Graphite: Antioxidants<br>or Metal Oxide Decorators for Energy Storage Applications. Advanced Functional Materials, 2018, 28,<br>1804357. | 14.9 | 32        |
| 368 | Thicker carbon-nanotube/manganese-oxide hybridized nanostructures as electrodes for the creation of fiber-shaped high-energy-density supercapacitors. Carbon, 2019, 154, 169-177.                                     | 10.3 | 32        |
| 369 | Microscopy Study of the Growth Process and Structural Features of Silicon Oxide Nanoflowers.<br>Chemistry of Materials, 1999, 11, 2709-2715.                                                                          | 6.7  | 31        |
| 370 | Femtosecond Laser Nanosurgery of Defects in Carbon Nanotubes. Nano Letters, 2005, 5, 1361-1365.                                                                                                                       | 9.1  | 31        |
| 371 | Optically and Biologically Active Mussel Proteinâ€Coated Doubleâ€Walled Carbon Nanotubes. Small, 2011,<br>7, 3292-3297.                                                                                               | 10.0 | 31        |
| 372 | Nitrogenâ€Doped Graphitic Nanoribbons: Synthesis, Characterization, and Transport. Advanced<br>Functional Materials, 2013, 23, 3755-3762.                                                                             | 14.9 | 31        |
| 373 | Study of the growth of CeO2 nanoparticles onto titanate nanotubes. Journal of Physics and Chemistry of Solids, 2015, 87, 213-220.                                                                                     | 4.0  | 31        |
| 374 | Carbon-rich shungite as a natural resource for efficient Li-ion battery electrodes. Carbon, 2018, 130, 105-111.                                                                                                       | 10.3 | 31        |
| 375 | CO2 Sensing by in-situ Raman spectroscopy using activated carbon generated from mesocarp of babassu coconut. Vibrational Spectroscopy, 2018, 98, 111-118.                                                             | 2.2  | 31        |
| 376 | Chemical and Bio Sensing Using Graphene-Enhanced Raman Spectroscopy. Nanomaterials, 2019, 9, 516.                                                                                                                     | 4.1  | 31        |
| 377 | The effect of CNT functionalization on electrical and relaxation phenomena in MWCNT/chitosan composites. Materials Chemistry and Physics, 2015, 155, 252-261.                                                         | 4.0  | 30        |
| 378 | Research Update: Recent progress on 2D materials beyond graphene: From ripples, defects,<br>intercalation, and valley dynamics to straintronics and power dissipation. APL Materials, 2018, 6, .                      | 5.1  | 30        |

| #   | Article                                                                                                                                                                                                                                                                           | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 379 | Defect-mediated selective hydrogenation of nitroarenes on nanostructured WS <sub>2</sub> .<br>Chemical Science, 2019, 10, 10310-10317.                                                                                                                                            | 7.4  | 30        |
| 380 | Defect creation in WSe <sub>2</sub> with a microsecond photoluminescence lifetime by focused ion beam irradiation. Nanoscale, 2020, 12, 2047-2056.                                                                                                                                | 5.6  | 30        |
| 381 | Surfactant-Mediated Growth and Patterning of Atomically Thin Transition Metal Dichalcogenides.<br>ACS Nano, 2020, 14, 6570-6581.                                                                                                                                                  | 14.6 | 30        |
| 382 | Photoreactivity of lignin model compounds in the photobleaching of chemical pulps 2. Study of the degradation of 4-hydroxy-3-methoxy-benzaldehyde and two lignin fragments induced by singlet oxygen. Journal of Photochemistry and Photobiology A: Chemistry, 1997, 110, 99-106. | 3.9  | 29        |
| 383 | Electrical behavior of polymer grafted nanotubes/polymer nanocomposites using N-doped carbon nanotubes. Chemical Physics Letters, 2007, 444, 1-8.                                                                                                                                 | 2.6  | 29        |
| 384 | Gate-modulated conductance of few-layer WSe2 field-effect transistors in the subgap regime:<br>Schottky barrier transistor and subgap impurity states. Applied Physics Letters, 2015, 106, 152104.                                                                                | 3.3  | 29        |
| 385 | Colloidal Nanostructures of Transition-Metal Dichalcogenides. Accounts of Chemical Research, 2021, 54, 1517-1527.                                                                                                                                                                 | 15.6 | 29        |
| 386 | Nanocomposites: synthesis and elemental mapping of aligned B–C–N nanotubes. Chemical Physics<br>Letters, 2002, 360, 1-7.                                                                                                                                                          | 2.6  | 28        |
| 387 | Creation of Helical Vortices during Magnetization of Aligned Carbon Nanotubes Filled with Fe:<br>Theory and Experiment. Physical Review Letters, 2005, 94, 216102.                                                                                                                | 7.8  | 28        |
| 388 | Chirality-Dependent Transport in Double-Walled Carbon Nanotube Assemblies: The Role of Inner Tubes.<br>ACS Nano, 2011, 5, 7547-7554.                                                                                                                                              | 14.6 | 28        |
| 389 | Graphene nanoribbon ceramic composites. Carbon, 2015, 90, 207-214.                                                                                                                                                                                                                | 10.3 | 28        |
| 390 | High flex cycle testing of CVD monolayer WS <sub>2</sub> TFTs on thin flexible polyimide. 2D<br>Materials, 2016, 3, 021008.                                                                                                                                                       | 4.4  | 28        |
| 391 | Towards band structure and band offset engineering of monolayer Mo <sub> (1â^ <i>x</i> ) </sub> W<br><sub> ( <i>x</i> ) </sub> S <sub>2</sub> via Strain. 2D Materials, 2018, 5, 015008.                                                                                          | 4.4  | 28        |
| 392 | The Role of Boron Nitride in Graphite Plasma Arcs. Fullerenes, Nanotubes, and Carbon<br>Nanostructures, 1998, 6, 787-800.                                                                                                                                                         | 0.6  | 27        |
| 393 | C-MoS2 and C-WS2 nanocomposites. Applied Physics Letters, 2000, 77, 4130-4132.                                                                                                                                                                                                    | 3.3  | 27        |
| 394 | Lithiation induced corrosive fracture in defective carbon nanotubes. Applied Physics Letters, 2013, 103,                                                                                                                                                                          | 3.3  | 27        |
| 395 | Effects of nitrogen-doped multi-walled carbon nanotubes compared to pristine multi-walled carbon nanotubes on human small airway epithelial cells. Toxicology, 2015, 333, 25-36.                                                                                                  | 4.2  | 27        |
| 396 | Beryllium doping graphene, graphene-nanoribbons, C60-fullerene, and carbon nanotubes. Carbon, 2015,<br>84, 317-326.                                                                                                                                                               | 10.3 | 27        |

| #   | Article                                                                                                                                                                                                                                           | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 397 | Programmable molecular composites of tandem proteins with graphene oxide for efficient bimorph actuators. Carbon, 2017, 118, 404-412.                                                                                                             | 10.3 | 27        |
| 398 | Loop formation in graphitic nanoribbon edges using furnace heating or Joule heating. Journal of<br>Vacuum Science & Technology B, 2009, 27, 1996.                                                                                                 | 1.3  | 26        |
| 399 | Enhanced X-Ray Shielding Effects of Carbon Nanotubes. Materials Express, 2011, 1, 273-278.                                                                                                                                                        | 0.5  | 26        |
| 400 | Oil sorption by exfoliated graphite from dilute oil–water emulsion for practical applications in produced water treatments. Journal of Water Process Engineering, 2015, 8, 91-98.                                                                 | 5.6  | 26        |
| 401 | Raman spectroscopy revealing noble gas adsorption on single-walled carbon nanotube bundles.<br>Carbon, 2018, 127, 312-319.                                                                                                                        | 10.3 | 26        |
| 402 | Understanding Interlayer Coupling in TMD-hBN Heterostructure by Raman Spectroscopy. IEEE<br>Transactions on Electron Devices, 2018, 65, 4059-4067.                                                                                                | 3.0  | 26        |
| 403 | Monolayer MoS <sub>2</sub> on sapphire: an azimuthal reflection high-energy electron diffraction perspective. 2D Materials, 2021, 8, 025003.                                                                                                      | 4.4  | 26        |
| 404 | Raman Characterization of Nitrogen Doped Multiwalled Carbon Nanotubes. Materials Research<br>Society Symposia Proceedings, 2003, 772, 781.                                                                                                        | 0.1  | 25        |
| 405 | The two peaks G′ band in carbon nanotubes. Physica Status Solidi (B): Basic Research, 2008, 245, 2197-2200.                                                                                                                                       | 1.5  | 25        |
| 406 | Electron transport properties of ordered networks using carbon nanotubes. Nanotechnology, 2008, 19, 315704.                                                                                                                                       | 2.6  | 25        |
| 407 | Raman and Fluorescence Spectroscopic Studies of a DNA-Dispersed Double-Walled Carbon Nanotube<br>Solution. ACS Nano, 2010, 4, 1060-1066.                                                                                                          | 14.6 | 25        |
| 408 | Wall-to-wall stress induced in (6,5) semiconducting nanotubes by encapsulation in metallic outer<br>tubes of different diameters: A resonance Raman study of individual C60-derived double-wall carbon<br>nanotubes. Nanoscale, 2010, 2, 406-411. | 5.6  | 25        |
| 409 | Bulk Synthesis of Narrow Diameter and Highly Crystalline Tripleâ€Walled Carbon Nanotubes by<br>Coalescing Fullerene Peapods. Advanced Materials, 2011, 23, 1761-1764.                                                                             | 21.0 | 25        |
| 410 | Edge–Edge Interactions in Stacked Graphene Nanoplatelets. ACS Nano, 2013, 7, 2834-2841.                                                                                                                                                           | 14.6 | 25        |
| 411 | The influence of carbon nanotubes characteristics in their performance as positive electrodes in vanadium redox flow batteries. Sustainable Energy Technologies and Assessments, 2015, 9, 105-110.                                                | 2.7  | 25        |
| 412 | Structural evolution of hydrothermal carbon spheres induced by high temperatures and their electrical properties under compression. Carbon, 2017, 121, 426-433.                                                                                   | 10.3 | 25        |
| 413 | Effective Antiscaling Performance of Reverse-Osmosis Membranes Made of Carbon Nanotubes and Polyamide Nanocomposites. ACS Omega, 2018, 3, 6047-6055.                                                                                              | 3.5  | 25        |
| 414 | Darkâ€Excitonâ€Mediated Fano Resonance from a Single Gold Nanostructure on Monolayer<br>WS <sub>2</sub> at Room Temperature. Small, 2019, 15, e1900982.                                                                                           | 10.0 | 25        |

| #   | Article                                                                                                                                                                               | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 415 | Large-scale preparation of electrically conducting cellulose nanofiber/carbon nanotube aerogels:<br>Ambient-dried, recyclable, and 3D-Printable. Carbon, 2022, 194, 23-33.            | 10.3 | 25        |
| 416 | KCl crystallization within the space between carbon nanotube walls. Chemical Physics Letters, 2000, 317, 77-82.                                                                       | 2.6  | 24        |
| 417 | An efficient method for the carboxylation of few-wall carbon nanotubes with little damage to their sidewalls. Materials Chemistry and Physics, 2013, 140, 499-507.                    | 4.0  | 24        |
| 418 | Electronic, magnetic, optical, and edge-reactivity properties of semiconducting and metallic WS 2 nanoribbons. 2D Materials, 2015, 2, 015002.                                         | 4.4  | 24        |
| 419 | Electron transport study on functionalized armchair graphene nanoribbons: DFT calculations. RSC<br>Advances, 2016, 6, 21954-21960.                                                    | 3.6  | 24        |
| 420 | Mitsui-7, heat-treated, and nitrogen-doped multi-walled carbon nanotubes elicit genotoxicity in<br>human lung epithelial cells. Particle and Fibre Toxicology, 2019, 16, 36.          | 6.2  | 24        |
| 421 | Epitaxial growth of few-layer β-In2Se3 thin films by metalorganic chemical vapor deposition. Journal of<br>Crystal Growth, 2020, 533, 125471.                                         | 1.5  | 24        |
| 422 | Second- and third-order optical susceptibilities across excitons states in 2D monolayer transition metal dichalcogenides. 2D Materials, 2021, 8, 035010.                              | 4.4  | 24        |
| 423 | Nanocages of layered BN: Super-high-pressure nanocells for formation of solid nitrogen. Journal of<br>Chemical Physics, 2002, 116, 8523.                                              | 3.0  | 23        |
| 424 | The possible way to evaluate the purity of double-walled carbon nanotubes over single wall carbon nanotubes by chemical doping. Chemical Physics Letters, 2006, 420, 377-381.         | 2.6  | 23        |
| 425 | Synthesis, characterization and magnetic properties of Co@Au core-shell nanoparticles encapsulated by nitrogen-doped multiwall carbon nanotubes. Carbon, 2014, 77, 722-737.           | 10.3 | 23        |
| 426 | Intrinsic Chirality Origination in Carbon Nanotubes. ACS Nano, 2017, 11, 9941-9949.                                                                                                   | 14.6 | 23        |
| 427 | Solution synthesis of few-layer WTe <sub>2</sub> and<br>Mo <sub>x</sub> W <sub>1â^'x</sub> Te <sub>2</sub> nanostructures. Journal of Materials Chemistry C,<br>2017, 5, 11317-11323. | 5.5  | 23        |
| 428 | Water Diffusion Mechanism in Carbon Nanotube and Polyamide Nanocomposite Reverse Osmosis<br>Membranes: A Possible Percolation-Hopping Mechanism. Physical Review Applied, 2018, 9, .  | 3.8  | 23        |
| 429 | Rapid Size-Based Isolation of Extracellular Vesicles by Three-Dimensional Carbon Nanotube Arrays.<br>ACS Applied Materials & Interfaces, 2020, 12, 13134-13139.                       | 8.0  | 23        |
| 430 | Tunable Raman spectroscopy study of CVD and peapod-derived bundled and individual double-wall carbon nanotubes. Physical Review B, 2010, 82, .                                        | 3.2  | 22        |
| 431 | Doping (10, 0)-Semiconductor Nanotubes with Nitrogen and Vacancy Defects. Materials Express, 2011, 1, 127-135.                                                                        | 0.5  | 22        |
| 432 | Carbon nanotube bundles self-assembled in double helix microstructures. Carbon, 2012, 50, 3688-3693.                                                                                  | 10.3 | 22        |

| #   | Article                                                                                                                                                                                           | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 433 | Controlling the Optical, Electrical and Chemical Properties of Carbon Inverse Opal by Nitrogen<br>Doping. Advanced Functional Materials, 2014, 24, 2612-2619.                                     | 14.9 | 22        |
| 434 | Aligned carbon nanotube/silicon carbide hybrid materials with high electrical conductivity, superhydrophobicity and superoleophilicity. Carbon, 2014, 80, 120-126.                                | 10.3 | 22        |
| 435 | Microwave plasma-induced graphene-sheet fibers from waste coffee grounds. Journal of Materials<br>Chemistry A, 2015, 3, 14545-14549.                                                              | 10.3 | 22        |
| 436 | Lowâ€Temperature Solution Synthesis of Few‣ayer 1T ′â€MoTe 2 Nanostructures Exhibiting Lattice<br>Compression. Angewandte Chemie, 2016, 128, 2880-2884.                                           | 2.0  | 22        |
| 437 | Nanoscale doping heterogeneity in few-layer WSe <sub>2</sub> exfoliated onto noble metals revealed by correlated SPM and TERS imaging. 2D Materials, 2018, 5, 035003.                             | 4.4  | 22        |
| 438 | Controlled synthesis of N-type single-walled carbon nanotubes with 100% of quaternary nitrogen.<br>Carbon, 2020, 167, 881-887.                                                                    | 10.3 | 22        |
| 439 | Intentional carbon doping reveals CH as an abundant charged impurity in nominally undoped synthetic WS <sub>2</sub> and WSe <sub>2</sub> . 2D Materials, 2020, 7, 031003.                         | 4.4  | 22        |
| 440 | Electronic properties of fullerenes with nonpositive Gaussian curvature: Finite zeolites. Physical<br>Review B, 1997, 56, 12143-12146.                                                            | 3.2  | 21        |
| 441 | Fullerenes and nanotubes with non-positive Gaussian curvature. Carbon, 1998, 36, 725-730.                                                                                                         | 10.3 | 21        |
| 442 | Photochemical bleaching of chemical pulps catalyzed by titanium dioxide. Journal of Photochemistry and Photobiology A: Chemistry, 1998, 115, 73-80.                                               | 3.9  | 21        |
| 443 | Carbon Nanotube Supported Single Phospholipid Bilayer. Langmuir, 2006, 22, 10909-10911.                                                                                                           | 3.5  | 21        |
| 444 | Magnetic response in finite carbon graphene sheets and nanotubes. Optical Materials, 2006, 29, 110-115.                                                                                           | 3.6  | 21        |
| 445 | Synthesis and Characterization of Seleniumâ^'Carbon Nanocables. Nano Letters, 2008, 8, 3651-3655.                                                                                                 | 9.1  | 21        |
| 446 | Boron, nitrogen and phosphorous substitutionally doped singleâ€wall carbon nanotubes studied by<br>resonance Raman spectroscopy. Physica Status Solidi (B): Basic Research, 2009, 246, 2432-2435. | 1.5  | 21        |
| 447 | Photoconductivity of few-layered <i>p</i> -WSe <sub>2</sub> phototransistors via multi-terminal measurements. 2D Materials, 2016, 3, 041004.                                                      | 4.4  | 21        |
| 448 | Two-dimensional and three-dimensional hybrid assemblies based on graphene oxide and other layered structures: A carbon science perspective. Carbon, 2017, 125, 437-453.                           | 10.3 | 21        |
| 449 | Functional hetero-interfaces in atomically thin materials. Materials Today, 2020, 37, 74-92.                                                                                                      | 14.2 | 21        |
| 450 | Graphene oxide-CuFe2O4 nanohybrid material as an adsorbent of Congo red dye. Carbon Trends, 2022,<br>7, 100147.                                                                                   | 3.0  | 21        |

| #   | Article                                                                                                                                                                                                | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 451 | Magnetic and hysteretic properties of Fe-filled nanotubes. IEEE Transactions on Magnetics, 2001, 37, 2117-2119.                                                                                        | 2.1  | 20        |
| 452 | Effect of doping in carbon nanotubes on the viability of biomimetic chitosan arbon<br>nanotubesâ€hydroxyapatite scaffolds. Journal of Biomedical Materials Research - Part A, 2014, 102,<br>3341-3351. | 4.0  | 20        |
| 453 | Transferrable polymeric carbon nitride/nitrogen-doped graphene films for solid state optoelectronics. Carbon, 2018, 138, 69-75.                                                                        | 10.3 | 20        |
| 454 | Nanoscale mapping of quasiparticle band alignment. Nature Communications, 2019, 10, 3283.                                                                                                              | 12.8 | 20        |
| 455 | New Horizons in Carbon Chemistry and Materials Science. MRS Bulletin, 1994, 19, 51-55.                                                                                                                 | 3.5  | 19        |
| 456 | Tungsten–niobium–sulfur composite nanotubes. Chemical Communications, 2001, , 121-122.                                                                                                                 | 4.1  | 19        |
| 457 | Synthesis of SWCNT Rings Made by Two Y Junctions and Possible Applications in Electron<br>Interferometry. Small, 2007, 3, 1900-1905.                                                                   | 10.0 | 19        |
| 458 | Synthesis and structural characterization of novel flower-like titanium dioxide nanostructures.<br>Physica B: Condensed Matter, 2007, 390, 143-146.                                                    | 2.7  | 19        |
| 459 | Geometric and Electronic Structure of Closed Graphene Edges. Journal of Physical Chemistry Letters, 2012, 3, 2097-2102.                                                                                | 4.6  | 19        |
| 460 | Nitrogen–Silicon Heterodoping of Carbon Nanotubes. Journal of Physical Chemistry C, 2013, 117,<br>8481-8490.                                                                                           | 3.1  | 19        |
| 461 | Photoluminescence Enhancement of Titanate Nanotubes by Insertion of Rare Earth Ions in Their<br>Interlayer Spaces. Journal of Nanomaterials, 2017, 2017, 1-9.                                          | 2.7  | 19        |
| 462 | Phase Modulators Based on High Mobility Ambipolar ReSe2 Field-Effect Transistors. Scientific Reports, 2018, 8, 12745.                                                                                  | 3.3  | 19        |
| 463 | Synthesis of V-MoS <sub>2</sub> Layered Alloys as Stable Li-Ion Battery Anodes. ACS Applied Energy<br>Materials, 2019, 2, 8625-8632.                                                                   | 5.1  | 19        |
| 464 | 2D Materials for Universal Thermal Imaging of Micro- and Nanodevices: An Application to Gallium Oxide Electronics. ACS Applied Electronic Materials, 2020, 2, 2945-2953.                               | 4.3  | 19        |
| 465 | Confined Crack Propagation in MoS <sub>2</sub> Monolayers by Creating Atomic Vacancies. ACS Nano, 2021, 15, 1210-1216.                                                                                 | 14.6 | 19        |
| 466 | Rapid Biomarker Screening of Alzheimer's Disease by Interpretable Machine Learning and<br>Graphene-Assisted Raman Spectroscopy. ACS Nano, 2022, 16, 6426-6436.                                         | 14.6 | 19        |
| 467 | Carbon science perspective in 2022: Current research and future challenges. Carbon, 2022, 195, 272-291.                                                                                                | 10.3 | 19        |
| 468 | Accurate virus identification with interpretable Raman signatures by machine learning. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .                   | 7.1  | 19        |

| #   | Article                                                                                                                                                                                        | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 469 | Diameter-selective separation of double-walled carbon nanotubes. Applied Physics Letters, 2008, 93, 223107.                                                                                    | 3.3  | 18        |
| 470 | Production and detailed characterization of bean husk-based carbon: Efficient cadmium (II) removal from aqueous solutions. Water Research, 2008, 42, 3473-3479.                                | 11.3 | 18        |
| 471 | Defectâ€Enhanced Dispersion of Carbon Nanotubes in DNA Solutions. ChemPhysChem, 2009, 10, 2414-2417.                                                                                           | 2.1  | 18        |
| 472 | Effect of impurities on the electronic and magnetic properties of zinc oxide nanostructures. Chemical<br>Physics Letters, 2010, 492, 82-88.                                                    | 2.6  | 18        |
| 473 | Novel Nanocarbons for Adsorption. , 2012, , 3-34.                                                                                                                                              |      | 18        |
| 474 | 3D Nanocomposites of Covalently Interconnected Multiwalled Carbon Nanotubes with SiC with Enhanced Thermal and Electrical Properties. Advanced Functional Materials, 2015, 25, 4985-4993.      | 14.9 | 18        |
| 475 | Optoelectronic Properties of Heterostructures: The Most Recent Developments Based on Graphene and Transition-Metal Dichalcogenides. IEEE Nanotechnology Magazine, 2017, 11, 18-32.             | 1.3  | 18        |
| 476 | Avian and human influenza virus compatible sialic acid receptors in little brown bats. Scientific<br>Reports, 2017, 7, 660.                                                                    | 3.3  | 18        |
| 477 | Negative Differential Conductance & Hot-Carrier Avalanching in Monolayer WS2 FETs. Scientific Reports, 2017, 7, 11256.                                                                         | 3.3  | 18        |
| 478 | Pyrolytic carbon supported alloying metal dichalcogenides as free-standing electrodes for efficient hydrogen evolution. Carbon, 2018, 132, 512-519.                                            | 10.3 | 18        |
| 479 | Locally Induced Spin States on Graphene by Chemical Attachment of Boron Atoms. Nano Letters, 2018, 18, 5482-5487.                                                                              | 9.1  | 18        |
| 480 | Microwave plasma-induced growth of vertical graphene from fullerene soot. Carbon, 2021, 172, 26-30.                                                                                            | 10.3 | 18        |
| 481 | Facile synthesis of graphene sheets intercalated by carbon spheres for high-performance supercapacitor electrodes. Carbon, 2020, 167, 11-18.                                                   | 10.3 | 18        |
| 482 | The effects of substitutional Fe-doping on magnetism in MoS <sub>2</sub> and WS <sub>2</sub> monolayers. Nanotechnology, 2021, 32, 095708.                                                     | 2.6  | 18        |
| 483 | Electronic properties of giant fullerenes and complex graphitic nanostructures with novel morphologies. Chemical Physics Letters, 2003, 381, 683-690.                                          | 2.6  | 17        |
| 484 | Shape and complexity at the atomic scale: the case of layered nanomaterials. Philosophical<br>Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2004, 362, 2039-2063.   | 3.4  | 17        |
| 485 | Defect-Assisted Heavily and Substitutionally Boron-Doped Thin Multiwalled Carbon Nanotubes Using<br>High-Temperature Thermal Diffusion. Journal of Physical Chemistry C, 2014, 118, 4454-4459. | 3.1  | 17        |
| 486 | CO2 adsorption on crystalline graphitic nanostructures. Journal of CO2 Utilization, 2014, 5, 60-65.                                                                                            | 6.8  | 17        |

| #   | Article                                                                                                                                                                  | IF        | CITATIONS             |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------------------|
| 487 | Nanostructured carbon-based membranes: nitrogen doping effects on reverse osmosis performance.<br>NPG Asia Materials, 2016, 8, e258-e258.                                | 7.9       | 17                    |
| 488 | Electro-graphitization and exfoliation of graphene on carbon nanofibers. Carbon, 2017, 117, 201-207.                                                                     | 10.3      | 17                    |
| 489 | Catalysis-free transformation of non-graphitising carbons into highly crystalline graphite.<br>Communications Materials, 2020, 1, .                                      | 6.9       | 17                    |
| 490 | Electric field induced metallic behavior in thin crystals of ferroelectric <b> <i>α</i> </b> -In2Se3.<br>Applied Physics Letters, 2020, 117, .                           | 3.3       | 17                    |
| 491 | Lightâ€Controlled Room Temperature Ferromagnetism in Vanadiumâ€Doped Tungsten Disulfide<br>Semiconducting Monolayers. Advanced Electronic Materials, 2021, 7, 2100030.   | 5.1       | 17                    |
| 492 | Photodelignification of Eucalyptus grandis organosolv chemical pulp. Journal of Photochemistry and<br>Photobiology A: Chemistry, 1996, 94, 253-262.                      | 3.9       | 16                    |
| 493 | Morphology-controlled fabrication of a three-dimensional mesoporous poly(vinyl alcohol) monolith through the incorporation of graphene oxide. Carbon, 2016, 98, 334-342. | 10.3      | 16                    |
| 494 | Pressure Sensors: Ultrasensitive Pressure Detection of Few‣ayer MoS <sub>2</sub> (Adv. Mater.) Tj ETQq0 0                                                                | 0 rgBT/Ov | verlock 10 Tf :<br>16 |
| 495 | Improved supercapacitors by implanting ultra-long single-walled carbon nanotubes into manganese oxide domains. Journal of Power Sources, 2020, 479, 228795.              | 7.8       | 16                    |
| 496 | Luminescence enhancement and Raman characterization of defects in WS2 monolayers treated with<br>low-power N2 plasma. Applied Surface Science, 2021, 535, 147685.        | 6.1       | 16                    |
| 497 | Direct growth of monolayer 1T–2H MoS <sub>2</sub> heterostructures using KCl-assisted CVD process. 2D Materials, 2021, 8, 025033.                                        | 4.4       | 16                    |
| 498 | Low temperature activation of inert hexagonal boron nitride for metal deposition and single atom catalysis. Materials Today, 2021, 51, 108-116.                          | 14.2      | 16                    |
| 499 | Self-assembly of Si nanostructures. Chemical Physics Letters, 2000, 322, 312-320.                                                                                        | 2.6       | 15                    |
| 500 | Controlling Nanotube Chirality and Crystallinity by Doping. Small, 2005, 1, 1032-1034.                                                                                   | 10.0      | 15                    |
| 501 | Nitrogen-doped-CNTs/Si3N4 nanocomposites with high electrical conductivity. Journal of the European Ceramic Society, 2014, 34, 1097-1104.                                | 5.7       | 15                    |
| 502 | Graphene nanoribbons inducing cube-shaped Ag nanoparticle assemblies. Carbon, 2015, 93, 800-811.                                                                         | 10.3      | 15                    |
| 503 | Potassium intercalated multiwalled carbon nanotubes. Carbon, 2016, 105, 90-95.                                                                                           | 10.3      | 15                    |
| 504 | Temperature- and power-dependent phonon properties of suspended continuous WS2 monolayer films.<br>Vibrational Spectroscopy, 2016, 86, 270-276.                          | 2.2       | 15                    |

| #   | Article                                                                                                                                                                                       | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 505 | Elucidating the local interfacial structure of highly photoresponsive carbon nanotubes/PbS-QDs based nanohybrids grown by pulsed laser deposition. Carbon, 2016, 96, 145-152.                 | 10.3 | 15        |
| 506 | Directional Modulation of Exciton Emission Using Single Dielectric Nanospheres. Advanced Materials, 2021, 33, e2007236.                                                                       | 21.0 | 15        |
| 507 | Spin-dependent vibronic response of a carbon radical ion in two-dimensional WS2. Nature Communications, 2021, 12, 7287.                                                                       | 12.8 | 15        |
| 508 | Experimental observation and quantum modeling of electron irradiation on single-wall carbon nanotubes. IEEE Nanotechnology Magazine, 2003, 2, 349-354.                                        | 2.0  | 14        |
| 509 | Ground-state electronic structure of nanoscale carbon cones. Physical Review B, 2005, 72, .                                                                                                   | 3.2  | 14        |
| 510 | Anomalous Paramagnetism in Doped Carbon Nanostructures. Small, 2007, 3, 120-125.                                                                                                              | 10.0 | 14        |
| 511 | Resonant Raman Study on Bulk and Isolated Graphitic Nanoribbons. Small, 2009, 5, 2698-2702.                                                                                                   | 10.0 | 14        |
| 512 | Optoelectronic modulation by multi-wall carbon nanotubes. Nanotechnology, 2013, 24, 045201.                                                                                                   | 2.6  | 14        |
| 513 | ROS evaluation for a series of CNTs and their derivatives using an ESR method with DMPO. Journal of Physics: Conference Series, 2013, 429, 012029.                                            | 0.4  | 14        |
| 514 | Hydro-deoxygenation of CO on functionalized carbon nanotubes for liquid fuels production. Carbon, 2017, 121, 274-284.                                                                         | 10.3 | 14        |
| 515 | Facile 1D graphene fiber synthesis from an agricultural by-product: A silicon-mediated graphenization route. Carbon, 2019, 142, 78-88.                                                        | 10.3 | 14        |
| 516 | Photodegradation Protection in 2D In-Plane Heterostructures Revealed by Hyperspectral Nanoimaging:<br>The Role of Nanointerface 2D Alloys. ACS Nano, 2021, 15, 2447-2457.                     | 14.6 | 14        |
| 517 | Synthesis and electronic properties of coalesced graphitic nanocones. Chemical Physics Letters, 2005, 407, 327-332.                                                                           | 2.6  | 13        |
| 518 | CdSe quantum dot-decorated double walled carbon nanotubes: The effect of chemical moieties.<br>Applied Physics Letters, 2008, 93, 051901.                                                     | 3.3  | 13        |
| 519 | Raman spectroscopy study of heat-treated and boron-doped double wall carbon nanotubes. Physical<br>Review B, 2009, 80, .                                                                      | 3.2  | 13        |
| 520 | Visualizing fullerene chemistry. Nature Chemistry, 2010, 2, 82-83.                                                                                                                            | 13.6 | 13        |
| 521 | Graphene oxide nanoplatelets of different crystallinity synthesized from helical-ribbon carbon nanofibers and multiwall carbon nanotubes. Journal of Materials Research, 2011, 26, 2632-2641. | 2.6  | 13        |
| 522 | Controlled interlayer spacing of scrolled reduced graphene nanotubes by thermal annealing. RSC<br>Advances, 2013, 3, 4161.                                                                    | 3.6  | 13        |

| #   | Article                                                                                                                                                                                                            | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 523 | A Spray Pyrolysis Method to Grow Carbon Nanotubes on Carbon Fibres, Steel and Ceramic Bricks.<br>Journal of Nanoscience and Nanotechnology, 2015, 15, 2858-2864.                                                   | 0.9  | 13        |
| 524 | Three dimensional porous monoliths from multi-walled carbon nanotubes and polyacrylonitrile.<br>Carbon, 2016, 101, 377-381.                                                                                        | 10.3 | 13        |
| 525 | Lightâ€Emitting Transition Metal Dichalcogenide Monolayers under Cellular Digestion. Advanced Materials, 2018, 30, 1703321.                                                                                        | 21.0 | 13        |
| 526 | Experimental verification of the dominant influence of extended carbon networks on the structural, electrical and magnetic properties of a common soot. Journal of Physics Condensed Matter, 1997, 9, 10661-10673. | 1.8  | 12        |
| 527 | WxMoyCzS2 nanotubes. Carbon, 2001, 39, 1107-1111.                                                                                                                                                                  | 10.3 | 12        |
| 528 | Oxidation and Thermal Stability of Linear Carbon Chains Contained in Thermally Treated<br>Double-Walled Carbon Nanotubes. Small, 2007, 3, 788-792.                                                                 | 10.0 | 12        |
| 529 | Architectures from Aligned Nanotubes Using Controlled Micropatterning of Silicon Substrates and Electrochemical Methods. Small, 2007, 3, 1157-1163.                                                                | 10.0 | 12        |
| 530 | A reversible strain-induced electrical conductivity in cup-stacked carbon nanotubes. Nanoscale, 2013, 5, 10212.                                                                                                    | 5.6  | 12        |
| 531 | High Performance and Chlorine Resistant Carbon Nanotube/Aromatic Polyamide Reverse Osmosis<br>Nanocomposite Membrane. MRS Advances, 2016, 1, 1469-1476.                                                            | 0.9  | 12        |
| 532 | A carbon nanotube integrated microfluidic device for blood plasma extraction. Scientific Reports, 2018, 8, 13623.                                                                                                  | 3.3  | 12        |
| 533 | Excitonic processes in atomically-thin MoSe <sub>2</sub> /MoS <sub>2</sub> vertical heterostructures. 2D Materials, 2018, 5, 031016.                                                                               | 4.4  | 12        |
| 534 | Incorporating Niobium in MoS <sub>2</sub> at BEOL ompatible Temperatures and its Impact on Copper<br>Diffusion Barrier Performance. Advanced Materials Interfaces, 2019, 6, 1901055.                               | 3.7  | 12        |
| 535 | Transition metal – Graphene oxide nanohybrid materials as counter electrodes for high efficiency<br>quantum dot solar cells. Catalysis Today, 2020, 355, 860-869.                                                  | 4.4  | 12        |
| 536 | Graphene oxide membranes for lactose-free milk. Carbon, 2021, 181, 118-129.                                                                                                                                        | 10.3 | 12        |
| 537 | Structure, Chirality, and Formation of Giant Icosahedral Fullerenes and Spherical Graphitic Onions. , 2015, , 101-112.                                                                                             |      | 12        |
| 538 | Origin of the complex Raman tensor elements in single-layer triclinic ReSe2. 2D Materials, 2021, 8, 025002.                                                                                                        | 4.4  | 12        |
| 539 | Solid-phase production of carbon nanotubes. Applied Physics A: Materials Science and Processing, 1999, 68, 493-495.                                                                                                | 2.3  | 11        |
| 540 | Grafting of Polystyrene on Nitrogen-Doped Multi-Walled Carbon Nanotubes. Journal of Nanoscience<br>and Nanotechnology, 2007, 7, 3450-3457.                                                                         | 0.9  | 11        |

| #   | Article                                                                                                                                                                                                  | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 541 | Composition and morphological characteristics of chemically sprayed fluorine-doped zinc oxide thin films deposited on Si(100). Physica B: Condensed Matter, 2007, 390, 10-16.                            | 2.7  | 11        |
| 542 | Ion irradiation of carbon nanotubes encapsulating cobalt crystals. Physica E: Low-Dimensional<br>Systems and Nanostructures, 2008, 40, 2618-2621.                                                        | 2.7  | 11        |
| 543 | Effects of novel and stable intermolecular connections in the mechanical and electronic properties of C60 polymerized structures. Chemical Physics Letters, 2008, 458, 128-133.                          | 2.6  | 11        |
| 544 | Magnetic properties of individual carbon clusters, clusters inside fullerenes and graphitic nanoribbons. Journal of Materials Chemistry, 2008, 18, 1535.                                                 | 6.7  | 11        |
| 545 | The importance of defects for carbon nanoribbon based electronics. Physica Status Solidi - Rapid<br>Research Letters, 2009, 3, 181-183.                                                                  | 2.4  | 11        |
| 546 | Controlling the shapes and assemblages of graphene. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 7951-7952.                                               | 7.1  | 11        |
| 547 | Hyperelasticity of three-dimensional carbon nanotube sponge controlled by the stiffness of covalent junctions. Carbon, 2015, 95, 640-645.                                                                | 10.3 | 11        |
| 548 | Effect of underlying boron nitride thickness on photocurrent response in molybdenum disulfide -<br>boron nitride heterostructures. Journal of Materials Research, 2016, 31, 893-899.                     | 2.6  | 11        |
| 549 | Properties of Functionalized Carbon Nanotubes and Their Interaction with a Metallic Substrate<br>Investigated by Scanning Tunneling Microscopy. Journal of Physical Chemistry C, 2017, 121, 24264-24271. | 3.1  | 11        |
| 550 | Anomalous Corrosion of Bulk Transition Metal Diselenides Leading to Stable Monolayers. ACS Applied<br>Materials & Interfaces, 2017, 9, 39059-39068.                                                      | 8.0  | 11        |
| 551 | Homogeneously dispersed CeO2 nanoparticles on exfoliated hexaniobate nanosheets. Journal of<br>Physics and Chemistry of Solids, 2017, 111, 335-342.                                                      | 4.0  | 11        |
| 552 | Atomistic-Scale Simulations on Graphene Bending Near a Copper Surface. Catalysts, 2021, 11, 208.                                                                                                         | 3.5  | 11        |
| 553 | Single-Step Direct Laser Writing of Multimetal Oxygen Evolution Catalysts from Liquid Precursors.<br>ACS Nano, 2021, 15, 9796-9807.                                                                      | 14.6 | 11        |
| 554 | Roomâ€Temperature Observation of Nearâ€Intrinsic Exciton Linewidth in Monolayer WS <sub>2</sub> .<br>Advanced Materials, 2022, 34, e2108721.                                                             | 21.0 | 11        |
| 555 | Cathodoluminescence of fullerene C60. Journal of Physics Condensed Matter, 2000, 12, 7869-7878.                                                                                                          | 1.8  | 10        |
| 556 | Directional Electrical Transport in Tough Multifunctional Layered Ceramic/Graphene Composites.<br>Advanced Electronic Materials, 2015, 1, 1500132.                                                       | 5.1  | 10        |
| 557 | Biotin molecules on nitrogen-doped carbon nanotubes enhance the uniform anchoring and formation of Ag nanoparticles. Carbon, 2015, 88, 51-59.                                                            | 10.3 | 10        |
| 558 | Photoluminescence of monolayer transition metal dichalcogenides integrated with VO <sub>2</sub> .<br>Journal of Physics Condensed Matter, 2016, 28, 504001.                                              | 1.8  | 10        |

| #   | Article                                                                                                                                                                                             | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 559 | H2O2/UV layer-by-layer oxidation of multiwall carbon nanotubes: The "onion effect―and the control of the degree of surface crystallinity and diameter. Carbon, 2018, 139, 1027-1034.                | 10.3 | 10        |
| 560 | Temperature- and power-dependent phonon properties of suspended few layers of tungsten diselenide.<br>Vibrational Spectroscopy, 2020, 111, 103169.                                                  | 2.2  | 10        |
| 561 | Second harmonic generation in two-dimensional transition metal dichalcogenides with growth and post-synthesis defects. 2D Materials, 2020, 7, 045020.                                               | 4.4  | 10        |
| 562 | Interaction of gases with monolayer WS <sub>2</sub> : an <i>in situ</i> spectroscopy study.<br>Nanoscale, 2021, 13, 11470-11477.                                                                    | 5.6  | 10        |
| 563 | Integration of Nitrogen-Doped Graphene Oxide Dots with Au Nanoparticles for Enhanced<br>Electrocatalytic Hydrogen Evolution. ACS Applied Nano Materials, 2021, 4, 11513-11525.                      | 5.0  | 10        |
| 564 | Coaxial fabrication of Ni-Co layered double hydroxide into 3D carbon nanotube networks for<br>high-performance flexible fiber supercapacitors. Journal of Alloys and Compounds, 2022, 909, 164664.  | 5.5  | 10        |
| 565 | A perspective on two-dimensional van der Waals opto-spin-caloritronics. Applied Physics Letters, 2021,<br>119, .                                                                                    | 3.3  | 10        |
| 566 | Photoluminescence quenching of CVD grown WS2 monolayers treated with low-power Ar plasma.<br>Surfaces and Interfaces, 2022, 33, 102220.                                                             | 3.0  | 10        |
| 567 | Raman study on electrochemical lithium insertion into multiwalled carbon nanotubes. Journal of<br>Raman Spectroscopy, 2008, 39, 1183-1188.                                                          | 2.5  | 9         |
| 568 | Efficient Vapor Sensors Using Foils of Dispersed Nitrogen-Doped and Pure Carbon Multiwalled<br>Nanotubes. Journal of Nanoscience and Nanotechnology, 2010, 10, 3965-3972.                           | 0.9  | 9         |
| 569 | Enhanced Solubilization of Carbon Nanotubes in Aqueous Suspensions of Anionic–Nonionic<br>Surfactant Mixtures. Journal of Physical Chemistry C, 2013, 117, 25138-25145.                             | 3.1  | 9         |
| 570 | Iron Particle Nanodrilling of Few Layer Graphene at Low Electron Beam Accelerating Voltages.<br>Particle and Particle Systems Characterization, 2013, 30, 76-82.                                    | 2.3  | 9         |
| 571 | Carbon nanotube-Cu hybrids enhanced catalytic activity in aqueous media. Carbon, 2014, 78, 10-18.                                                                                                   | 10.3 | 9         |
| 572 | Self-Assembly Synthesis of Decorated Nitrogen-Doped Carbon Nanotubes with ZnO Nanoparticles:<br>Anchoring Mechanism and the Effects of Sulfur. Journal of Physical Chemistry C, 2015, 119, 741-747. | 3.1  | 9         |
| 573 | Temperature Dependence of Sensors Based on Silver-Decorated Nitrogen-Doped Multiwalled Carbon<br>Nanotubes. Journal of Sensors, 2016, 2016, 1-10.                                                   | 1.1  | 9         |
| 574 | Electric-Field-Assisted Directed Assembly of Transition Metal Dichalcogenide Monolayer Sheets. ACS<br>Nano, 2016, 10, 5006-5014.                                                                    | 14.6 | 9         |
| 575 | The amorphization of metal nanoparticles in graphitic shells under laser pulses. Carbon, 2020, 161, 495-501.                                                                                        | 10.3 | 9         |
| 576 | Doping and connecting carbon nanotubes. Molecular Crystals and Liquid Crystals, 2002, 387, 51-62.                                                                                                   | 0.9  | 8         |

| #   | Article                                                                                                                                                                                                      | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 577 | Growth of Double-Walled Carbon Nanotubes Using a Conditioning Catalyst. Journal of Nanoscience and Nanotechnology, 2005, 5, 404-408.                                                                         | 0.9  | 8         |
| 578 | Sodium Chloride-Catalyzed Oxidation of Multiwalled Carbon Nanotubes for Environmental Benefit.<br>Journal of Physical Chemistry B, 2006, 110, 12017-12021.                                                   | 2.6  | 8         |
| 579 | Vibration sample magnetometry, a good tool for the study of nanomagnetic inclusions. Superlattices and Microstructures, 2008, 43, 482-486.                                                                   | 3.1  | 8         |
| 580 | Controlled growth of one-dimensional clusters of molybdenum atoms using double-walled carbon nanotube templating. Applied Physics Letters, 2009, 94, .                                                       | 3.3  | 8         |
| 581 | Unusually High Dispersion of Nitrogen-Doped Carbon Nanotubes in DNA Solution. Journal of Physical Chemistry B, 2011, 115, 14295-14300.                                                                       | 2.6  | 8         |
| 582 | Preparation of novel tetrahedral Ag3PO4 crystals and the sunlight-responsive photocatalytic properties using graphene oxide as the template. Carbon, 2017, 119, 522-526.                                     | 10.3 | 8         |
| 583 | The Improvement of the Bleaching of Peroxyformic Sugar Cane Bagasse Pulp by Photocatalysis and Photosensitization. Journal of the Brazilian Chemical Society, 1999, 10, 197-202.                             | 0.6  | 7         |
| 584 | Large-Scale Synthesis of Carbon Nanotubes by Pyrolysis. , 1999, , 143-152.                                                                                                                                   |      | 7         |
| 585 | Sensors: Photosensor Device Based on Few‣ayered WS <sub>2</sub> Films (Adv. Funct. Mater. 44/2013).<br>Advanced Functional Materials, 2013, 23, 5510-5510.                                                   | 14.9 | 7         |
| 586 | Magnetic and Electrical Properties of Nitrogen-Doped Multiwall Carbon Nanotubes Fabricated by a<br>Modified Chemical Vapor Deposition Method. Journal of Nanomaterials, 2015, 2015, 1-14.                    | 2.7  | 7         |
| 587 | Transport properties through hexagonal boron nitride clusters embedded in graphene nanoribbons.<br>Nanotechnology, 2016, 27, 185203.                                                                         | 2.6  | 7         |
| 588 | Fullerene and nanotube growth: new insights using first principles and molecular dynamics.<br>Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2016, 374,<br>20150327. | 3.4  | 7         |
| 589 | Probing the interaction of noble gases with pristine and nitrogen-doped graphene through Raman spectroscopy. Physical Review B, 2018, 97, .                                                                  | 3.2  | 7         |
| 590 | Nanotechnology of nanotubes and nanowires: From aligned carbon nanotubes to silicon oxide nanowires. , 1998, , .                                                                                             |      | 6         |
| 591 | SiO2-coated carbon nanotubes: theory and experiment. International Journal of Materials Research, 2002, 93, 455-458.                                                                                         | 0.8  | 6         |
| 592 | Magnetic and transport properties of Fe nanowires encapsulated in carbon nanotubes. Journal of<br>Magnetism and Magnetic Materials, 2004, 272-276, E1255-E1257.                                              | 2.3  | 6         |
| 593 | Formation of off-centered double-walled carbon nanotubes exhibiting wide interlayer spacing from bi-cables. Chemical Physics Letters, 2006, 432, 240-244.                                                    | 2.6  | 6         |
| 594 | Determination of chiralities of single-walled carbon nanotubes by neutron powder diffraction technique. Diamond and Related Materials, 2007, 16, 473-476.                                                    | 3.9  | 6         |

| #   | Article                                                                                                                                                                                                             | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 595 | Soft purification of N-doped and undoped multi-wall carbon nanotubes. Nanotechnology, 2008, 19, 155701.                                                                                                             | 2.6 | 6         |
| 596 | Magnetic Properties of Encapsulated Nanoparticles in Nitrogen-Doped Multiwalled Cabon Nanotubes<br>Embedded in SiO <sub><i>x</i></sub> Matrices. Journal of Nanoscience and Nanotechnology, 2010, 10,<br>5576-5582. | 0.9 | 6         |
| 597 | Sensitive G-Band Raman Features for the Electrical Conductivity of Multi-Walled Carbon Nanotubes.<br>Journal of Nanoscience and Nanotechnology, 2010, 10, 3940-3944.                                                | 0.9 | 6         |
| 598 | Electrical transport through single-wall carbon nanotube–anodic aluminum oxide–aluminum<br>heterostructures. Nanotechnology, 2010, 21, 035707.                                                                      | 2.6 | 6         |
| 599 | Metal–semiconductor transition like behavior of naphthalene-doped single wall carbon nanotube<br>bundles. Faraday Discussions, 2014, 173, 145-156.                                                                  | 3.2 | 6         |
| 600 | Controllable and Predictable Viscoelastic Behavior of 3D Boronâ€Doped Multiwalled Carbon Nanotube<br>Sponges. Particle and Particle Systems Characterization, 2016, 33, 21-26.                                      | 2.3 | 6         |
| 601 | Probing the origin of lateral heterogeneities in synthetic monolayer molybdenum disulfide. 2D<br>Materials, 2019, 6, 025008.                                                                                        | 4.4 | 6         |
| 602 | Thermal and Photo Sensing Capabilities of Mono- and Few-Layer Thick Transition Metal<br>Dichalcogenides. Micromachines, 2020, 11, 693.                                                                              | 2.9 | 6         |
| 603 | Superconductivity enhancement in phase-engineered molybdenum carbide/disulfide vertical heterostructures. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 19685-19693.  | 7.1 | 6         |
| 604 | Enhanced desalination performance in compacted carbon-based reverse osmosis membranes.<br>Nanoscale Advances, 2020, 2, 3444-3451.                                                                                   | 4.6 | 6         |
| 605 | Mouse pulmonary dose- and time course-responses induced by exposure to nitrogen-doped multi-walled carbon nanotubes. Inhalation Toxicology, 2020, 32, 24-38.                                                        | 1.6 | 6         |
| 606 | Multiple excitations and temperature study of the disorder-induced Raman bands in MoS <sub>2</sub> .<br>2D Materials, 2021, 8, 035042.                                                                              | 4.4 | 6         |
| 607 | Understanding the influence of nanocarbon conducting modes on the rate performance of LiFePO4 cathodes in lithium-ion batteries. Journal of Alloys and Compounds, 2022, 905, 164205.                                | 5.5 | 6         |
| 608 | Autonomous scanning probe microscopy investigations over WS2 and Au{111}. Npj Computational Materials, 2022, 8, .                                                                                                   | 8.7 | 6         |
| 609 | Synthetic Routes to Novel Nanomaterials. Fullerenes, Nanotubes, and Carbon Nanostructures, 1997, 5, 813-827.                                                                                                        | 0.6 | 5         |
| 610 | New advances in the creation of nanostructural materials. Pure and Applied Chemistry, 1999, 71, 2125-2130.                                                                                                          | 1.9 | 5         |
| 611 | Metal and alloy nanowires: Iron and invar inside carbon nanotubes. AIP Conference Proceedings, 2001,                                                                                                                | 0.4 | 5         |
| 612 | Determination of the stacking order of curved few-layered graphene systems. Nanoscale, 2012, 4, 6419.                                                                                                               | 5.6 | 5         |

| #   | Article                                                                                                                                                                                      | IF       | CITATIONS    |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------------|
| 613 | Boron-assisted coalescence of parallel multi-walled carbon nanotubes. RSC Advances, 2013, 3, 26266.                                                                                          | 3.6      | 5            |
| 614 | Novel Carbon-Based Nanomaterials. , 2013, , 61-87.                                                                                                                                           |          | 5            |
| 615 | (Ga,In)P nanowires grown without intentional catalyst. Journal of Crystal Growth, 2015, 431, 72-78.                                                                                          | 1.5      | 5            |
| 616 | Solvothermal synthesis of porous conjugated polymer with high surface area for efficient adsorption of organic and biomolecules. Journal of Porous Materials, 2018, 25, 1659-1668.           | 2.6      | 5            |
| 617 | Probing exciton species in atomically thin WS <sub>2</sub> –graphene heterostructures. JPhys<br>Materials, 2019, 2, 025001.                                                                  | 4.2      | 5            |
| 618 | Effects of dimensionality and excitation energy on the Raman tensors of triclinic ReSe <sub>2</sub> .<br>Journal of Raman Spectroscopy, 2021, 52, 2068-2080.                                 | 2.5      | 5            |
| 619 | 3d transition metal coordination on monolayer MoS <sub>2</sub> : a facile doping method to functionalize surfaces. Nanoscale, 2022, 14, 10801-10815.                                         | 5.6      | 5            |
| 620 | Fullerenes with Non-Positive Gaussian Curvature: Holey-Balls and Holey-Tubes. Fullerenes, Nanotubes, and Carbon Nanostructures, 1998, 6, 751-767.                                            | 0.6      | 4            |
| 621 | Modified Carbon Nanotubes. , 2013, , 189-232.                                                                                                                                                |          | 4            |
| 622 | Pine-tree-like morphologies of nitrogen-doped carbon nanotubes: Electron field emission enhancement. Journal of Materials Research, 2014, 29, 2441-2450.                                     | 2.6      | 4            |
| 623 | Enhancing the superconducting temperature of MgB2 by SWCNT dilution. Physica C:<br>Superconductivity and Its Applications, 2014, 497, 43-48.                                                 | 1.2      | 4            |
| 624 | Lithiumâ€lon Batteries: Graphene Sandwiched Mesostructured Liâ€lon Battery Electrodes (Adv. Mater.) Tj ETQqC                                                                                 | 0.0 rgBT | /Oyerlock 10 |
| 625 | Themed issue on 2D materials. Journal of Materials Chemistry C, 2017, 5, 11156-11157.                                                                                                        | 5.5      | 4            |
| 626 | Pyrrolic nitrogen-doped multiwall carbon nanotubes using ball-milled slag-SiC mixtures as a catalyst<br>by aerosol assisted chemical vapor deposition. Materials Research Express, 2020, , . | 1.6      | 4            |
| 627 | Review of optical properties of two-dimensional transition metal dichalcogenides. , 2018, , .                                                                                                |          | 4            |
| 628 | Advances on the growth and properties of N- and B-doped carbon nanotubes. AIP Conference<br>Proceedings, 2001, , .                                                                           | 0.4      | 3            |
| 629 | Pure and aligned carbon nanotubes produced by the pyrolysis of benzene-based aerosols. AIP<br>Conference Proceedings, 2001, , .                                                              | 0.4      | 3            |
| 630 | Selective Fabrication of Carbon Nanotube and Their Applications. Journal of Biomedical<br>Nanotechnology, 2006, 2, 106-108.                                                                  | 1.1      | 3            |

| #   | Article                                                                                                                                                                              | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 631 | Magnetic properties of carbon nanostructures. International Journal of Nanotechnology, 2007, 4, 651.                                                                                 | 0.2  | 3         |
| 632 | Self-diffraction properties in nanotubes (CNTs). Proceedings of SPIE, 2009, , .                                                                                                      | 0.8  | 3         |
| 633 | Synthesis and Characterization of Nitrogen Doped Carbon Nanotubes. Materials Science Forum, 0, 636-637, 714-721.                                                                     | 0.3  | 3         |
| 634 | Resource Letter N-1: Nanotechnology. American Journal of Physics, 2014, 82, 8-22.                                                                                                    | 0.7  | 3         |
| 635 | Atomic-scale Observation of Grains and Grain Boundaries in Monolayers of WS <sub>2</sub> .<br>Microscopy and Microanalysis, 2014, 20, 1084-1085.                                     | 0.4  | 3         |
| 636 | Individual Mo Dopant Atoms in WS2 Monolayers: Atomic Structure and Induced Strain. Microscopy and Microanalysis, 2015, 21, 435-436.                                                  | 0.4  | 3         |
| 637 | Stable and solid pellets of functionalized multi-walled carbon nanotubes produced under high pressure and temperature. Journal of Nanoparticle Research, 2015, 17, 1.                | 1.9  | 3         |
| 638 | Polysulphone composite membranes modified with two types of carbon additives as a potential material for bone tissue regeneration. Bulletin of Materials Science, 2017, 40, 201-212. | 1.7  | 3         |
| 639 | BNC nanoshells: a novel structure for atomic storage. Nanotechnology, 2017, 28, 465201.                                                                                              | 2.6  | 3         |
| 640 | Phenomenological Modeling of Confined Phonon States in TMD Quantum Dots. MRS Advances, 2018, 3, 339-344.                                                                             | 0.9  | 3         |
| 641 | Catalytic Nanocarbons: Defect Engineering and Surface Functionalization of Nanocarbons for<br>Metalâ€Free Catalysis (Adv. Mater. 13/2019). Advanced Materials, 2019, 31, 1970096.    | 21.0 | 3         |
| 642 | Hollow "graphene―microtubes using polyacrylonitrile nanofiber template and potential applications<br>of field emission. Carbon, 2020, 167, 439-445.                                  | 10.3 | 3         |
| 643 | Multi-walled carbon nanotubes enhance the genetic transformation of Bifidobacterium longum.<br>Carbon, 2021, 184, 902-909.                                                           | 10.3 | 3         |
| 644 | Properties and Applications of Doped Carbon Nanotubes. , 2009, , 223-269.                                                                                                            |      | 3         |
| 645 | Data Science Applied to Carbon Materials: Synthesis, Characterization, and Applications. Advanced Theory and Simulations, 2022, 5, 2100205.                                          | 2.8  | 3         |
| 646 | Spatially resolved EELS applied to the study of a one-dimensional solid solution of AgCl1â^'xlx formed within single wall carbon nanotubes. AIP Conference Proceedings, 2002, , .    | 0.4  | 2         |
| 647 | Banhart, Hernández, and Terrones Reply:. Physical Review Letters, 2004, 92, .                                                                                                        | 7.8  | 2         |
| 648 | Science and Technology of the Twenty-First Century: Synthesis, Properties, and Applications of Carbon<br>Nanotubes. ChemInform, 2004, 35, no.                                        | 0.0  | 2         |

| #   | ARTICLE                                                                                                                                                                                                                                         | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 649 | Microfluidic device with carbon nanotube channel walls for blood plasma extraction. , 2013, , .                                                                                                                                                 |      | 2         |
| 650 | Three-dimensional Nanotube Networks and a New Horizon of Applications. , 2014, , 457-493.                                                                                                                                                       |      | 2         |
| 651 | Synthesis, Characterization and Magnetic Properties of Defective Nitrogen-Doped Multiwall Carbon<br>Nanotubes Encapsulating Ferromagnetic Nanoparticles. Journal of Nano Research, 2014, 28, 39-49.                                             | 0.8  | 2         |
| 652 | Covalent Networks: 3D Nanocomposites of Covalently Interconnected Multiwalled Carbon Nanotubes<br>with SiC with Enhanced Thermal and Electrical Properties (Adv. Funct. Mater. 31/2015). Advanced<br>Functional Materials, 2015, 25, 4922-4922. | 14.9 | 2         |
| 653 | Random anion distribution in MSxSe2â~'x (M = Mo, W) crystals and nanosheets. RSC Advances, 2018, 8,<br>9871-9878.                                                                                                                               | 3.6  | 2         |
| 654 | Functional Pd/reduced graphene oxide nanocomposites: effect of reduction degree and doping in hydrodechlorination catalytic activity. Journal of Nanoparticle Research, 2019, 21, 1.                                                            | 1.9  | 2         |
| 655 | Spin dependent transport in hybrid one dimensional BNC systems. Semiconductor Science and Technology, 2019, 34, 015004.                                                                                                                         | 2.0  | 2         |
| 656 | Selective Synthesis of Bi <sub>2</sub> Te <sub>3</sub> /WS <sub>2</sub> Heterostructures with Strong<br>Interlayer Coupling. ACS Applied Materials & Interfaces, 2020, , .                                                                      | 8.0  | 2         |
| 657 | Carbon Nanotubes and Nanofibres: Exotic Materials of Carbon. Tanso, 2000, 2000, 424-433.                                                                                                                                                        | 0.1  | 2         |
| 658 | Roomâ€Temperature Observation of Nearâ€Intrinsic Exciton Linewidth in Monolayer WS <sub>2</sub><br>(Adv. Mater. 15/2022). Advanced Materials, 2022, 34, .                                                                                       | 21.0 | 2         |
| 659 | Fullerene Formation. , 2001, , 3372-3379.                                                                                                                                                                                                       |      | 1         |
| 660 | Defects and coalescence in carbon nanotubes. AIP Conference Proceedings, 2001, , .                                                                                                                                                              | 0.4  | 1         |
| 661 | Mössbauer Study of Iron-Containing Carbon Nanotubes. , 2002, , 535-542.                                                                                                                                                                         |      | 1         |
| 662 | Novel Nanostructures: from Metal-Filled Carbon Nanotubes to MgO Nanoferns. , 2002, , 11-19.                                                                                                                                                     |      | 1         |
| 663 | Advances in Cnx Nanotube Growth. Materials Research Society Symposia Proceedings, 2003, 772, 251.                                                                                                                                               | 0.1  | 1         |
| 664 | A big step for Ecuador. Nature Materials, 2010, 9, 704-705.                                                                                                                                                                                     | 27.5 | 1         |
| 665 | Magnetoresistance and Phase Breaking Behavior of a Nitrogen Doped Multi-Walled Carbon Nanotube.<br>Japanese Journal of Applied Physics, 2010, 49, 02BD01.                                                                                       | 1.5  | 1         |
| 666 | Transparent Foamlike 2D Networks of Nitrogen-Doped Multiwalled Carbon Nanotubes Obtained by<br>Self-Assembly. Journal of Physical Chemistry C, 2011, 115, 11447-11452.                                                                          | 3.1  | 1         |

| #   | Article                                                                                                                                                                                                      | IF               | CITATIONS                 |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------------------------|
| 667 | Selective synthesis of double helices of carbon nanotube bundles grown on treated metallic substrates. Physica Status Solidi (B): Basic Research, 2012, 249, 2382-2385.                                      | 1.5              | 1                         |
| 668 | Carbon Nanotubes: Catalytic Twistâ€Spun Yarns of Nitrogenâ€Doped Carbon Nanotubes (Adv. Funct.) Tj ETQq0                                                                                                     | 0 0 rgBT<br>14.9 | /Overlock 10 <sup>-</sup> |
| 669 | Porous Materials: Controlling the Optical, Electrical and Chemical Properties of Carbon Inverse Opal<br>by Nitrogen Doping (Adv. Funct. Mater. 18/2014). Advanced Functional Materials, 2014, 24, 2611-2611. | 14.9             | 1                         |
| 670 | A VACNT integrated handheld device for label-free virus capture, detection and enrichment for genomic analysis. , 2015, , .                                                                                  |                  | 1                         |
| 671 | Observation of a Quasi-ordered Structure in Monolayer W x Mo (1-x) S 2 Alloys. Microscopy and Microanalysis, 2016, 22, 1548-1549.                                                                            | 0.4              | 1                         |
| 672 | Fano Resonances: Tunable Fano Resonance and Plasmon-Exciton Coupling in Single Au Nanotriangles<br>on Monolayer WS2 at Room Temperature (Adv. Mater. 22/2018). Advanced Materials, 2018, 30, 1870155.        | 21.0             | 1                         |
| 673 | A Review of Defects in Metal Dichalcogenides: Doping, Alloys, Interfaces, Vacancies and Their Effects<br>in Catalysis & Optical Emission. Microscopy and Microanalysis, 2018, 24, 1556-1557.                 | 0.4              | 1                         |
| 674 | Agnès Oberlin (1925–2019) – A tribute from the Carbon Journal. Carbon, 2019, 147, 126-133.                                                                                                                   | 10.3             | 1                         |
| 675 | Dielectric Nanospheres: Directional Modulation of Exciton Emission Using Single Dielectric<br>Nanospheres (Adv. Mater. 20/2021). Advanced Materials, 2021, 33, 2170153.                                      | 21.0             | 1                         |
| 676 | A Simple Route to Silicon-Based Nanostructures. Advanced Materials, 1999, 11, 844-847.                                                                                                                       | 21.0             | 1                         |
| 677 | Mildred S. Dresselhaus (1930 – 2017) – A Tribute from the Carbon Journal. Carbon, 2017, 119, 573-577.                                                                                                        | 10.3             | 1                         |
| 678 | Identification of individual and few layers of WS2 using Raman Spectroscopy. , 0, .                                                                                                                          |                  | 1                         |
| 679 | Carbon Nanotubes and Other Carbon Materials. , 2008, , 691-706.                                                                                                                                              |                  | 1                         |
| 680 | MoS2 Monolayers on Nanocavities: Enhanced Light-Matter Interaction within Atomic Monolayers. ,<br>2016, , .                                                                                                  |                  | 1                         |
| 681 | Induced Ring Currents in Polymerized C <sub>60</sub> and C <sub>70</sub> Molecules. Journal of Computational and Theoretical Nanoscience, 2007, 4, 257-263.                                                  | 0.4              | 1                         |
| 682 | Enhancement in Light-Matter Interaction within Atomic MoS2 Monolayers on Nanocavities. , 2016, , .                                                                                                           |                  | 1                         |
| 683 | Electron Irradiation Effects in Carbon Nanostructures: Surface Reconstruction, Extreme<br>Compression, Nanotube Growth and Morphology Manipulation. , 2008, , 155-156.                                       |                  | 1                         |
| 684 | Evolution of spectroscopy features in layered MoS <sub>x</sub> Se <sub>(2-x)</sub> solid solutions.<br>Materials Research Express, 2022, 9, 046301.                                                          | 1.6              | 1                         |

| #   | Article                                                                                                                                                                                                               | IF                     | CITATIONS          |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|--------------------|
| 685 | Formation of Twisted AB-Graphitic and Fullerene-Related Tubular Structures During Soot Deposition from the Flaming Combustion of Polymers. Combustion and Flame, 1998, 114, 591-593.                                  | 5.2                    | 0                  |
| 686 | Pyrolysis of C[sub 60]-thin films yields Ni-filled sharp nanotubes. , 1998, , .                                                                                                                                       |                        | 0                  |
| 687 | Experimental observation and quantum modeling of electron irradiation on single-wall carbon nanotubes. , 2003, , .                                                                                                    |                        | 0                  |
| 688 | Exploring the carbon nanocosmos: doped nanotubes, networks, and other novel forms of carbon. , 2003, , .                                                                                                              |                        | 0                  |
| 689 | Introduction. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2004, 362, 2035-2037.                                                                                            | 3.4                    | 0                  |
| 690 | Ring Currents in Carbon Nanostructures: Magnetic Field Effects. AIP Conference Proceedings, 2005, , .                                                                                                                 | 0.4                    | 0                  |
| 691 | Tetrahedral magnetic cluster embedded in metallic matrix: electron-correlation effects. IEEE<br>Transactions on Magnetics, 2005, 41, 3428-3430.                                                                       | 2.1                    | 0                  |
| 692 | Optical Spectroscopic Studies of Thermally Coalesced Single-Walled Carbon Nanotubes. Journal of Nanoscience and Nanotechnology, 2010, 10, 3878-3883.                                                                  | 0.9                    | 0                  |
| 693 | Structural changes to aid science in developing countries. Nature, 2010, 464, 486-486.                                                                                                                                | 27.8                   | 0                  |
| 694 | Nanoribbons: Nitrogenâ€Ðoped Graphitic Nanoribbons: Synthesis, Characterization, and Transport (Adv.) Tj ETQv                                                                                                         | q0.0.0 rgB<br>14.9 rgB | T  Overlock ]<br>0 |
| 695 | Nanodrilling: Iron Particle Nanodrilling of Few Layer Graphene at Low Electron Beam Accelerating<br>Voltages (Part. Part. Syst. Charact. 1/2013). Particle and Particle Systems Characterization, 2013, 30,<br>75-75. | 2.3                    | 0                  |
| 696 | Polarized Induced Magnetic Broadening of Photonic Activities in Fe3O4-Elastomer Composites.<br>Materials Research Society Symposia Proceedings, 2013, 1509, 1.                                                        | 0.1                    | 0                  |
| 697 | Graphene: Large-Area Si-Doped Graphene: Controllable Synthesis and Enhanced Molecular Sensing<br>(Adv. Mater. 45/2014). Advanced Materials, 2014, 26, 7676-7676.                                                      | 21.0                   | 0                  |
| 698 | Harmonic generation in 2D layered materials. , 2014, , .                                                                                                                                                              |                        | 0                  |
| 699 | 4. The importance of defects and dopants within carbon nanomaterials during the fabrication of polymer composites. , 2014, , 71-122.                                                                                  |                        | 0                  |
| 700 | Harold Walter Kroto: A carbon scientist, humanist, spectroscopist, graphic designer, tennis player<br>and friend (1939–2016). Carbon, 2016, 108, 103-105.                                                             | 10.3                   | 0                  |
| 701 | Anchorage of Î <sup>3</sup> -Al2O3 nanoparticles on nitrogen-doped multiwalled carbon nanotubes. Scripta<br>Materialia, 2016, 123, 17-20.                                                                             | 5.2                    | 0                  |
| 702 | Magnetic quenching of photonic activity in Fe3O4-elastomer composite. Journal of Nanophotonics, 2016, 10, 016017.                                                                                                     | 1.0                    | 0                  |

| #   | Article                                                                                                                                                                                                                                                                         | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 703 | Fullerene Formationâ <sup>-</sup> †. , 2017, , .                                                                                                                                                                                                                                |      | 0         |
| 704 | Electrochemical Exfoliation: On the Role of Transition Metal Salts During Electrochemical<br>Exfoliation of Graphite: Antioxidants or Metal Oxide Decorators for Energy Storage Applications<br>(Adv. Funct. Mater. 48/2018). Advanced Functional Materials, 2018, 28, 1870345. | 14.9 | 0         |
| 705 | Dark Excitons: Darkâ€Excitonâ€Mediated Fano Resonance from a Single Gold Nanostructure on<br>Monolayer WS <sub>2</sub> at Room Temperature (Small 31/2019). Small, 2019, 15, 1970164.                                                                                           | 10.0 | 0         |
| 706 | The application of low-dimensional materials in virology and in the study of living organisms. , 2020, , 403-441.                                                                                                                                                               |      | 0         |
| 707 | Temperature-Dependent RF Characteristics of Alâ,"Oâ,ƒ-Passivated WSeâ,, MOSFETs. IEEE Electron Device<br>Letters, 2020, 41, 1134-1137.                                                                                                                                          | 3.9  | 0         |
| 708 | Graphene Oxide Membranes for Water Filtration. Membrane, 2021, 46, 184-186.                                                                                                                                                                                                     | 0.0  | 0         |
| 709 | Controlled Production of Tubular Carbon and BCN Architecture. , 2001, , 171-185.                                                                                                                                                                                                |      | 0         |
| 710 | Novel Nanostructures: from Metal-Filled Carbon Nanotubes to MgO Nanoferns. , 2002, , 11-19.                                                                                                                                                                                     |      | 0         |
| 711 | THE SHAPE OF CARBON: NOVEL MATERIALS FOR THE 21ST CENTURY. Series on Iraq War and Its Consequences, 2007, , 7-32.                                                                                                                                                               | 0.1  | 0         |
| 712 | Carbon Nanotubes and Other Carbon Materials. , 2014, , 628-642.                                                                                                                                                                                                                 |      | 0         |
| 713 | In-situ electron irradiation studies of metal-carbon nanostructures. , 2008, , 121-122.                                                                                                                                                                                         |      | 0         |

Data Science Applied to Carbon Materials: Synthesis, Characterization, and Applications (Adv. Theory) Tj ETQq0 0 0.rgBT /Overlock 10 Tr