Xiao-Jun Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7185605/publications.pdf

Version: 2024-02-01

200 papers

6,499 citations

71102 41 h-index 70 g-index

215 all docs

215 docs citations

times ranked

215

2245 citing authors

#	Article	IF	CITATIONS
1	Study on the generalized <i>k</i> -Hilfer–Prabhakar fractional viscoelastic–plastic model. Mathematics and Mechanics of Solids, 2022, 27, 491-500.	2.4	1
2	On the theory of the fractal scaling-law elasticity. Meccanica, 2022, 57, 943-955.	2.0	13
3	General Fractional Calculus with Nonsingular Kernels: New Prospective on Viscoelasticity. Studies in Systems, Decision and Control, 2022, , 135-157.	1.0	3
4	Advanced Analysis of Local Fractional Calculus Applied to the Rice Theory in Fractal Fracture Mechanics. Studies in Systems, Decision and Control, 2022, , 105-133.	1.0	3
5	Towards new general double integral transform and its applications to differential equations. Mathematical Methods in the Applied Sciences, 2022, 45, 1916-1933.	2.3	14
6	Turánâ€ŧype inequalities for the supertrigonometric functions. Mathematical Methods in the Applied Sciences, 2022, 45, 3514-3519.	2.3	5
7	ON THE GENERALIZED WEIGHTED CAPUTO-TYPE DIFFERENTIAL OPERATOR. Fractals, 2022, 30, .	3.7	7
8	A new insight on analytical theory of the scaling law heat conduction associated with the Richardson scaling law. Thermal Science, 2022, 26, 1025-1035.	1.1	1
9	A new generalization of the y-function applied to model the anomalous diffusion. Thermal Science, 2022, 26, 1069-1079.	1.1	1
10	A new scaling law heat conduction problem associated with the Korcak scaling law. Thermal Science, 2022, 26, 1047-1059.	1.1	2
11	The non-Darcy law for the scaling law flow in porous medium. Thermal Science, 2022, 26, 1089-1094.	1.1	0
12	Anomalous diffusion models with respect to monotone increasing functions. Thermal Science, 2022, 26, 1009-1016.	1.1	0
13	Nonâ€classical Lie symmetries for nonlinear timeâ€fractional Heisenberg equations. Mathematical Methods in the Applied Sciences, 2022, 45, 10010-10026.	2.3	5
14	On fractional symmetry group scheme to the higher-dimensional space and time fractional dissipative Burgers equation. International Journal of Geometric Methods in Modern Physics, 2022, 19, .	2.0	40
15	On integrability of the higher dimensional time fractional KdV-type equation. Journal of Geometry and Physics, 2021, 160, 104000.	1.4	43
16	New explicit formulas for the some special matrices with fractional derivatives: II. Ain Shams Engineering Journal, 2021, 12, 2083-2088.	6.1	0
17	Numerical solutions and conservation laws of the time fractional coupled WBKâ€type system. Mathematical Methods in the Applied Sciences, 2021, 44, 4105-4116.	2.3	6
18	A new fractional Nishihara-type model with creep damage considering thermal effect. Engineering Fracture Mechanics, 2021, 242, 107451.	4.3	35

#	Article	IF	CITATIONS
19	NEW PERSPECTIVE AIMED AT LOCAL FRACTIONAL ORDER MEMRISTOR MODEL ON CANTOR SETS. Fractals, 2021, 29, 2150011.	3.7	8
20	A FRACTAL PERSPECTIVE ON FRACTURE INITIATION AND PROPAGATION OF RESERVOIR ROCKS UNDER WATER AND NITROGEN FRACTURING. Fractals, $2021, 29, .$	3.7	45
21	Rheological analysis of the general fractional-order viscoelastic model involving the Miller–Ross kernel. Acta Mechanica, 2021, 232, 3141-3148.	2.1	7
22	GROUP ANALYSIS OF THE TIME FRACTIONAL (3 \pm 1)-DIMENSIONAL KDV-TYPE EQUATION. Fractals, 2021, 29, 2150169.	3.7	21
23	Radu–MiheÅ£ method for UHML stability for a class of î¾â€Hilfer fractional differential equations in matrix valued fuzzy Banach spaces. Mathematical Methods in the Applied Sciences, 2021, 44, 14619.	2.3	6
24	Fundamental results to the weighted Caputo-type differential operator. Applied Mathematics Letters, 2021, 121, 107421.	2.7	15
25	Fundamental analysis of the time fractional coupled Burgers-type equations. Journal of Geometry and Physics, 2021, 169, 104334.	1.4	13
26	CHARACTERISTICS OF NEW TYPE ROGUE WAVES AND SOLITARY WAVES TO THE EXTENDED (3+1)-DIMENSIONAL JIMBO-MIWA EQUATION. Journal of Applied Analysis and Computation, 2021, 11, 2722-2735.	0.5	4
27	A new insight to the scaling-law fluid associated with the Mandelbrot scaling law. Thermal Science, 2021, 25, 4561-4568.	1.1	12
28	The series representations for the J and H functions applied in the heat-diffusion equation. Thermal Science, 2021, 25, 4631-4642.	1.1	2
29	New insights on the J and Y functions in the heat transfer. Thermal Science, 2021, 25, 4577-4584.	1.1	1
30	The y function applied in the study of an anomalous diffusion. Thermal Science, 2021, 25, 4465-4475.	1.1	2
31	A new viewpoint on theory of the scaling-law heat conduction process. Thermal Science, 2021, 25, 4505-4513.	1.1	4
32	Theory and Applications of Special Functions for Scientists and Engineers. , 2021, , .		21
33	Characteristic of the algebraic traveling wave solutions for two extended (2 + 1)-dimensional Kadomtsev–Petviashvili equations. Modern Physics Letters A, 2020, 35, 2050028.	1.2	23
34	On integrability of the extended (3+1)â€dimensional Jimboâ€Miwa equation. Mathematical Methods in the Applied Sciences, 2020, 43, 1646-1659.	2.3	26
35	Analytical solutions of some integral fractional differential–difference equations. Modern Physics Letters B, 2020, 34, 2050009.	1.9	21
36	New fractional derivative with sigmoid function as the kernel and its models. Chinese Journal of Physics, 2020, 68, 533-541.	3.9	21

#	Article	IF	CITATIONS
37	On overall behavior of Maxwell mechanical model by the combined Caputo fractional derivative. Chinese Journal of Physics, 2020, 66, 269-276.	3.9	27
38	On the (N+1)â€dimensional local fractional reduced differential transform method and its applications. Mathematical Methods in the Applied Sciences, 2020, 43, 8856-8866.	2.3	31
39	A NEW PERSPECTIVE TO STUDY THE THIRD-ORDER MODIFIED KDV EQUATION ON FRACTAL SET. Fractals, 2020, 28, 2050110.	3.7	24
40	On the generalized time fractional diffusion equation: Symmetry analysis, conservation laws, optimal system and exact solutions. International Journal of Geometric Methods in Modern Physics, 2020, 17, 2050013.	2.0	33
41	On group analysis of the time fractional extended (2+1)-dimensional Zakharov–Kuznetsov equation in quantum magneto-plasmas. Mathematics and Computers in Simulation, 2020, 178, 407-421.	4.4	46
42	Group analysis to the time fractional nonlinear wave equation. International Journal of Mathematics, 2020, 31, 2050029.	0.5	26
43	Fractional derivatives with nonsingular kernels. , 2020, , 209-309.		6
44	General derivatives. , 2020, , 385-397.		19
45	Applications of fractional-order viscoelastic models. , 2020, , 399-427.		1
46	ANALYSIS OF THE TIME FRACTIONAL NONLINEAR DIFFUSION EQUATION FROM DIFFUSION PROCESS. Journal of Applied Analysis and Computation, 2020, 10, 1060-1072.	0.5	3
47	The vector power-law calculus with applications in power-law fluid flow. Thermal Science, 2020, 24, 4289-4302.	1.1	13
48	A new insight into vector calculus with respect to monotone functions for the complex fluid-flows. Thermal Science, 2020, 24, 3835-3845.	1.1	8
49	New insight into the Fourier-like and Darcy-like models in porous medium. Thermal Science, 2020, 24, 3847-3858.	1.1	11
50	On traveling-wave solutions for the scaling-law telegraph equations. Thermal Science, 2020, 24, 3861-3868.	1.1	16
51	The vector calculus with respect to monotone functions applied to heat conduction problems. Thermal Science, 2020, 24, 3949-3959.	1.1	7
52	Exact Travelling Wave Solutions for Local Fractional Partial Differential Equations in Mathematical Physics. Advances in Dynamics, Patterns, Cognition, 2019, , 175-191.	0.3	18
53	Resonant multiple wave solutions to some integrable soliton equations*. Chinese Physics B, 2019, 28, 110202.	1.4	18
54	A new fractal nonlinear Burgers' equation arising in the acoustic signals propagation. Mathematical Methods in the Applied Sciences, 2019, 42, 7539-7544.	2.3	99

#	Article	IF	Citations
55	On integrability of the time fractional nonlinear heat conduction equation. Journal of Geometry and Physics, 2019, 144, 190-198.	1.4	65
56	EXACT TRAVELING-WAVE SOLUTIONS FOR ONE-DIMENSIONAL MODIFIED KORTEWEG–DE VRIES EQUATION DEFINED ON CANTOR SETS. Fractals, 2019, 27, 1940010.	3.7	30
57	The Euler–Maclaurin–Siegel and Abel–Plana summation formulae for the entire Riemann functional equation to handle the Riemann hypothesis. Physica A: Statistical Mechanics and Its Applications, 2019, 525, 1203-1211.	2.6	0
58	Fundamental solutions of anomalous diffusion equations with the decay exponential kernel. Mathematical Methods in the Applied Sciences, 2019, 42, 4054-4060.	2.3	87
59	Abound rogue wave type solutions to the extended (3+1)-dimensional Jimbo–Miwa equation. Computers and Mathematics With Applications, 2019, 78, 1947-1959.	2.7	27
60	A new general fractional-order derivataive with Rabotnov fractional-exponential kernel applied to model the anomalous heat transfer. Thermal Science, 2019, 23, 1677-1681.	1.1	119
61	A new general fractional-order derivative with Rabotnov fractional-exponential kernel. Thermal Science, 2019, 23, 3711-3718.	1.1	24
62	New general calculi with respect to another functions applied to describe the Newton-like dashpot models in anomalous viscoelasticity. Thermal Science, 2019, 23, 3751-3757.	1.1	28
63	New mathematical models in anomalous viscoelasticity from the derivative with respect to another function view point. Thermal Science, 2019, 23, 1555-1561.	1.1	23
64	New non-conventional methods for quantitative concepts of anomalous rheology. Thermal Science, 2019, 23, 4117-4127.	1.1	26
65	A new general fractional-order wave model involving Miller-Ross kernel. Thermal Science, 2019, 23, 953-957.	1.1	0
66	The mechanical properties and fractal characteristics of the coal under temperature-gas-confining pressure. Thermal Science, 2019, 23, 789-798.	1.1	3
67	Editorial: Modern Fractional Dynamic Systems and Applications, MFDSA 2017. Journal of Computational and Applied Mathematics, 2018, 339, 1-2.	2.0	11
68	Squeezing flow of MHD fluid between parallel disks. International Journal for Computational Methods in Engineering Science and Mechanics, 2018, 19, 42-47.	2.1	6
69	A new computational approach for solving nonlinear local fractional PDEs. Journal of Computational and Applied Mathematics, 2018, 339, 285-296.	2.0	184
70	Fundamental solutions of the general fractionalâ€order diffusion equations. Mathematical Methods in the Applied Sciences, 2018, 41, 9312-9320.	2.3	84
71	On Linear and Nonlinear Electric Circuits: A Local Fractional Calculus Approach. , 2018, , 329-355.		3
72	Numerical simulation of spatial distributions of mining-induced stress and fracture fields for three coal mining layouts. Journal of Rock Mechanics and Geotechnical Engineering, 2018, 10, 907-913.	8.1	27

#	Article	IF	Citations
73	Anomalous Advection-Dispersion Equations within General Fractional-Order Derivatives: Models and Series Solutions. Entropy, 2018, 20, 78.	2.2	5
74	An anomalous diffusion model based on a new general fractional operator with the Mittag-Leffler function of Wiman type. Advances in Difference Equations, 2018, 2018, .	3.5	16
75	A new insight into complexity from the local fractional calculus view point: modelling growths of populations. Mathematical Methods in the Applied Sciences, 2017, 40, 6070-6075.	2.3	26
76	On the local fractional LWR model in fractal traffic flows in the entropy condition. Mathematical Methods in the Applied Sciences, 2017, 40, 6127-6132.	2.3	14
77	Optimal q-homotopy analysis method for time-space fractional gas dynamics equation. European Physical Journal Plus, 2017, 132, 1.	2.6	34
78	A new fractional operator of variable order: Application in the description of anomalous diffusion. Physica A: Statistical Mechanics and Its Applications, 2017, 481, 276-283.	2.6	196
79	Exact travelling wave solutions for the local fractional two-dimensional Burgers-type equations. Computers and Mathematics With Applications, 2017, 73, 203-210.	2.7	225
80	EXACT TRAVELING-WAVE SOLUTION FOR LOCAL FRACTIONAL BOUSSINESQ EQUATION IN FRACTAL DOMAIN. Fractals, 2017, 25, 1740006.	3.7	165
81	Linear and non-linear free vibration of nano beams based on a new fractional non-local theory. Engineering Computations, 2017, 34, 1754-1770.	1.4	17
82	MHD squeezing flow between two parallel disks with suction or injection via Legendre wavelet-quasilinearization technique. Engineering Computations, 2017, 34, 892-901.	1.4	4
83	Non-differentiable Solutions for Local Fractional Nonlinear Riccati Differential Equations. Fundamenta Informaticae, 2017, 151, 409-417.	0.4	14
84	A New Family of the Local Fractional PDEs. Fundamenta Informaticae, 2017, 151, 63-75.	0.4	56
85	The RC Circuit Described by Local Fractional Differential Equations. Fundamenta Informaticae, 2017, 151, 419-429.	0.4	10
86	A new fractional nonlocal model and its application in free vibration of Timoshenko and Euler-Bernoulli beams. European Physical Journal Plus, 2017, 132, 1.	2.6	21
87	NON-DIFFERENTIABLE EXACT SOLUTIONS FOR THE NONLINEAR ODES DEFINED ON FRACTAL SETS. Fractals, 2017, 25, 1740002.	3.7	56
88	A new integral transform operator for solving the heat-diffusion problem. Applied Mathematics Letters, 2017, 64, 193-197.	2.7	128
89	On a fractal LC-electric circuit modeled by local fractional calculus. Communications in Nonlinear Science and Numerical Simulation, 2017, 47, 200-206.	3.3	133
90	A new fractional derivative involving the normalized sinc function without singular kernel. European Physical Journal: Special Topics, 2017, 226, 3567-3575.	2.6	100

#	Article	IF	CITATIONS
91	On a Hadamard-type fractional turbulent flow model with deviating arguments in a porous medium. Nonlinear Analysis: Modelling and Control, 2017, 22, 765-784.	1.6	14
92	Applications of a novel integral transform to partial differential equations. Journal of Nonlinear Science and Applications, 2017, 10, 528-534.	1.0	16
93	An efficient computational technique for local fractional heat conduction equations in fractal media. Journal of Nonlinear Science and Applications, 2017, 10, 1478-1486.	1.0	35
94	Classifications and duality relations for several integral transforms. Journal of Nonlinear Science and Applications, 2017, 10, 324-6332.	1.0	1
95	A new technology for solving diffusion and heat equations. Thermal Science, 2017, 21, 133-140.	1.1	91
96	Exact traveling wave solutions for a new nonlinear heat transfer equation. Thermal Science, 2017, 21, 1833-1838.	1.1	17
97	Exact traveling-wave solutions for linear and nonlinear heat-transfer equations. Thermal Science, 2017, 21, 2307-2311.	1.1	19
98	Fractional derivatives of constant and variable orders applied to anomalous relaxation models in heat transfer problems. Thermal Science, 2017, 21, 1161-1171.	1.1	117
99	On linear viscoelasticity within general fractional derivatives without singular kernel. Thermal Science, 2017, 21, 335-342.	1.1	13
100	General fractional calculus operators containing the generalized Mittag-Leffler functions applied to anomalous relaxation. Thermal Science, 2017, 21, 317-326.	1.1	24
101	General fractional-order anomalous diffusion with non-singular power-law kernel. Thermal Science, 2017, 21, 1-9.	1.1	32
102	Fractal analysis for heat extraction in geothermal system. Thermal Science, 2017, 21, 25-31.	1.1	18
103	A variational iteration method integral transform technique for handling heat transfer problems. Thermal Science, 2017, 21, 55-61.	1.1	6
104	New integral transforms for solving a steady heat transfer problem. Thermal Science, 2017, 21, 79-87.	1.1	36
105	A new technique for solving the 1-D burgers equation. Thermal Science, 2017, 21, 129-136.	1.1	27
106	Crack closure and initiation stresses of coal subjected to thermo-gas-mechanical coupling. Thermal Science, 2017, 21, 301-308.	1.1	3
107	A new integral transform method for solving steady heat-transfer problem. Thermal Science, 2016, 20, 639-642.	1,1	75
108	A new integral transform with an application in heat-transfer problem. Thermal Science, 2016, 20, 677-681.	1.1	38

#	Article	IF	Citations
109	Tea Category Identification Using a Novel Fractional Fourier Entropy and Jaya Algorithm. Entropy, 2016, 18, 77.	2.2	86
110	On exact traveling-wave solutions for local fractional Korteweg-de Vries equation. Chaos, 2016, 26, 084312.	2.5	165
111	Special issue on advances in fractional dynamics in mechanical engineering. Advances in Mechanical Engineering, 2016, 8, 168781401665409.	1.6	3
112	A new numerical technique for solving the local fractional diffusion equation: Two-dimensional extended differential transform approach. Applied Mathematics and Computation, 2016, 274, 143-151.	2.2	106
113	An efficient analytical method for solving local fractional nonlinear PDEs arising in mathematical physics. Applied Mathematical Modelling, 2016, 40, 1793-1799.	4.2	21
114	Nonlinear dynamics for local fractional Burgers' equation arising in fractal flow. Nonlinear Dynamics, 2016, 84, 3-7.	5.2	70
115	On the approximate solution of nonlinear time-fractional KdV equation via modified homotopy analysis Laplace transform method. Journal of Nonlinear Science and Applications, 2016, 09, 5463-5470.	1.0	17
116	A new numerical technique for local fractional diffusion equation in fractal heat transfer. Journal of Nonlinear Science and Applications, 2016, 09, 5621-5628.	1.0	28
117	Residual power series method for time-fractional Schrödinger equations. Journal of Nonlinear Science and Applications, 2016, 09, 5821-5829.	1.0	53
118	A coupling method involving the Sumudu transform and the variational iteration method for a class of local fractional diffusion equations. Journal of Nonlinear Science and Applications, 2016, 09, 5830-5835.	1.0	21
119	Generation of discrete integrable systems and some algebro-geometric properties of related discrete lattice equations. Journal of Nonlinear Science and Applications, 2016, 09, 6126-6141.	1.0	3
120	On local fractional Volterra integral equations in fractal heat transfer. Thermal Science, 2016, 20, 795-800.	1.1	2
121	A new fractional derivative without singular kernel: Application to the modelling of the steady heat flow. Thermal Science, 2016, 20, 753-756.	1.1	197
122	Approximate solution of the non-linear diffusion equation of multiple orders. Thermal Science, 2016, 20, 683-687.	1.1	6
123	A novel series method for fractional diffusion equation within Caputo fractional derivative. Thermal Science, 2016, 20, 695-699.	1.1	9
124	A local fractional derivative with applications to fractal relaxation and diffusion phenomena. Thermal Science, 2016, 20, 723-727.	1.1	3
125	Local fractional Euler's method for the steady heat-conduction problem. Thermal Science, 2016, 20, 735-738.	1.1	8
126	Exact solutions for the differential equations in fractal heat transfer. Thermal Science, 2016, 20, 747-750.	1.1	1

#	Article	IF	Citations
127	On local fractional operators View of computational complexity: Diffusion and relaxation defined on cantor sets. Thermal Science, 2016, 20, 755-767.	1.1	12
128	On local fractional Volterra integro-differential equations in fractal steady heat transfer. Thermal Science, 2016, 20, 789-793.	1.1	13
129	Some new applications for heat and fluid flows via fractional derivatives without singular kernel. Thermal Science, 2016, 20, 833-839.	1.1	19
130	About local fractional three-dimensional compressible Navier-Stokes equations in Cantor-type cylindrical co-ordinate system. Thermal Science, 2016, 20, 847-851.	1.1	1
131	Fractional Maxwell fluid with fractional derivative without singular kernel. Thermal Science, 2016, 20, 871-877.	1.1	50
132	Squeezing Flow of Micropolar Nanofluid between Parallel Disks. Journal of Magnetics, 2016, 21, 476-489.	0.4	7
133	Fractional Dynamics., 2015, , 1-5.		1
134	Numerical Solutions for ODEs with Local Fractional Derivative. , 2015, , 258-271.		0
135	Local Fractional Calculus Application to Differential Equations Arising in Fractal Heat Transfer. , 2015, , 272-285.		1
136	Cantor-type spherical-coordinate Method for Differential Equations within Local Fractional Derivatives., 2015,, 231-242.		1
137	Approximate Methods for Local Fractional Differential Equations. , 2015, , 243-257.		0
138	Identification of Green, Oolong and Black Teas in China via Wavelet Packet Entropy and Fuzzy Support Vector Machine. Entropy, 2015, 17, 6663-6682.	2.2	142
139	Local Fractional Homotopy Perturbation Method for Solving Non-Homogeneous Heat Conduction Equations in Fractal Domains. Entropy, 2015, 17, 6753-6764.	2.2	91
140	Pathological Brain Detection by a Novel Image Feature—Fractional Fourier Entropy. Entropy, 2015, 17, 8278-8296.	2.2	79
141	Advances on Integrodifferential Equations and Transforms. Abstract and Applied Analysis, 2015, 2015, 1-2.	0.7	1
142	On the Nonlinear PerturbationK(n,m)Rosenau-Hyman Equation: A Model of Nonlinear Scattering Wave. Advances in Mathematical Physics, 2015, 2015, 1-8.	0.8	2
143	Pathological brain detection in MRI scanning by wavelet packet Tsallis entropy and fuzzy support vector machine. SpringerPlus, 2015, 4, 716.	1.2	60
144	Local fractional similarity solution for the diffusion equation defined on Cantor sets. Applied Mathematics Letters, 2015, 47, 54-60.	2.7	115

#	Article	IF	CITATIONS
145	An asymptotic perturbation solution for a linear oscillator of free damped vibrations in fractal medium described by local fractional derivatives. Communications in Nonlinear Science and Numerical Simulation, 2015, 29, 499-504.	3.3	70
146	Fractional Dynamics., 2015,,.		61
147	Fractal boundary value problems for integral and differential equations with local fractional operators. Thermal Science, 2015, 19, 959-966.	1.1	62
148	Observing diffusion problems defined on cantor sets in different coordinate systems. Thermal Science, 2015, 19, 151-156.	1.1	12
149	On the fractal heat transfer problems with local fractional calculus. Thermal Science, 2015, 19, 1867-1871.	1.1	14
150	Adomian decomposition method for three-dimensional diffusion model in fractal heat transfer involving local fractional derivatives. Thermal Science, 2015, 19, 137-141.	1.1	25
151	Initial-Boundary Value Problems for Local Fractional Laplace Equation Arising in Fractal Electrostatics. Journal of Applied Nonlinear Dynamics, 2015, 4, 349-356.	0.3	5
152	Solving fractal steady heat-transfer problems with the local fractional Sumudu transform. Thermal Science, 2015, 19, 637-641.	1.1	1
153	The coexistence of seven sympatric fulvettas in Ailao Mountains, Ejia Town, Yunnan Province. Zoological Research, 2015, 36, 18-28.	0.6	1
154	Approximate Solutions for Local Fractional Linear Transport Equations Arising in Fractal Porous Media. Advances in Mathematical Physics, 2014, 2014, 1-8.	0.8	4
155	Local Fractional Variational Iteration and Decomposition Methods for Wave Equation on Cantor Sets within Local Fractional Operators. Abstract and Applied Analysis, 2014, 2014, 1-6.	0.7	53
156	Local Fractional Poisson and Laplace Equations with Applications to Electrostatics in Fractal Domain. Advances in Mathematical Physics, 2014, 2014, 1-5.	0.8	11
157	Local Fractional <mml:math id="M1" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>Z</mml:mi></mml:mrow></mml:math> -Transforms with Applications to Signals on Cantor Sets. Abstract and Applied Analysis, 2014, 2014, 1-6.	0.7	5
158	Application of Local Fractional Series Expansion Method to Solve Klein-Gordon Equations on Cantor Sets. Abstract and Applied Analysis, 2014, 2014, 1-6.	0.7	28
159	Local Fractional Sumudu Transform with Application to IVPs on Cantor Sets. Abstract and Applied Analysis, 2014, 2014, 1-7.	0.7	49
160	Fractal Dynamical Model of Vehicular Traffic Flow within the Local Fractional Conservation Laws. Abstract and Applied Analysis, 2014, 2014, 1-5.	0.7	8
161	Local Fractional Variational Iteration Method for Local Fractional Poisson Equations in Two Independent Variables. Abstract and Applied Analysis, 2014, 2014, 1-7.	0.7	6
162	Local Fractional Variational Iteration Method for Inhomogeneous Helmholtz Equation within Local Fractional Derivative Operator. Mathematical Problems in Engineering, 2014, 2014, 1-7.	1.1	5

#	Article	IF	Citations
163	Local Fractional Laplace Variational Iteration Method for Nonhomogeneous Heat Equations Arising in Fractal Heat Flow. Mathematical Problems in Engineering, 2014, 2014, 1-7.	1.1	8
164	Modelling Fractal Waves on Shallow Water Surfaces via Local Fractional Korteweg-de Vries Equation. Abstract and Applied Analysis, 2014, 2014, 1-10.	0.7	24
165	Solving Fokker-Planck Equations on Cantor Sets Using Local Fractional Decomposition Method. Abstract and Applied Analysis, 2014, 2014, 1-6.	0.7	5
166	On a Local Fractional Wave Equation under Fixed Entropy Arising in Fractal Hydrodynamics. Entropy, 2014, 16, 6254-6262.	2.2	23
167	Local Fractional Laplace Variational Iteration Method for Solving Linear Partial Differential Equations with Local Fractional Derivative. Discrete Dynamics in Nature and Society, 2014, 2014, 1-8.	0.9	17
168	On unsteady two-dimensional and axisymmetric squeezing flow between parallel plates. AEJ - Alexandria Engineering Journal, 2014, 53, 463-468.	6.4	45
169	Local Fractional Fourier Series Solutions for Nonhomogeneous Heat Equations Arising in Fractal Heat Flow with Local Fractional Derivative. Advances in Mechanical Engineering, 2014, 6, 514639.	1.6	11
170	Application of the Local Fractional Fourier Series to Fractal Signals. Advances in Dynamics, Patterns, Cognition, 2014, , 63-89.	0.3	11
171	Mathematical aspects of the Heisenberg uncertainty principle within local fractional Fourier analysis. Boundary Value Problems, 2013, 2013, .	0.7	44
172	Fractional complex transform method for wave equations on Cantor sets within local fractional differential operator. Advances in Difference Equations, 2013, 2013, .	3.5	43
173	Damped wave equation and dissipative wave equation in fractal strings within the local fractional variational iteration method. Fixed Point Theory and Applications, 2013, 2013, .	1.1	39
174	Cantor-type cylindrical-coordinate method for differential equations with local fractional derivatives. Physics Letters, Section A: General, Atomic and Solid State Physics, 2013, 377, 1696-1700.	2.1	134
175	A Local Fractional Variational Iteration Method for Laplace Equation within Local Fractional Operators. Abstract and Applied Analysis, 2013, 2013, 1-6.	0.7	27
176	Application of the Local Fractional Series Expansion Method and the Variational Iteration Method to the Helmholtz Equation Involving Local Fractional Derivative Operators. Abstract and Applied Analysis, 2013, 2013, 1-6.	0.7	30
177	On Local Fractional Continuous Wavelet Transform. Abstract and Applied Analysis, 2013, 2013, 1-5.	0.7	19
178	Systems of Navier-Stokes Equations on Cantor Sets. Mathematical Problems in Engineering, 2013, 2013, 1-8.	1.1	39
179	Local Fractional Series Expansion Method for Solving Wave and Diffusion Equations on Cantor Sets. Abstract and Applied Analysis, 2013, 2013, 1-5.	0.7	45
180	One-Phase Problems for Discontinuous Heat Transfer in Fractal Media. Mathematical Problems in Engineering, 2013, 2013, 1-3.	1,1	26

#	Article	IF	CITATIONS
181	Local Fractional Discrete Wavelet Transform for Solving Signals on Cantor Sets. Mathematical Problems in Engineering, 2013, 2013, 1-6.	1.1	9
182	Fractal heat conduction problem solved by local fractional variation iteration method. Thermal Science, 2013, 17, 625-628.	1.1	233
183	1-D heat conduction in a fractal medium: A solution by the local fractional Fourier series method. Thermal Science, 2013, 17, 953-956.	1.1	18
184	Analytical Solutions of the One-Dimensional Heat Equations Arising in Fractal Transient Conduction with Local Fractional Derivative. Abstract and Applied Analysis, 2013, 2013, 1-5.	0.7	8
185	Mappings for Special Functions on Cantor Sets and Special Integral Transforms via Local Fractional Operators. Abstract and Applied Analysis, 2013, 2013, 1-6.	0.7	6
186	A New Neumann Series Method for Solving a Family of Local Fractional Fredholm and Volterra Integral Equations. Mathematical Problems in Engineering, 2013, 2013, 1-6.	1.1	14
187	Maxwell's Equations on Cantor Sets: A Local Fractional Approach. Advances in High Energy Physics, 2013, 2013, 1-6.	1.1	30
188	Euler-Lagrange Equations on Cantor Sets. , 2013, , .		0
189	Local Fractional Fourier Series With Applications to Representations of Fractal Signals. , 2013, , .		O
190	Helmholtz and Diffusion Equations Associated with Local Fractional Derivative Operators Involving the Cantorian and Cantor-Type Cylindrical Coordinates. Advances in Mathematical Physics, 2013, 2013, 1-5.	0.8	36
191	Approximation Solutions for Local Fractional SchrĶdinger Equation in the One-Dimensional Cantorian System. Advances in Mathematical Physics, 2013, 2013, 1-5.	0.8	27
192	Analysis of Fractal Wave Equations by Local Fractional Fourier Series Method. Advances in Mathematical Physics, 2013, 2013, 1-6.	0.8	36
193	A New Viewpoint to Fourier Analysis in Fractal Space., 2013,, 397-409.		4
194	Local Fractional Fourier Series with Application to Wave Equation in Fractal Vibrating String. Abstract and Applied Analysis, 2012, 2012, 1-15.	0.7	45
195	A Novel Approach to Processing Fractal Signals Using the Yang-Fourier Transforms. Procedia Engineering, 2012, 29, 2950-2954.	1.2	17
196	Local Fractional Laplace's Transform Based on the Local Fractional Calculus. Communications in Computer and Information Science, 2011, , 391-397.	0.5	2
197	Local Fractional Fourier's Transform Based on the Local Fractional Calculus. , 2010, , .		7
198	Local Fractional Newton's Method Derived from Modified Local Fractional Calculus., 2009,,.		8

XIAO-JUN YANG

#	Article	lF	CITATIONS
199	AN INSIGHT ON THE FRACTAL POWER LAW FLOW: FROM A HAUSDORFF VECTOR CALCULUS PERSPECTIVE. Fractals, 0, , .	3.7	11
200	A Scaling Law Chaotic System. Fractals, 0, , .	3.7	0