Marco Persico

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7185907/publications.pdf

Version: 2024-02-01

		279701	3	315616
52	1,507	23		38
papers	citations	h-index		g-index
53	53	53		2286
all docs	docs citations	times ranked		citing authors

#	Article	IF	CITATIONS
1	Synthesis of N1-arylidene-N2-quinolyl- and N2-acrydinylhydrazones as potent antimalarial agents active against CQ-resistant P. falciparum strains. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 5384-5388.	1.0	142
2	Paclitaxel Directly Binds to Bcl-2 and Functionally Mimics Activity of Nur77. Cancer Research, 2009, 69, 6906-6914.	0.4	142
3	Design, Synthesis, and Structure–Activity Relationship Studies of 4-Quinolinyl- and 9-Acrydinylhydrazones as Potent Antimalarial Agents. Journal of Medicinal Chemistry, 2008, 51, 1333-1343.	2.9	73
4	Specific Targeting of Hepatitis C Virus NS3 RNA Helicase. Discovery of the Potent and Selective Competitive Nucleotide-Mimicking Inhibitor QU663. Biochemistry, 2005, 44, 9637-9644.	1,2	71
5	Endoperoxide Derivatives from Marine Organisms:  1,2-Dioxanes of the Plakortin Family as Novel Antimalarial Agents. Journal of Medicinal Chemistry, 2006, 49, 7088-7094.	2.9	66
6	Development of Molecular Probes for the Identification of Extra Interaction Sites in the Mid-Gorge and Peripheral Sites of Butyrylcholinesterase (BuChE). Rational Design of Novel, Selective, and Highly Potent BuChE Inhibitorsâ€. Journal of Medicinal Chemistry, 2005, 48, 1919-1929.	2.9	65
7	Exploiting Protein Fluctuations at the Active-Site Gorge of Human Cholinesterases: Further Optimization of the Design Strategy to Develop Extremely Potent Inhibitors. Journal of Medicinal Chemistry, 2008, 51, 3154-3170.	2.9	56
8	Combining 4-Aminoquinoline- and Clotrimazole-Based Pharmacophores toward Innovative and Potent Hybrid Antimalarials. Journal of Medicinal Chemistry, 2009, 52, 502-513.	2.9	55
9	Manadoperoxides Aâ^'D from the Indonesian Sponge Plakortis cfr. simplex. Further Insights on the Structureâ^'Activity Relationships of Simple 1,2-Dioxane Antimalarials. Journal of Natural Products, 2010, 73, 1138-1145.	1.5	54
10	Clotrimazole Scaffold as an Innovative Pharmacophore Towards Potent Antimalarial Agents: Design, Synthesis, and Biological and Structure–Activity Relationship Studies. Journal of Medicinal Chemistry, 2008, 51, 1278-1294.	2.9	45
11	Oxime Amides as a Novel Zinc Binding Group in Histone Deacetylase Inhibitors: Synthesis, Biological Activity, and Computational Evaluation. Journal of Medicinal Chemistry, 2011, 54, 2165-2182.	2.9	45
12	Specific Targeting Highly Conserved Residues in the HIV-1 Reverse Transcriptase Primer Grip Region. Design, Synthesis, and Biological Evaluation of Novel, Potent, and Broad Spectrum NNRTIs with Antiviral Activity. Journal of Medicinal Chemistry, 2005, 48, 7153-7165.	2.9	43
13	Investigating the Role of T ₇ and T ₁₂ Residues on the Biological Properties of Thrombin-Binding Aptamer: Enhancement of Anticoagulant Activity by a Single Nucleobase Modification. Journal of Medicinal Chemistry, 2012, 55, 10716-10728.	2.9	42
14	Identification of the First Inhibitor of the GBP1:PIM1 Interaction. Implications for the Development of a New Class of Anticancer Agents against Paclitaxel Resistant Cancer Cells. Journal of Medicinal Chemistry, 2014, 57, 7916-7932.	2.9	41
15	Design and Synthesis of Potent Antimalarial Agents Based on Clotrimazole Scaffold:Â Exploring an Innovative Pharmacophore. Journal of Medicinal Chemistry, 2007, 50, 595-598.	2.9	40
16	Insight into the mechanism of action of plakortins, simple 1,2-dioxaneantimalarials. Organic and Biomolecular Chemistry, 2010, 8, 846-856.	1.5	39
17	Specific Targeting of Peripheral Serotonin 5-HT ₃ Receptors. Synthesis, Biological Investigation, and Structureâ ^a Activity Relationships. Journal of Medicinal Chemistry, 2009, 52, 3548-3562.	2.9	38
18	Investigating the Neuroprotective Effects of Turmeric Extract: Structural Interactions of \hat{l}^2 -Amyloid Peptide with Single Curcuminoids. Scientific Reports, 2016, 6, 38846.	1.6	28

#	Article	IF	Citations
19	Outstanding effects on antithrombin activity of modified TBA diastereomers containing an optically pure acyclic nucleotide analogue. Organic and Biomolecular Chemistry, 2014, 12, 5235-5242.	1.5	27
20	Cationic porphyrins are tunable gatekeepers of the 20S proteasome. Chemical Science, 2016, 7, 1286-1297.	3.7	27
21	Antimalarials based on the dioxane scaffold of plakortin. A concise synthesis and SAR studies. Bioorganic and Medicinal Chemistry, 2011, 19, 312-320.	1.4	26
22	Discovery of Bishomo(hetero)arylpiperazines as Novel Multifunctional Ligands Targeting Dopamine D3and Serotonin 5-HT1Aand 5-HT2AReceptors. Journal of Medicinal Chemistry, 2010, 53, 4803-4807.	2.9	25
23	Investigating the Antiparasitic Potential of the Marine Sesquiterpene Avarone, Its Reduced Form Avarol, and the Novel Semisynthetic Thiazinoquinone Analogue Thiazoavarone. Marine Drugs, 2020, 18, 112.	2.2	24
24	Oxidative stress-mediated antimalarial activity of plakortin, a natural endoperoxide from the tropical sponge Plakortis simplex. Free Radical Biology and Medicine, 2015, 89, 624-637.	1.3	21
25	Endoperoxide polyketides from a Chinese Plakortis simplex: Further evidence of the impact of stereochemistry on antimalarial activity of simple 1,2-dioxanes. Bioorganic and Medicinal Chemistry, 2014, 22, 4572-4580.	1.4	20
26	Development of piperazine-tethered heterodimers as potent antimalarials against chloroquine-resistant P. falciparum strains. Synthesis and molecular modeling. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 3535-3539.	1.0	18
27	A New Class of Antimalarial Dioxanes Obtained through a Simple Two-Step Synthetic Approach: Rational Design and Structure–Activity Relationship Studies. Journal of Medicinal Chemistry, 2011, 54, 8526-8540.	2.9	17
28	Investigation of the Bcl-2 multimerisation process: Structural and functional implications. Biochimica Et Biophysica Acta - Molecular Cell Research, 2011, 1813, 850-857.	1.9	17
29	New Anticancer Agents Mimicking Protein Recognition Motifs. Journal of Medicinal Chemistry, 2013, 56, 6666-6680.	2.9	16
30	Marine inspired antiplasmodial thiazinoquinones: synthesis, computational studies and electrochemical assays. RSC Advances, 2015, 5, 70689-70702.	1.7	16
31	Optimized Synthesis and Antimalarial Activity of 1,2â€Dioxaneâ€4â€carboxamides. European Journal of Organic Chemistry, 2014, 2014, 1607-1614.	1.2	15
32	Exploring the antimalarial potential of the methoxy-thiazinoquinone scaffold: Identification of a new lead candidate. Bioorganic Chemistry, 2019, 85, 240-252.	2.0	15
33	The interaction of heme with plakortin and a synthetic endoperoxide analogue: new insights into the heme-activated antimalarial mechanism. Scientific Reports, 2017, 7, 45485.	1.6	13
34	Further optimization of plakortin pharmacophore: Structurally simple 4-oxymethyl-1,2-dioxanes with promising antimalarial activity. European Journal of Medicinal Chemistry, 2013, 70, 875-886.	2.6	12
35	New antimalarial 3-methoxy-1,2-dioxanes: optimization of cellular pharmacokinetics and pharmacodynamics properties by incorporation of amino and N-heterocyclic moieties at C4. RSC Advances, 2015, 5, 72995-73010.	1.7	12
36	Insight into the Mechanism of Action of Marine Cytotoxic Thiazinoquinones. Marine Drugs, 2017, 15, 335.	2.2	11

#	Article	IF	CITATIONS
37	GTP is an allosteric modulator of the interaction between the guanylate-binding protein 1 and the prosurvival kinase PIM1. European Journal of Medicinal Chemistry, 2015, 91, 132-144.	2.6	10
38	Electrostatic Map Of Proteasome α-Rings Encodes The Design of Allosteric Porphyrin-Based Inhibitors Able To Affect 20S Conformation By Cooperative Binding. Scientific Reports, 2017, 7, 17098.	1.6	10
39	Exploring the Photodynamic Properties of Two Antiproliferative Benzodiazopyrrole Derivatives. International Journal of Molecular Sciences, 2020, 21, 1246.	1.8	10
40	Hybrids between H2S-donors and betamethasone 17-valerate or triamcinolone acetonide inhibit mast cell degranulation and promote hyperpolarization of bronchial smooth muscle cells. European Journal of Medicinal Chemistry, 2021, 221, 113517.	2.6	10
41	Thiazinoquinones as New Promising Multistage Schistosomicidal Compounds Impacting Schistosoma mansoni and Egg Viability. ACS Infectious Diseases, 2020, 6, 124-137.	1.8	8
42	Use of Integrated Computational Approaches in the Search for New Therapeutic Agents. Molecular Informatics, 2016, 35, 309-325.	1.4	7
43	Cooperative Binding of the Cationic Porphyrin Tris-T4 Enhances Catalytic Activity of 20S Proteasome Unveiling a Complex Distribution of Functional States. International Journal of Molecular Sciences, 2020, 21, 7190.	1.8	7
44	From Protein Communication to Drug Discovery. Current Topics in Medicinal Chemistry, 2015, 15, 2019-2031.	1.0	7
45	Selective targeting of the HIV-1 reverse transcriptase catalytic complex through interaction with the "primer grip―region by pyrrolobenzoxazepinone non-nucleoside inhibitors correlates with increased activity towards drug-resistant mutants. Biochemical Pharmacology, 2008, 76, 156-168.	2.0	6
46	New Insights into the Structureâ€"Activity Relationship and Neuroprotective Profile of Benzodiazepinone Derivatives of Neurounina-1 as Modulators of the Na ⁺ /Ca ²⁺ Exchanger Isoforms. Journal of Medicinal Chemistry, 2021, 64, 17901-17919.	2.9	6
47	Antiplasmodial Activity of p-Substituted Benzyl Thiazinoquinone Derivatives and Their Potential against Parasitic Infections. Molecules, 2020, 25, 1530.	1.7	3
48	Benzodiazepine Scaffold as Drug-like Molecular Simplification of FR235222: A Chemical Tool for Exploring HDAC Inhibition. Current Topics in Medicinal Chemistry, 2016, 17, 441-459.	1.0	3
49	Silybins are stereospecific regulators of the 20S Proteasome. Bioorganic and Medicinal Chemistry, 2022, 66, 116813.	1.4	3
50	Editorial (Thematic Issue: Protein Interfaces as Targets in Drug Discovery). Current Topics in Medicinal Chemistry, 2015, 15, 2003-2004.	1.0	0
51	Computer-Aided Drug Discovery from Marine Compounds: Identification of the Three-Dimensional Structural Features Responsible for Antimalarial Activity. Progress in Molecular and Subcellular Biology, 2017, 55, 105-158.	0.9	0
52	Modulation of the 20S Proteasome Activity by Porphyrin Derivatives Is Steered through Their Charge Distribution. Biomolecules, 2022, 12, 741.	1.8	0