Nasim Alem

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7185558/publications.pdf

Version: 2024-02-01

182225 62345 7,254 98 30 84 citations h-index g-index papers 99 99 99 15073 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Spatially Resolved Investigation of the Bandgap Variation across a β-(Al _{<i>x</i>} Ga _{1â€"<i>x</i>}) ₂ O ₃ ∬²-Ga ₂ O _{Interface by STEMâ€"VEELS. ACS Applied Electronic Materials, 2022, 4, 585-591.}	> 2. 0/sub>	2
2	Understanding Signatures of Emergent Magnetism in Topological Insulator/Ferrite Bilayers. Physical Review Letters, 2022, 128, 126802.	2.9	9
3	Nanoscale Mapping and Defectâ€Assisted Manipulation of Surface Plasmon Resonances in 2D Bi ₂ Te ₃ /Sb ₂ Te ₃ Inâ€Plane Heterostructures. Advanced Optical Materials, 2022, 10, .	3.6	4
4	Alloyed β-(Al <i>x</i> Ga1â^' <i>x</i>)2O3 bulk Czochralski single β-(Al0.1Ga0.9)2O3 and polycrystals	1.1	16
5	SnP ₂ S ₆ : A Promising Infrared Nonlinear Optical Crystal with Strong Nonresonant Second Harmonic Generation and Phase-Matchability. ACS Photonics, 2022, 9, 1724-1732.	3.2	11
6	Surface Modification of Proppant Using Hydrophobic Coating To Enhance Long-Term Production. SPE Production and Operations, 2021, 36, 116-127.	0.4	6
7	Self-regulated growth of $[111]$ -oriented perovskite oxide films using hybrid molecular beam epitaxy. APL Materials, 2021, 9, .	2.2	4
8	Picometer-Precision Atomic Position Tracking through Electron Microscopy. Journal of Visualized Experiments, 2021, , .	0.2	1
9	Cryogenic Transmission Electron Microscopy Investigation of Carbon Nanothreads. Microscopy and Microanalysis, 2021, 27, 684-685.	0.2	1
10	Illuminating Invisible Grain Boundaries in Coalesced Single-Orientation WS ₂ Monolayer Films. Nano Letters, 2021, 21, 6487-6495.	4.5	26
11	Ferroelectrics everywhere: Ferroelectricity in magnesium substituted zinc oxide thin films. Journal of Applied Physics, 2021, 130, .	1.1	55
12	Controllable pâ€Type Doping of 2D WSe ₂ via Vanadium Substitution. Advanced Functional Materials, 2021, 31, 2105252.	7.8	40
13	In Situ Dielectric Al ₂ O ₃ ∫βâ€Ga ₂ O ₃ Interfaces Grown Using Metal–Organic Chemical Vapor Deposition. Advanced Electronic Materials, 2021, 7, 2100333.	2.6	17
14	A ReaxFF Force Field for 2D-WS ₂ and Its Interaction with Sapphire. Journal of Physical Chemistry C, 2021, 125, 17950-17961.	1.5	10
15	Wafer-Scale Epitaxial Growth of Unidirectional WS ₂ Monolayers on Sapphire. ACS Nano, 2021, 15, 2532-2541.	7.3	149
16	Formation of metal vacancy arrays in coalesced WS2 monolayer films. 2D Materials, 2021, 8, 011003.	2.0	10
17	Atomic-scale characterization of structural and electronic properties of Hf doped \hat{l}^2 -Ga2O3. Applied Physics Letters, 2021, 119, .	1.5	6
18	Substrate Modification during Chemical Vapor Deposition of hBN on Sapphire. ACS Applied Materials & Samp; Interfaces, 2021, 13, 54516-54526.	4.0	15

#	Article	IF	CITATIONS
19	Measurement of mixed mode interfacial strengths with cementitious materials. Engineering Fracture Mechanics, 2020, 223, 106739.	2.0	14
20	Monolayer Vanadiumâ€Doped Tungsten Disulfide: A Roomâ€Temperature Dilute Magnetic Semiconductor. Advanced Science, 2020, 7, 2001174.	5.6	104
21	High-Resolution STEM/STEM-EELS Characterization of Entropy-stabilized Oxides Thin Films. Microscopy and Microanalysis, 2020, 26, 1196-1197.	0.2	2
22	Delta-doped <i>$\hat{1}^2$</i> -Ga2O3 films with narrow FWHM grown by metalorganic vapor-phase epitaxy. Applied Physics Letters, 2020, 117, .	1.5	17
23	Oxide-Free Three-Dimensional Germanium/Silicon Core–Shell Metalattice Made by High-Pressure Confined Chemical Vapor Deposition. ACS Nano, 2020, 14, 12810-12818.	7.3	6
24	Modeling for Structural Engineering and Synthesis of Two-Dimensional WSe ₂ Using a Newly Developed ReaxFF Reactive Force Field. Journal of Physical Chemistry C, 2020, 124, 28285-28297.	1.5	20
25	Point Defect and Their Influence on the Atomic and Electronic Structure of \hat{l}^2 -(Al _x Ga _{1-x}) ₂ O ₃ Alloys by STEM-EELS. Microscopy and Microanalysis, 2020, 26, 622-623.	0.2	2
26	Sputtered Sr <i>></i> >NbO _{<a &="" (12)="" (13)="" (14)="" (15)="" acs="" and="" applied="" are="" conductin<="" conducting="" conduction="" distriction="" film.="" materials="" subject="" td="" the="" to="" uv-transparent=""><td>4.0</td><td>18</td>}	4.0	18
27	Giant room temperature anomalous Hall effect and tunable topology in a ferromagnetic topological semimetal Co2MnAl. Nature Communications, 2020, 11, 3476.	5.8	127
28	Surface-Modified Graphite Nanoplatelets To Enhance Cement Sheath Durability. SPE Drilling and Completion, 2020, 35, 452-464.	0.9	7
29	Chemical vapor transport synthesis, characterization and compositional tuning of ZrSxSe2â^'x for optoelectronic applications. Journal of Crystal Growth, 2020, 542, 125609.	0.7	7
30	Quantum transport in three-dimensional metalattices of platinum featuring an unprecedentedly large surface area to volume ratio. Physical Review Materials, 2020, 4, .	0.9	3
31	Property and cation valence engineering in entropy-stabilized oxide thin films. Physical Review Materials, 2020, 4, .	0.9	20
32	Autocorrected off-axis holography of two-dimensional materials. Physical Review Research, 2020, 2, .	1.3	5
33	Investigation of the Atomic and Electronic Structure of \hat{l}^2 -(Al0.2Ga0.8)2O3 Alloys by STEM-EELS. Microscopy and Microanalysis, 2019, 25, 2186-2187.	0.2	1
34	Plasmonic Metalattices: A Correlated Monochromated Electron Energy Loss Study and Theoretical Calculations. Microscopy and Microanalysis, 2019, 25, 678-679.	0.2	0
35	High Resolution S/Transmission Electron Microscopy Investigation of Ca3Mn2O7 Phase Transformation under In-situ Heating Condition. Microscopy and Microanalysis, 2019, 25, 1876-1877.	0.2	0
36	Atomic-scale measurement of polar entropy. Physical Review B, 2019, 100, .	1.1	7

#	Article	IF	CITATIONS
37	Direct Correction of Residual Symmetric Aberrations in Electron Holograms of Weak Phase Objects. Microscopy and Microanalysis, 2019, 25, 98-99.	0.2	1
38	Structural, Optical and Thermal Behavior investigation of 2D Bi2Te3/Sb2Te3 in-plane Heterostructures via Aberration Corrected STEM and EELS. Microscopy and Microanalysis, 2019, 25, 2012-2013.	0.2	1
39	Large tetragonality and room temperature ferroelectricity in compressively strained CaTiO3 thin films. APL Materials, 2019, 7, .	2.2	10
40	Competing Polar and Antipolar Structures in the Ruddlesden–Popper Layered Perovskite Li ₂ SrNb ₂ O ₇ . Chemistry of Materials, 2019, 31, 4418-4425.	3.2	28
41	Multi-Step Topochemical Pathway to Metastable Mo ₂ AlB ₂ and Related Two-Dimensional Nanosheet Heterostructures. Journal of the American Chemical Society, 2019, 141, 10852-10861.	6.6	84
42	Full orientation control of epitaxial <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>MoS</mml:mi><mml:mn>2<td>nm.>.≮.an</td><td>:mansub></td></mml:mn></mml:msub></mml:math>	n m. >. ≮.a n	:mansub>
43	Local Structure and Bonding of Carbon Nanothreads Probed by High-Resolution Transmission Electron Microscopy. Journal of the American Chemical Society, 2019, 141, 6937-6945.	6.6	26
44	Defect-Controlled Nucleation and Orientation of WSe ₂ on hBN: A Route to Single-Crystal Epitaxial Monolayers. ACS Nano, 2019, 13, 3341-3352.	7.3	107
45	antiferromagnetic topological insulator <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>MnB</mml:mi><mml:msub><mml:r mathvariant="normal">i<mml:mn>2<mml:mi><mml:mi mathvariant="normal">T</mml:mi><mml:msub><mml:mi< td=""><td>ni 1.3</td><td>204</td></mml:mi<></mml:msub></mml:mi></mml:mn></mml:r></mml:msub></mml:mrow></mml:math>	ni 1.3	204
46	Diffusion-Controlled Epitaxy of Large Area Coalesced WSe ₂ Monolayers on Sapphire. Nano Letters, 2018, 18, 1049-1056.	4.5	197
47	Advanced Synthesis of Na4Si24. MRS Advances, 2018, 3, 1427-1433.	0.5	3
48	Superior Electro-Oxidation and Corrosion Resistance of Monolayer Transition Metal Disulfides. ACS Applied Materials & Disulfides. ACS Disu	4.0	23
49	Confined Chemical Fluid Deposition of Ferromagnetic Metalattices. Nano Letters, 2018, 18, 546-552.	4.5	21
50	Carbon Nitride Nanothread Crystals Derived from Pyridine. Journal of the American Chemical Society, 2018, 140, 4969-4972.	6.6	81
51	Electronic and Structural Characterization of Diamondoid Carbon Nanothreads by Transmission Electron Microscopy. Microscopy and Microanalysis, 2018, 24, 1992-1993.	0.2	1
52	Investigation of Surface Plasmon Resonances in Silver Infiltrated Metalattices by Monochromated Electron Energy Loss Spectroscopy. Microscopy and Microanalysis, 2018, 24, 432-433.	0.2	1
53	Low-dose Transmission Electron Microscopy of Highly-Oriented Polyacetylene. Microscopy and Microanalysis, 2018, 24, 2030-2031.	0.2	4
54	In-situ TEM Study of Formation of an Ordered Hollow Structure Metalattice from Silica Nano-Opals through High-Temperature Annealing. Microscopy and Microanalysis, 2018, 24, 320-321.	0.2	0

#	Article	IF	CITATIONS
55	Overlapping growth windows to build complex oxide superlattices. APL Materials, 2018, 6, 111104.	2.2	3
56	High Resolution S/TEM Imaging of High Density Domain Stacking and Coexisting Polar-nonpolar Phases in Layered Perovskite Ca3Mn2O7. Microscopy and Microanalysis, 2018, 24, 1916-1917.	0.2	0
57	4D-STEM Differential Phase Contrast Microscopy Across Ferroelectric Domain Walls. Microscopy and Microanalysis, 2018, 24, 228-229.	0.2	0
58	Synthesis and Properties of Single-Crystalline Na ₄ Si ₂₄ . Crystal Growth and Design, 2018, 18, 7410-7418.	1.4	9
59	Atomic Structure of W1-xMoxS2 Alloys and Heterostructures. Microscopy and Microanalysis, 2018, 24, 1628-1629.	0.2	0
60	High Resolution S/TEM Study of Defects in MOCVD Grown Mono to Few Layer WS2. Microscopy and Microanalysis, 2018, 24, 1636-1637.	0.2	0
61	Topochemical Deintercalation of Al from MoAlB: Stepwise Etching Pathway, Layered Intergrowth Structures, and Two-Dimensional MBene. Journal of the American Chemical Society, 2018, 140, 8833-8840.	6.6	204
62	Polar Oxides without Inversion Symmetry through Vacancy and Chemical Order. Journal of the American Chemical Society, 2017, 139, 2833-2841.	6.6	34
63	Low-temperature Synthesis of Heterostructures of Transition Metal Dichalcogenide Alloys (W _{<i>x</i>} Mo _{1–<i>x</i>} S ₂) and Graphene with Superior Catalytic Performance for Hydrogen Evolution. ACS Nano, 2017, 11, 5103-5112.	7.3	157
64	Defect Coupling and Sub-Angstrom Structural Distortions in W _{1â€"<i>x</i>} Mo _{<i>x</i>} S ₂ Monolayers. Nano Letters, 2017, 17, 2802-2808.	4.5	42
65	Low Dose Characterization of Diamondoid Carbon Nanothreads by Transmission Electron Microscopy. Microscopy and Microanalysis, 2017, 23, 1846-1847.	0.2	4
66	In-situ TEM Study on Size-dependent Thermal Stability of Nickel Filled Silica Nano-Opals. Microscopy and Microanalysis, 2017, 23, 956-957.	0.2	1
67	Highâ€Performance Polymers Sandwiched with Chemical Vapor Deposited Hexagonal Boron Nitrides as Scalable Highâ€₹emperature Dielectric Materials. Advanced Materials, 2017, 29, 1701864.	11.1	270
68	Statistical Measurement of Polar Displacements in Complex Oxides. Microscopy and Microanalysis, 2017, 23, 1660-1661.	0.2	0
69	Aberration Corrected STEM Imaging of Domain Walls in Congruent LiNbO 3. Microscopy and Microanalysis, 2016, 22, 914-915.	0.2	5
70	Observation of a Quasi-ordered Structure in Monolayer W x Mo (1-x) S 2 Alloys. Microscopy and Microanalysis, 2016, 22, 1548-1549.	0.2	1
71	Study on Chemical Vapor Deposition Growth and Transmission electron Microscopy MoS 2 /h-BN Heterostructure. Microscopy and Microanalysis, 2016, 22, 1640-1641.	0.2	2
72	Monochromated Low-Dose Aberration-Corrected Transmission Electron Microscopy of Diamondoid Carbon Nanothreads. Microscopy and Microanalysis, 2016, 22, 1840-1841.	0.2	6

#	Article	IF	CITATIONS
73	Atomic scale imaging of competing polar states in a Ruddlesden–Popper layered oxide. Nature Communications, 2016, 7, 12572.	5.8	26
74	Creating Ruddlesden-Popper phases by hybrid molecular beam epitaxy. Applied Physics Letters, 2016, 109,	1.5	18
75	Spontaneous Formation of Atomically Thin Stripes in Transition Metal Dichalcogenide Monolayers. Nano Letters, 2016, 16, 6982-6987.	4.5	48
76	Influence of Carbon in Metalorganic Chemical Vapor Deposition of Few-Layer WSe2 Thin Films. Journal of Electronic Materials, 2016, 45, 6273-6279.	1.0	47
77	Low-dose Microscopy and Beam Damage Study of Infiltrated Zeolite Y. Microscopy and Microanalysis, 2016, 22, 1638-1639.	0.2	3
78	Individual Mo Dopant Atoms in WS2 Monolayers: Atomic Structure and Induced Strain. Microscopy and Microanalysis, 2015, 21, 435-436.	0.2	3
79	Freestanding van der Waals Heterostructures of Graphene and Transition Metal Dichalcogenides. ACS Nano, 2015, 9, 4882-4890.	7. 3	157
80	Recent Advances in Two-Dimensional Materials beyond Graphene. ACS Nano, 2015, 9, 11509-11539.	7.3	2,069
81	Wafer-scale growth of VO2 thin films using a combinatorial approach. Nature Communications, 2015, 6, 8475.	5.8	117
82	Benzene-derived carbon nanothreads. Nature Materials, 2015, 14, 43-47.	13.3	250
83	Tuning Carbon Content and Morphology of FeCo/Graphitic Carbon Core–Shell Nanoparticles using a Saltâ€Matrixâ€Assisted CVD Process. Particle and Particle Systems Characterization, 2014, 31, 474-480.	1.2	11
84	Dislocation motion and grain boundary migration in two-dimensional tungsten disulphide. Nature Communications, 2014, 5, 4867.	5.8	192
85	Atomic-scale Observation of Grains and Grain Boundaries in Monolayers of WS ₂ . Microscopy and Microanalysis, 2014, 20, 1084-1085.	0.2	3
86	In Situ High Temperature Atomic Resolution Transmission Electron Microscopy of 2D Nanomaterials. Microscopy and Microanalysis, 2014, 20, 1770-1771.	0.2	0
87	Atomic Resolution Imaging of Grain Boundary Defects in Monolayer Chemical Vapor Deposition-Grown Hexagonal Boron Nitride. Journal of the American Chemical Society, 2013, 135, 6758-6761.	6.6	225
88	Low pressure chemical vapor deposition synthesis of hexagonal boron nitride on polycrystalline metal foils. Physica Status Solidi (B): Basic Research, 2013, 250, 2727-2731.	0.7	21
89	Subangstrom Edge Relaxations Probed by Electron Microscopy in Hexagonal Boron Nitride. Physical Review Letters, 2012, 109, 205502.	2.9	52
90	Probing the Out-of-Plane Distortion of Single Point Defects in Atomically Thin Hexagonal Boron Nitride at the Picometer Scale. Physical Review Letters, 2011, 106, 126102.	2.9	62

#	Article	IF	CITATION
91	Longitudinal Splitting of Boron Nitride Nanotubes for the Facile Synthesis of High Quality Boron Nitride Nanoribbons. Nano Letters, 2011, 11, 3221-3226.	4.5	122
92	Determination of the Local Chemical Structure of Graphene Oxide and Reduced Graphene Oxide. Advanced Materials, 2010, 22, 4467-4472.	11.1	1,044
93	A direct transfer of layer-area graphene. Applied Physics Letters, 2010, 96, .	1.5	335
94	Transfer-Free Batch Fabrication of Large-Area Suspended Graphene Membranes. ACS Nano, 2010, 4, 4762-4768.	7.3	103
95	Correlative deformation mechanisms in NixCo1 \hat{a}^{2} xO/ZrO2(CaO) directionally solidified eutectic composites with a confined metallic interphase. Acta Materialia, 2008, 56, 4378-4389.	3.8	4
96	Characterization of NixCo1 \hat{a} °xO/ZrO2(CaO) directionally solidified eutectic (DSE) ceramic composites with a ductile interphase. Journal of Materials Research, 2007, 22, 1797-1805.	1.2	3
97	Site-Specific Fabrication and Epitaxial Conversion of Functional Oxide Nanodisk Arrays. Nano Letters, 2006, 6, 2344-2348.	4.5	25
98	Interfacial Fracture Phenomena in Ceramic Composite Directionally Solidified Eutectics with a Ductile Interphase. Journal of the American Ceramic Society, 2006, 89, 767-772.	1.9	3