## Klaas Paul Pruessmann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7185794/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Monoâ€planar Tâ€Hex: Speed and flexibility for highâ€resolution 3D imaging. Magnetic Resonance in<br>Medicine, 2022, 87, 272-280.                                                                                            | 1.9 | 1         |
| 2  | Advances in spiral fMRI: A high-resolution study with single-shot acquisition. Neurolmage, 2022, 246, 118738.                                                                                                                | 2.1 | 18        |
| 3  | Pulse encoding for ZTE imaging: RF excitation without deadâ€ŧime penalty. Magnetic Resonance in<br>Medicine, 2022, 87, 1360-1374.                                                                                            | 1.9 | 4         |
| 4  | Evaluating diffusion dispersion across an extended range of bâ€values and frequencies: Exploiting<br>gapâ€filled OGSE shapes, strong gradients, and spiral readouts. Magnetic Resonance in Medicine, 2022,<br>87, 2710-2723. | 1.9 | 5         |
| 5  | Low Subicular Volume as an Indicator of Dementia-Risk Susceptibility in Old Age. Frontiers in Aging<br>Neuroscience, 2022, 14, 811146.                                                                                       | 1.7 | 5         |
| 6  | Advances in spiral fMRI: A high-resolution dataset. Data in Brief, 2022, 42, 108050.                                                                                                                                         | 0.5 | 0         |
| 7  | Thermal variation in gradient response: measurement and modeling. Magnetic Resonance in Medicine, 2022, 87, 2224-2238.                                                                                                       | 1.9 | 6         |
| 8  | Highâ€resolution MRI of mummified tissues using advanced shortâ€T <sub>2</sub> methodology and hardware. Magnetic Resonance in Medicine, 2021, 85, 1481-1492.                                                                | 1.9 | 7         |
| 9  | On the signalâ€ŧoâ€noise ratio benefit of spiral acquisition in diffusion MRI. Magnetic Resonance in<br>Medicine, 2021, 85, 1924-1937.                                                                                       | 1.9 | 28        |
| 10 | Tâ€Hex: Tilted hexagonal grids for rapid 3D imaging. Magnetic Resonance in Medicine, 2021, 85, 2507-2523.                                                                                                                    | 1.9 | 11        |
| 11 | Simultaneous feedback control for joint field and motion correction in brain MRI. NeuroImage, 2021, 226, 117286.                                                                                                             | 2.1 | 11        |
| 12 | Whole-brain estimates of directed connectivity for human connectomics. NeuroImage, 2021, 225, 117491.                                                                                                                        | 2.1 | 20        |
| 13 | Improved gradient waveforms for oscillating gradient spinâ€echo (OGSE) diffusion tensor imaging. NMR<br>in Biomedicine, 2021, 34, e4434.                                                                                     | 1.6 | 10        |
| 14 | Hemodynamic modeling of longâ€ŧerm aspirin effects on blood oxygenated level dependent responses at<br>7 Tesla in patients at cardiovascular risk. European Journal of Neuroscience, 2021, 53, 1262-1278.                    | 1.2 | 0         |
| 15 | Elastomer coils for wearable MR detection. Magnetic Resonance in Medicine, 2021, 85, 2882-2891.                                                                                                                              | 1.9 | 10        |
| 16 | HYFI: Hybrid filling of the deadâ€ŧime gap for faster zero echo time imaging. NMR in Biomedicine, 2021, 34,<br>e4493.                                                                                                        | 1.6 | 21        |
| 17 | Mechanism of anomalous sinking of an intruder in a granular packing close to incipient fluidization.<br>Physical Review Fluids, 2021, 6, .                                                                                   | 1.0 | 7         |
| 18 | Feasibility of spiral fMRI based on an LTI gradient model. NeuroImage, 2021, 245, 118674.                                                                                                                                    | 2.1 | 5         |

| #  | Article                                                                                                                                                                                | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | A Reconfigurable Platform for Magnetic Resonance Data Acquisition and Processing. IEEE<br>Transactions on Medical Imaging, 2020, 39, 1138-1148.                                        | 5.4 | 5         |
| 20 | An In-Bore Receiver for Magnetic Resonance Imaging. IEEE Transactions on Medical Imaging, 2020, 39, 997-1007.                                                                          | 5.4 | 6         |
| 21 | Longâ€T <sub>2</sub> â€suppressed zero echo time imaging with weighted echo subtraction and gradient error correction. Magnetic Resonance in Medicine, 2020, 83, 412-426.              | 1.9 | 8         |
| 22 | Motion detection with NMR markers using realâ€ŧime field tracking in the laboratory frame. Magnetic<br>Resonance in Medicine, 2020, 84, 89-102.                                        | 1.9 | 3         |
| 23 | Gradient Response Harvesting for Continuous System Characterization During MR Sequences. IEEE<br>Transactions on Medical Imaging, 2020, 39, 806-815.                                   | 5.4 | 6         |
| 24 | Betaâ€amyloidâ€associated episodic memory variation correlates with subicular volume in nonâ€demented<br>old aged individuals. Alzheimer's and Dementia, 2020, 16, e043904.            | 0.4 | 0         |
| 25 | GABA and glutamate associate with evidence of preclinical Alzheimer disease in humans: A 7 Tesla MRSI and <sup>11</sup> Câ€PIB PET study. Alzheimer's and Dementia, 2020, 16, e044175. | 0.4 | 1         |
| 26 | A transmit–receive array for brain imaging with a highâ€performance gradient insert. Magnetic<br>Resonance in Medicine, 2020, 84, 2278-2289.                                           | 1.9 | 3         |
| 27 | Detector clothes for MRI: A wearable array receiver based on liquid metal in elastic tubes. Scientific<br>Reports, 2020, 10, 8844.                                                     | 1.6 | 24        |
| 28 | Advances in MRI of the myelin bilayer. NeuroImage, 2020, 217, 116888.                                                                                                                  | 2.1 | 30        |
| 29 | Highâ€resolution shortâ€T <sub>2</sub> MRI using a highâ€performance gradient. Magnetic Resonance in<br>Medicine, 2020, 84, 1933-1946.                                                 | 1.9 | 13        |
| 30 | Minimizing the echo time in diffusion imaging using spiral readouts and a head gradient system.<br>Magnetic Resonance in Medicine, 2020, 84, 3117-3127.                                | 1.9 | 14        |
| 31 | A comprehensive approach for correcting voxelâ€wise bâ€value errors in diffusion MRI. Magnetic<br>Resonance in Medicine, 2020, 83, 2173-2184.                                          | 1.9 | 15        |
| 32 | Echoâ€planar imaging of the human head with 100 mT/m gradients and highâ€order modeling of eddy<br>current fields. Magnetic Resonance in Medicine, 2020, 84, 751-761.                  | 1.9 | 8         |
| 33 | Short-T2 MRI: Principles and recent advances. Progress in Nuclear Magnetic Resonance Spectroscopy, 2019, 114-115, 237-270.                                                             | 3.9 | 45        |
| 34 | Low-distortion diffusion tensor MRI with improved phaseless encoding. Journal of Magnetic Resonance, 2019, 309, 106602.                                                                | 1.2 | 2         |
| 35 | Real-time magnetic resonance imaging of fluidized beds with internals. Chemical Engineering Science, 2019, 198, 117-123.                                                               | 1.9 | 22        |
| 36 | Increased cerebral blood volume in small arterial vessels is aÂcorrelate of amyloid-β–related cognitive<br>decline. Neurobiology of Aging, 2019, 76, 181-193.                          | 1.5 | 10        |

| #  | Article                                                                                                                                                                                              | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | MR Image Reconstruction Using Deep Density Priors. IEEE Transactions on Medical Imaging, 2019, 38, 1633-1642.                                                                                        | 5.4 | 114       |
| 38 | On the Bending and Stretching of Liquid Metal Receive Coils for Magnetic Resonance Imaging. IEEE<br>Transactions on Biomedical Engineering, 2019, 66, 1542-1548.                                     | 2.5 | 17        |
| 39 | Automatic Resonance Frequency Retuning of Stretchable Liquid Metal Receive Coil for Magnetic<br>Resonance Imaging. IEEE Transactions on Medical Imaging, 2019, 38, 1420-1426.                        | 5.4 | 8         |
| 40 | Lateral geniculate nucleus volumetry at 3T and 7T: Four different optimized<br>magnetic-resonance-imaging sequences evaluated against a 7T reference acquisition. Neurolmage, 2019,<br>186, 399-409. | 2.1 | 9         |
| 41 | Laminar fMRI and computational theories of brain function. NeuroImage, 2019, 197, 699-706.                                                                                                           | 2.1 | 54        |
| 42 | Inâ€plane "superresolution―MRI with phaseless subâ€pixel encoding. Magnetic Resonance in Medicine,<br>2018, 80, 2384-2392.                                                                           | 1.9 | 8         |
| 43 | Singleâ€shot spiral imaging at 7 <scp>T</scp> . Magnetic Resonance in Medicine, 2018, 80, 1836-1846.                                                                                                 | 1.9 | 23        |
| 44 | Ultrafast Ligand Self-Exchanging Gadolinium Complexes in Ionic Liquids for NMR Field Probes.<br>Inorganic Chemistry, 2018, 57, 2314-2319.                                                            | 1.9 | 5         |
| 45 | Enhanced quantitative susceptibility mapping (QSM) using realâ€ŧime field control. Magnetic Resonance<br>in Medicine, 2018, 79, 770-778.                                                             | 1.9 | 10        |
| 46 | A highâ€performance gradient insert for rapid and shortâ€T <sub>2</sub> imaging at full duty cycle.<br>Magnetic Resonance in Medicine, 2018, 79, 3256-3266.                                          | 1.9 | 65        |
| 47 | Prospective motion correction with NMR markers using only native sequence elements. Magnetic Resonance in Medicine, 2018, 79, 2046-2056.                                                             | 1.9 | 22        |
| 48 | Filling the deadâ€ŧime gap in zero echo time MRI: Principles compared. Magnetic Resonance in Medicine,<br>2018, 79, 2036-2045.                                                                       | 1.9 | 30        |
| 49 | Multi-Rate Acquisition for Dead Time Reduction in Magnetic Resonance Receivers: Application to<br>Imaging With Zero Echo Time. IEEE Transactions on Medical Imaging, 2018, 37, 408-416.              | 5.4 | 9         |
| 50 | Lesion magnetic susceptibility response to hyperoxic challenge: A biomarker for malignant brain tumor microenvironment?. Magnetic Resonance Imaging, 2018, 47, 147-153.                              | 1.0 | 4         |
| 51 | Brain amyloid burden and cerebrovascular disease are synergistically associated with<br>neurometabolism in cognitively unimpaired older adults. Neurobiology of Aging, 2018, 63, 152-161.            | 1.5 | 16        |
| 52 | Rapid anatomical brain imaging using spiral acquisition and an expanded signal model. NeuroImage, 2018, 168, 88-100.                                                                                 | 2.1 | 32        |
| 53 | A generative model of whole-brain effective connectivity. NeuroImage, 2018, 179, 505-529.                                                                                                            | 2.1 | 83        |
| 54 | Real-Time Magnetic Resonance Imaging of Bubble Behavior and Particle Velocity in Fluidized Beds.<br>Industrial & Engineering Chemistry Research, 2018, 57, 9674-9682.                                | 1.8 | 36        |

| #  | Article                                                                                                                                                                                            | IF           | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------|
| 55 | VERSEâ€guided parallel RF excitations using dynamic field correction. NMR in Biomedicine, 2017, 30, e3697.                                                                                         | 1.6          | 9         |
| 56 | Physiology recording with magnetic field probes for fMRI denoising. NeuroImage, 2017, 154, 106-114.                                                                                                | 2.1          | 8         |
| 57 | Gradient and shim preâ€emphasis by inversion of a linear timeâ€invariant system model. Magnetic<br>Resonance in Medicine, 2017, 78, 1607-1622.                                                     | 1.9          | 26        |
| 58 | Analysis and correction of field fluctuations in fMRI data using field monitoring. NeuroImage, 2017, 154, 92-105.                                                                                  | 2.1          | 38        |
| 59 | A virtually 1Hâ€free birdcage coil for zero echo time MRI without background signal. Magnetic<br>Resonance in Medicine, 2017, 78, 399-407.                                                         | 1.9          | 16        |
| 60 | Adsorbed Eutectic Galn Structures on a Neoprene Foam for Stretchable MRI Coils. Advanced Materials, 2017, 29, 1703744.                                                                             | 11.1         | 27        |
| 61 | Real-time probing of granular dynamics with magnetic resonance. Science Advances, 2017, 3, e1701879.                                                                                               | 4.7          | 50        |
| 62 | Feedback field control improves the precision of <i>T</i> <sub>2</sub> * quantification at 7ÂT. NMR in<br>Biomedicine, 2017, 30, e3753.                                                            | 1.6          | 9         |
| 63 | Correction of parallel transmission using concurrent RF and gradient field monitoring. Magnetic Resonance Materials in Physics, Biology, and Medicine, 2017, 30, 473-488.                          | 1.1          | 4         |
| 64 | Memory performance-related dynamic brain connectivity indicates pathological burden and genetic<br>risk for Alzheimer's disease. Alzheimer's Research and Therapy, 2017, 9, 24.                    | 3.0          | 43        |
| 65 | The PhysIO Toolbox for Modeling Physiological Noise in fMRI Data. Journal of Neuroscience Methods, 2017, 276, 56-72.                                                                               | 1.3          | 289       |
| 66 | Singleâ€shot spiral imaging enabled by an expanded encoding model: <scp>D</scp> emonstration in diffusion <scp>MRI</scp> . Magnetic Resonance in Medicine, 2017, 77, 83-91.                        | 1.9          | 48        |
| 67 | MRI with phaseless encoding. Magnetic Resonance in Medicine, 2017, 78, 1029-1037.                                                                                                                  | 1.9          | 9         |
| 68 | A Fully Integrated Dual-Channel On-Coil CMOS Receiver for Array Coils in 1.5–10.5 T MRI. IEEE<br>Transactions on Biomedical Circuits and Systems, 2017, 11, 1245-1255.                             | 2.7          | 20        |
| 69 | [ICâ€Pâ€018]: NEUROIMAGINGâ€DEFINED AMYLOID AND CEREBROVASCULAR PATHOLOGY ARE ASSOCIATED W<br>NEUROMETABOLIC SIGNATURE OF ALZHEIMER'S DISEASE. Alzheimer's and Dementia, 2017, 13, P20.            | ЛТН А<br>0.4 | 0         |
| 70 | Functional Laterality of Task-Evoked Activation in Sensorimotor Cortex of Preterm Infants: An<br>Optimized 3 T fMRI Study Employing a Customized Neonatal Head Coil. PLoS ONE, 2017, 12, e0169392. | 1.1          | 10        |
| 71 | A field camera for MR sequence monitoring and system analysis. Magnetic Resonance in Medicine, 2016, 75, 1831-1840.                                                                                | 1.9          | 91        |
| 72 | In vivo magnetization transfer imaging of the lung using a zero echo time sequence at 4.7 Tesla in mice:<br>Initial experience. Magnetic Resonance in Medicine, 2016, 76, 156-162.                 | 1.9          | 8         |

| #  | Article                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Fast iterative preâ€emphasis calibration method enabling thirdâ€order dynamic shim updated fMRI.<br>Magnetic Resonance in Medicine, 2016, 75, 1119-1131.                                                                     | 1.9 | 20        |
| 74 | Utility of real-time field control in T <sub>2</sub> *-Weighted head MRI at 7T. Magnetic Resonance in<br>Medicine, 2016, 76, 430-439.                                                                                        | 1.9 | 28        |
| 75 | SENSE reconstruction for multiband EPI including sliceâ€dependent N/2 ghost correction. Magnetic<br>Resonance in Medicine, 2016, 76, 873-879.                                                                                | 1.9 | 17        |
| 76 | Concurrent recording of RF pulses and gradient fields – comprehensive field monitoring for MRI.<br>NMR in Biomedicine, 2016, 29, 1162-1172.                                                                                  | 1.6 | 16        |
| 77 | Image reconstruction using a gradient impulse response model for trajectory prediction. Magnetic<br>Resonance in Medicine, 2016, 76, 45-58.                                                                                  | 1.9 | 57        |
| 78 | Dynamic nuclear magnetic resonance field sensing with part-per-trillion resolution. Nature Communications, 2016, 7, 13702.                                                                                                   | 5.8 | 33        |
| 79 | Low episodic memory performance in cognitively normal elderly subjects is associated with increased posterior cingulate gray matter N-acetylaspartate: a 1H MRSI study at 7ÂTesla. Neurobiology of Aging, 2016, 48, 195-203. | 1.5 | 24        |
| 80 | Probing neuronal activation by functional quantitative susceptibility mapping under a visual paradigm: A group level comparison with BOLD fMRI and PET. NeuroImage, 2016, 137, 52-60.                                        | 2.1 | 30        |
| 81 | A wearable bluetooth LE sensor for patient monitoring during MRI scans. , 2016, 2016, 4975-4978.                                                                                                                             |     | 7         |
| 82 | <scp>SVD</scp> analysis of Array transmission and reception and its use for bootstrapping calibration. Magnetic Resonance in Medicine, 2016, 76, 1730-1740.                                                                  | 1.9 | 1         |
| 83 | Continuous Magnetic Field Monitoring Using Rapid Re-Excitation of NMR Probe Sets. IEEE Transactions on Medical Imaging, 2016, 35, 1452-1462.                                                                                 | 5.4 | 10        |
| 84 | MR imaging of healthy knees in varying degrees of flexion using a stretchable coil array provides<br>comparable image quality compared to a standard knee coil array. European Journal of Radiology, 2016,<br>85, 518-523.   | 1.2 | 5         |
| 85 | Symmetrically biased T/R switches for NMR and MRI with microsecond dead time. Journal of Magnetic Resonance, 2016, 263, 147-155.                                                                                             | 1.2 | 28        |
| 86 | Realâ€ŧime motion correction using gradient tones and headâ€mounted <scp>NMR</scp> field probes.<br>Magnetic Resonance in Medicine, 2015, 74, 647-660.                                                                       | 1.9 | 41        |
| 87 | Integrated CMOS Receiver for Wearable Coil Arrays in MRI Applications. , 2015, , .                                                                                                                                           |     | 6         |
| 88 | Single-shot imaging with higher-dimensional encoding using magnetic field monitoring and concomitant field correction. Magnetic Resonance in Medicine, 2015, 73, 1340-1357.                                                  | 1.9 | 13        |
| 89 | Monitoring, analysis, and correction of magnetic field fluctuations in echo planar imaging time series. Magnetic Resonance in Medicine, 2015, 74, 396-409.                                                                   | 1.9 | 35        |
| 90 | Reduction of voxel bleeding in highly accelerated parallel <sup>1</sup> H MRSI by direct control of the spatial response function. Magnetic Resonance in Medicine, 2015, 73, 469-480.                                        | 1.9 | 32        |

Klaas Paul Pruessmann

| #   | Article                                                                                                                                                                                                                | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Algebraic method to synthesize specified modal currents in ladder resonators: Application to noncircular birdcage coils. Magnetic Resonance in Medicine, 2015, 74, 1470-1481.                                          | 1.9 | 6         |
| 92  | Diffusion MRI with concurrent magnetic field monitoring. Magnetic Resonance in Medicine, 2015, 74, 925-933.                                                                                                            | 1.9 | 39        |
| 93  | Exploring the bandwidth limits of ZTE imaging: Spatial response, outâ€ofâ€band signals, and noise propagation. Magnetic Resonance in Medicine, 2015, 74, 1236-1247.                                                    | 1.9 | 17        |
| 94  | Retrospective correction of physiological field fluctuations in high-field brain MRI using concurrent field monitoring. Magnetic Resonance in Medicine, 2015, 73, 1833-1843.                                           | 1.9 | 70        |
| 95  | ZTE imaging with enhanced flip angle using modulated excitation. Magnetic Resonance in Medicine, 2015, 74, 684-693.                                                                                                    | 1.9 | 34        |
| 96  | Effect of respiratory hyperoxic challenge on magnetic susceptibility in human brain assessed by quantitative susceptibility mapping (QSM). NMR in Biomedicine, 2015, 28, 1688-1696.                                    | 1.6 | 12        |
| 97  | MIDA: A Multimodal Imaging-Based Detailed Anatomical Model of the Human Head and Neck. PLoS ONE, 2015, 10, e0124126.                                                                                                   | 1.1 | 220       |
| 98  | Realâ€ŧime feedback for spatiotemporal field stabilization in MR systems. Magnetic Resonance in<br>Medicine, 2015, 73, 884-893.                                                                                        | 1.9 | 57        |
| 99  | ZTE imaging with longâ€ <i>T</i> <sub>2</sub> suppression. NMR in Biomedicine, 2015, 28, 247-254.                                                                                                                      | 1.6 | 30        |
| 100 | Regional Fluid-Attenuated Inversion Recovery (FLAIR) at 7 Tesla correlates with amyloid beta in<br>hippocampus and brainstem of cognitively normal elderly subjects. Frontiers in Aging Neuroscience,<br>2014, 6, 240. | 1.7 | 20        |
| 101 | Analysis of temperature dependence of background phase errors in phase-contrast cardiovascular magnetic resonance. Journal of Cardiovascular Magnetic Resonance, 2014, 16, 97.                                         | 1.6 | 46        |
| 102 | Rapid and robust pulmonary proton ZTE imaging in the mouse. NMR in Biomedicine, 2014, 27, 1129-1134.                                                                                                                   | 1.6 | 29        |
| 103 | Field camera measurements of gradient and shim impulse responses using frequency sweeps. Magnetic<br>Resonance in Medicine, 2014, 72, 570-583.                                                                         | 1.9 | 40        |
| 104 | Feedback field control improves linewidths in in vivo magnetic resonance spectroscopy. Magnetic<br>Resonance in Medicine, 2014, 71, 1657-1662.                                                                         | 1.9 | 22        |
| 105 | Thermal Tissue Damage Model Analyzed for Different Wholeâ€Body SAR and Scan Durations for Standard MR Body Coils. Magnetic Resonance in Medicine, 2014, 71, 421-431.                                                   | 1.9 | 76        |
| 106 | Magnetic resonance imaging (MRI) of jet height hysteresis in packed beds. Chemical Engineering<br>Science, 2014, 109, 276-283.                                                                                         | 1.9 | 15        |
| 107 | Matched-filter acquisition for BOLD fMRI. NeuroImage, 2014, 100, 145-160.                                                                                                                                              | 2.1 | 31        |
| 108 | Cortical Amyloid Beta in Cognitively Normal Elderly Adults is Associated with Decreased Network<br>Efficiency within the Cerebro-Cerebellar System. Frontiers in Aging Neuroscience, 2014, 6, 52.                      | 1.7 | 26        |

| #   | Article                                                                                                                                                                         | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Wholeâ€body and local RF absorption in human models as a function of anatomy and position within<br>1.5T MR body coil. Magnetic Resonance in Medicine, 2014, 71, 839-845.       | 1.9 | 55        |
| 110 | Gradient system characterization by impulse response measurements with a dynamic field camera.<br>Magnetic Resonance in Medicine, 2013, 69, 583-593.                            | 1.9 | 148       |
| 111 | Do dynamicâ€based MR knee kinematics methods produce the same results as static methods?. Magnetic<br>Resonance in Medicine, 2013, 69, 1634-1644.                               | 1.9 | 40        |
| 112 | Magnetic resonance imaging (MRI) study of jet formation in packed beds. Chemical Engineering Science, 2013, 97, 406-412.                                                        | 1.9 | 18        |
| 113 | Direct depiction of bone microstructure using MRI with zero echo time. Bone, 2013, 54, 44-47.                                                                                   | 1.4 | 49        |
| 114 | ZTE imaging in humans. Magnetic Resonance in Medicine, 2013, 70, 328-332.                                                                                                       | 1.9 | 136       |
| 115 | Single shot trajectory design for region-specific imaging using linear and nonlinear magnetic encoding fields. Magnetic Resonance in Medicine, 2013, 70, 684-696.               | 1.9 | 23        |
| 116 | Quantification of subcortical grayâ€matter vascularization using 7Â <scp>T</scp> esla timeâ€ofâ€flight<br>angiography. Brain and Behavior, 2013, 3, 515-518.                    | 1.0 | 3         |
| 117 | Monitoring and compensating phase imperfections in cine balanced steadyâ€state free precession.<br>Magnetic Resonance in Medicine, 2013, 70, 1567-1579.                         | 1.9 | 4         |
| 118 | Assessment of Median Nerve with MR Neurography by Using Diffusion-Tensor Imaging: Normative and<br>Pathologic Diffusion Values. Radiology, 2012, 265, 194-203.                  | 3.6 | 108       |
| 119 | Fast Higher-Order MR Image Reconstruction Using Singular-Vector Separation. IEEE Transactions on Medical Imaging, 2012, 31, 1396-1403.                                          | 5.4 | 18        |
| 120 | Erratum to "Fast Higher-Order MR Image Reconstruction Using Singular-Vector Separation―[Jul 12<br>1396-1403]. IEEE Transactions on Medical Imaging, 2012, 31, 1833-1833.        | 5.4 | 0         |
| 121 | MR neurography of the median nerve at 3.0T: Optimization of diffusion tensor imaging and fiber tractography. European Journal of Radiology, 2012, 81, e775-e782.                | 1.2 | 39        |
| 122 | Analysis and correction of background velocity offsets in phase ontrast flow measurements using magnetic field monitoring. Magnetic Resonance in Medicine, 2012, 67, 1294-1302. | 1.9 | 51        |
| 123 | Stretchable coil arrays: Application to knee imaging under varying flexion angles. Magnetic Resonance<br>in Medicine, 2012, 67, 872-879.                                        | 1.9 | 51        |
| 124 | A multi-sample 94GHz dissolution dynamic-nuclear-polarization system. Journal of Magnetic Resonance, 2012, 214, 166-174.                                                        | 1.2 | 63        |
| 125 | Highâ€resolution ZTE imaging of human teeth. NMR in Biomedicine, 2012, 25, 1144-1151.                                                                                           | 1.6 | 109       |
| 126 | <i>B</i> Phase mapping at 7 T and its application for in vivo electrical conductivity mapping. Magnetic Resonance in Medicine, 2012, 67, 552-561.                               | 1.9 | 124       |

| #   | Article                                                                                                                                                                                                               | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 127 | Local SAR enhancements in anatomically correct children and adult models as a function of position within 1.5ÂT MR body coil. Progress in Biophysics and Molecular Biology, 2011, 107, 428-433.                       | 1.4  | 40        |
| 128 | A Fast Wavelet-Based Reconstruction Method for Magnetic Resonance Imaging. IEEE Transactions on Medical Imaging, 2011, 30, 1649-1660.                                                                                 | 5.4  | 116       |
| 129 | In vitro and in vivo comparison of wrist MR imaging at 3.0 and 7.0 tesla using a gradient echo sequence<br>and identical eightâ€channel coil array designs. Journal of Magnetic Resonance Imaging, 2011, 33, 661-667. | 1.9  | 21        |
| 130 | Direct MR arthrography of cadaveric wrists: Comparison between MR imaging at 3.0T and 7.0T and gross pathologic inspection. Journal of Magnetic Resonance Imaging, 2011, 34, 1333-1340.                               | 1.9  | 7         |
| 131 | Higher order reconstruction for MRI in the presence of spatiotemporal field perturbations. Magnetic Resonance in Medicine, 2011, 65, 1690-1701.                                                                       | 1.9  | 135       |
| 132 | MRI with zero echo time: Hard versus sweep pulse excitation. Magnetic Resonance in Medicine, 2011, 66, 379-389.                                                                                                       | 1.9  | 154       |
| 133 | Travelingâ€wave RF shimming and parallel MRI. Magnetic Resonance in Medicine, 2011, 66, 290-300.                                                                                                                      | 1.9  | 30        |
| 134 | Analysis of nickel concentration profiles around the roots of the hyperaccumulator plant Berkheya coddii using MRI and numerical simulations. Plant and Soil, 2010, 328, 291-302.                                     | 1.8  | 27        |
| 135 | Improvements in parallel imaging accelerated functional MRI using multiecho echo-planar imaging.<br>Magnetic Resonance in Medicine, 2010, 63, 959-969.                                                                | 1.9  | 26        |
| 136 | Optimal design of multipleâ€channel RF pulses under strict power and SAR constraints. Magnetic<br>Resonance in Medicine, 2010, 63, 1280-1291.                                                                         | 1.9  | 58        |
| 137 | Sweep MRI with algebraic reconstruction. Magnetic Resonance in Medicine, 2010, 64, 1685-1695.                                                                                                                         | 1.9  | 35        |
| 138 | Bandwidth, expansion, treewidth, separators and universality for bounded-degree graphs. European<br>Journal of Combinatorics, 2010, 31, 1217-1227.                                                                    | 0.5  | 37        |
| 139 | <i>B</i> interferometry for the calibration of RF transmitter arrays. Magnetic Resonance in Medicine, 2009, 61, 1480-1488.                                                                                            | 1.9  | 71        |
| 140 | A transmit/receive system for magnetic field monitoring of in vivo MRI. Magnetic Resonance in<br>Medicine, 2009, 62, 269-276.                                                                                         | 1.9  | 83        |
| 141 | Travelling-wave nuclear magnetic resonance. Nature, 2009, 457, 994-998.                                                                                                                                               | 13.7 | 160       |
| 142 | SELOVS: Brain MRSI localization based on highly selective <i>T</i> <sub>1</sub> ―and<br><i>B</i> <sub>1</sub> â€insensitive outerâ€volume suppression at 3T. Magnetic Resonance in Medicine, 2008,<br>59, 40-51.      | 1.9  | 43        |
| 143 | Spatiotemporal magnetic field monitoring for MR. Magnetic Resonance in Medicine, 2008, 60, 187-197.                                                                                                                   | 1.9  | 172       |
| 144 | NMR probes for measuring magnetic fields and field dynamics in MR systems. Magnetic Resonance in<br>Medicine, 2008, 60, 176-186.                                                                                      | 1.9  | 172       |

| #   | Article                                                                                                                                                                                           | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 145 | Asymmetric quadrature split birdcage coil for hyperpolarized <sup>3</sup> He lung MRI at 1.5T.<br>Magnetic Resonance in Medicine, 2008, 60, 431-438.                                              | 1.9  | 42        |
| 146 | Modular design of receiver coil arrays. NMR in Biomedicine, 2008, 21, 644-654.                                                                                                                    | 1.6  | 26        |
| 147 | Less is more. Nature, 2008, 455, 43-44.                                                                                                                                                           | 13.7 | 7         |
| 148 | Magnetic resonance imaging methods to reveal the realâ€ŧime distribution of nickel in porous media.<br>European Journal of Soil Science, 2008, 59, 476-485.                                       | 1.8  | 21        |
| 149 | Preliminary Experience with Visualization of Intracortical Fibers by Focused High-Resolution<br>Diffusion Tensor Imaging. American Journal of Neuroradiology, 2008, 29, 146-150.                  | 1.2  | 34        |
| 150 | Array compression for MRI with large coil arrays. Magnetic Resonance in Medicine, 2007, 57, 1131-1139.                                                                                            | 1.9  | 202       |
| 151 | Spatial resolution enhancement using sensitivity-encoded echo-planar imaging at 3T in a typical motor paradigm. Computerized Medical Imaging and Graphics, 2007, 31, 704-714.                     | 3.5  | 1         |
| 152 | Encoding and reconstruction in parallel MRI. NMR in Biomedicine, 2006, 19, 288-299.                                                                                                               | 1.6  | 138       |
| 153 | Potential and feasibility of parallel MRI at high field. NMR in Biomedicine, 2006, 19, 368-378.                                                                                                   | 1.6  | 113       |
| 154 | k-t BLAST reconstruction from non-Cartesiank-t space sampling. Magnetic Resonance in Medicine, 2006,<br>55, 85-91.                                                                                | 1.9  | 44        |
| 155 | Lattice permutation for reducing motion artifacts in radial and spiral dynamic imaging. Magnetic<br>Resonance in Medicine, 2006, 55, 116-125.                                                     | 1.9  | 15        |
| 156 | Minimum-norm reconstruction for sensitivity-encoded magnetic resonance spectroscopic imaging.<br>Magnetic Resonance in Medicine, 2006, 55, 287-295.                                               | 1.9  | 38        |
| 157 | Transmit and receive transmission line arrays for 7 Tesla parallel imaging. Magnetic Resonance in<br>Medicine, 2005, 53, 434-445.                                                                 | 1.9  | 374       |
| 158 | Sensitivity encoding as a means of enhancing the SNR efficiency in steady-state MRI. Magnetic Resonance in Medicine, 2005, 53, 177-185.                                                           | 1.9  | 34        |
| 159 | Optimizing spatiotemporal sampling fork-t BLAST andk-t SENSE: Application to high-resolution real-time cardiac steady-state free precession. Magnetic Resonance in Medicine, 2005, 53, 1372-1382. | 1.9  | 115       |
| 160 | Accelerating cine phase-contrast flow measurements usingk-t BLAST andk-t SENSE. Magnetic Resonance<br>in Medicine, 2005, 54, 1430-1438.                                                           | 1.9  | 127       |
| 161 | MR Imaging of the Wrist: Comparison between 1.5- and 3-T MR Imaging—Preliminary Experience.<br>Radiology, 2005, 234, 256-264.                                                                     | 3.6  | 124       |
| 162 | Accelerated dynamic Fourier velocity encoding by exploiting velocity-spatio-temporal correlations.<br>Magnetic Resonance Materials in Physics, Biology, and Medicine, 2004, 17, 86-94.            | 1.1  | 31        |

| #   | Article                                                                                                                                                                     | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | Sensitivity-encoded coronary MRA at 3T. Magnetic Resonance in Medicine, 2004, 52, 221-227.                                                                                  | 1.9 | 64        |
| 164 | Electrodynamics and ultimate SNR in parallel MR imaging. Magnetic Resonance in Medicine, 2004, 52, 376-390.                                                                 | 1.9 | 248       |
| 165 | Calibration of echo-planar 2D-selective RF excitation pulses. Magnetic Resonance in Medicine, 2004, 52, 1136-1145.                                                          | 1.9 | 19        |
| 166 | On the influence of training data quality ink-t BLAST reconstruction. Magnetic Resonance in Medicine, 2004, 52, 1175-1183.                                                  | 1.9 | 61        |
| 167 | Parallel imaging performance as a function of field strength?An experimental investigation using electrodynamic scaling. Magnetic Resonance in Medicine, 2004, 52, 953-964. | 1.9 | 179       |
| 168 | Equi-ripple design of quadratic-phase RF pulses. Journal of Magnetic Resonance, 2004, 166, 111-122.                                                                         | 1.2 | 33        |
| 169 | Parallel Imaging at High Field Strength. Topics in Magnetic Resonance Imaging, 2004, 15, 237-244.                                                                           | 0.7 | 122       |
| 170 | Parallel spectroscopic imaging with spin-echo trains. Magnetic Resonance in Medicine, 2003, 50, 196-200.                                                                    | 1.9 | 62        |
| 171 | k-t BLAST andk-t SENSE: Dynamic MRI with high frame rate exploiting spatiotemporal correlations.<br>Magnetic Resonance in Medicine, 2003, 50, 1031-1042.                    | 1.9 | 727       |
| 172 | Sensitivity-encoded single-shot spiral imaging for reduced susceptibility artifacts in BOLD fMRI.<br>Magnetic Resonance in Medicine, 2002, 48, 860-866.                     | 1.9 | 104       |
| 173 | 2D sense for faster 3D MRI. Magnetic Resonance Materials in Physics, Biology, and Medicine, 2002, 14, 10-19.                                                                | 1.1 | 213       |
| 174 | 2D SENSE for faster 3D MRI. Magnetic Resonance Materials in Physics, Biology, and Medicine, 2002, 14, 10-19.                                                                | 1.1 | 19        |
| 175 | Sensitivity Encoded Cardiac MRI. Journal of Cardiovascular Magnetic Resonance, 2001, 3, 1-9.                                                                                | 1.6 | 108       |
| 176 | Improved diffusion-weighted single-shot echo-planar imaging (EPI) in stroke using sensitivity encoding<br>(SENSE). Magnetic Resonance in Medicine, 2001, 46, 548-554.       | 1.9 | 295       |
| 177 | Advances in sensitivity encoding with arbitraryk-space trajectories. Magnetic Resonance in Medicine, 2001, 46, 638-651.                                                     | 1.9 | 994       |
| 178 | Sensitivity-encoded spectroscopic imaging. Magnetic Resonance in Medicine, 2001, 46, 713-722.                                                                               | 1.9 | 162       |
| 179 | Specific coil design for SENSE: A six-element cardiac array. Magnetic Resonance in Medicine, 2001, 45, 495-504.                                                             | 1.9 | 177       |
| 180 | Cardiac real-time imaging using SENSE. Magnetic Resonance in Medicine, 2000, 43, 177-184.                                                                                   | 1.9 | 183       |

## Klaas Paul Pruessmann

| #   | Article                                                                                                                                                             | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 181 | RF Pulse Concatenation for Spatially Selective Inversion. Journal of Magnetic Resonance, 2000, 146, 58-65.                                                          | 1.2 | 25        |
| 182 | Contrast-enhanced 3D MRA using SENSE. Journal of Magnetic Resonance Imaging, 2000, 12, 671-677.                                                                     | 1.9 | 221       |
| 183 | PRESTO-SENSE: An ultrafast whole-brain fMRI technique. Magnetic Resonance in Medicine, 2000, 43, 779-786.                                                           | 1.9 | 112       |
| 184 | Transfer insensitive labeling technique (TILT): Application to multislice functional perfusion imaging.<br>Journal of Magnetic Resonance Imaging, 1999, 9, 454-461. | 1.9 | 96        |
| 185 | SENSE: Sensitivity encoding for fast MRI. Magnetic Resonance in Medicine, 1999, 42, 952-962.                                                                        | 1.9 | 5,592     |
| 186 | SENSE: Sensitivity encoding for fast MRI. , 1999, 42, 952.                                                                                                          |     | 1         |
| 187 | SENSE: Sensitivity encoding for fast MRI. , 1999, 42, 952.                                                                                                          |     | 59        |