Richard M Ibberson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7184778/publications.pdf

Version: 2024-02-01

116 papers 5,648 citations

38 h-index 79698 73 g-index

127 all docs

127 docs citations

127 times ranked

6045 citing authors

#	Article	IF	CITATIONS
1	Crystal structure and bonding of ordered C60. Nature, 1991, 353, 147-149.	27.8	959
2	Formation of isomorphic Ir3+ and Ir4+ octamers and spin dimerization in the spinel Culr2S4. Nature, 2002, 416, 155-158.	27.8	315
3	Structure and superconductivity of LiFeAs. Chemical Communications, 2008, , 5918.	4.1	278
4	Neutron and X-ray single-crystal study of the AlPdMn icosahedral phase. Journal of Physics Condensed Matter, 1992, 4, 10149-10168.	1.8	258
5	Charge Ordering as Alternative to Jahn-Teller Distortion. Physical Review Letters, 2007, 98, .	7.8	241
6	The heat capacity of solid C60. Solid State Communications, 1992, 83, 711-715.	1.9	181
7	Investigation of the unusual magnetic spiral arrangement in BiFeO3. Physica B: Condensed Matter, 1992, 180-181, 117-118.	2.7	146
8	Structural behavior, crystal chemistry, and phase transitions in substituted leucite; high-resolution neutron powder diffraction studies. American Mineralogist, 1997, 82, 16-29.	1.9	117
9	Spin gap in Tl2Ru2O7 and the possible formation of Haldane chains in three-dimensional crystals. Nature Materials, 2006, 5, 471-476.	27.5	109
10	Lithium location in NASICON-type Li+ conductors by neutron diffraction. I. Triclinic α′-LiZr2(PO4)3. Solid State Ionics, 1999, 123, 173-180.	2.7	104
11	Low-Temperature Oxygen Migration and Negative Thermal Expansion in ZrW2-xMoxO8. Journal of the American Chemical Society, 2000, 122, 8694-8699.	13.7	88
12	Structural origins of the differing grain conductivity values in BaZr0.9Y0.1O2.95 and indication of novel approach to counter defect association. Journal of Materials Chemistry, 2008, 18, 3414.	6.7	88
13	Nitrogen atom location in rhombohedral and hexagonal RE2Fe17Nxcompounds. Journal of Physics Condensed Matter, 1991, 3, 1219-1226.	1.8	86
14	Cation Ordering, Domain Growth, and Zinc Loss in the Microwave Dielectric Oxide Ba3ZnTa2O9-Î'. Chemistry of Materials, 2003, 15, 586-597.	6.7	85
15	Temperature- and Pressure-Induced Proton Transfer in the 1:1 Adduct Formed between Squaric Acid and 4,4′-Bipyridine. Journal of the American Chemical Society, 2009, 131, 3884-3893.	13.7	82
16	Isotopic Polymorphism in Pyridine. Angewandte Chemie - International Edition, 2009, 48, 755-757.	13.8	81
17	Structural Characterization of the Redox Behavior in Copper-Exchanged Sodium Zeolite Y by High-Resolution Powder Neutron Diffraction. Chemistry of Materials, 2002, 14, 590-602.	6.7	74
18	High-resolution neutron powder diffraction studies of the structure of CsDSO4. Acta Crystallographica Section B: Structural Science, 1991, 47, 161-166.	1.8	71

#	Article	IF	Citations
19	The influence of pressure and temperature on the crystal structure of acetone. Chemical Communications, 1999, , 751-752.	4.1	70
20	Distortion of Host Lattice in Clathrate Hydrate as a Function of Guest Molecule and Temperature. Journal of Physical Chemistry A, 2000, 104, 10623-10630.	2.5	68
21	Ba8ZnTa6O24: a high-Q microwave dielectric from a potentially diverse homologous series. Applied Physics Letters, 2003, 82, 4537-4539.	3.3	68
22	Is Deuterium Always Smaller than Protium?. Angewandte Chemie - International Edition, 2008, 47, 4208-4210.	13.8	66
23	Design and performance of the new supermirror guide on HRPD at ISIS. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2009, 600, 47-49.	1.6	64
24	Structure of the Trimethylaluminum Dimer As Determined by Powder Neutron Diffraction at Low Temperature. Organometallics, 2000, 19, 4398-4401.	2.3	61
25	Does the modulated magnetic structure of BiFeO3change at low temperatures?. Journal of Physics Condensed Matter, 2006, 18, 2069-2075.	1.8	61
26	Orbital Degeneracy Removed by Charge Order in Triangular Antiferromagnet <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>AgNiO</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:math> . Physical Review Letters, 2007, 99, 157204.	7.8	58
27	The crystal structure of methane phase III. Journal of Chemical Physics, 2003, 119, 1586-1589.	3.0	51
28	Cation site ordering in phengite 3T from the Dora-Maira massif (western Alps): a variable-temperature neutron powder diffraction study. European Journal of Mineralogy, 1997, 9, 1183-1190.	1.3	51
29	High-pressure, low-temperature structural studies of orientationally ordered C60. Journal of Physics Condensed Matter, 1993, 5, 7923-7928.	1.8	50
30	Extensive lithium disorder in Li1.5Fe0.5Ti1.5(PO4)3Nasicon by neutron diffraction, and the Li1+xFexTi2â^2x(PO4)3phase diagram. Journal of Materials Chemistry, 2004, 14, 835-839.	6.7	50
31	On the preferential site occupation of Fe in RFe4Al8and related compounds. Journal of Physics Condensed Matter, 1990, 2, 1677-1681.	1.8	49
32	Cuboctahedral oxygen clusters in U3O7. Journal of Nuclear Materials, 2003, 322, 87-89.	2.7	48
33	Tetragonal superstructure and thermal history of Li0.3La0.567TiO3 (LLTO) solid electrolyte by neutron diffraction. Journal of Materials Chemistry, 2007, 17, 1300.	6.7	48
34	Order–Disorder and Mobility of Li+ in the β′- and β-LiZr2(PO4)3 Ionic Conductors: A Neutron Diffraction Study. Journal of Solid State Chemistry, 2000, 152, 340-347.	2.9	46
35	On the preferential site occupation of T \hat{a} %; Cr or Mn in rare earth compounds of the type RT4Al8. Journal of the Less Common Metals, 1990, 166, 329-334.	0.8	43
36	Crystal structure, microwave dielectric properties and AC conductivity of B-cation deficient hexagonal perovskites La5MxTi4–xO15 (x = 0.5, 1; M = Zn, Mg, Ga, Al). Journal of Materials Chemistry, 2006, 16, 1038.	6.7	43

#	Article	IF	CITATIONS
37	Ordering and quality factor in 0.95BaZn1/3Ta2/3O3–0.05SrGa1/2Ta1/2O3 production resonators. Journal of the European Ceramic Society, 2003, 23, 3021-3034.	5.7	42
38	Solid Phases of Cyclopentane:  Combined Experimental and Simulation Study. Journal of Physical Chemistry B, 2008, 112, 3746-3758.	2.6	39
39	The crystal structure analysis of deuterated benzene and deuterated nitromethane by pulsed-neutron powder diffraction: a comparison with single crystal neutron diffraction analysis. Physica B: Condensed Matter, 1992, 180-181, 597-600.	2.7	38
40	Neutron Diffraction Studies of U4O9: Comparison with EXAFS Results. Inorganic Chemistry, 2006, 45, 8408-8413.	4.0	37
41	A neutron-diffraction study of tetrahydrofuran and acetone clathrate hydrates. Physica B: Condensed Matter, 1995, 213-214, 405-407.	2.7	36
42	Oxygen Vacancy Ordering Phenomena in the Mixed-Conducting Hexagonal Perovskite Ba7Y2Mn3Ti2O20. Chemistry of Materials, 2007, 19, 2884-2893.	6.7	36
43	Charge disproportionation and collinear magnetic order in the frustrated triangular antiferromagnet <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mm< td=""><td>1322<td>:35 :mh></td></td></mm<></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:math>	1322 <td>:35 :mh></td>	:35 :mh>
44	In situ neutron diffraction studies of single crystals and powders during microwave irradiation. Faraday Discussions, 2003, 122, 363-379.	3.2	34
45	Ba8CoNb6O24: A dO Dielectric Oxide Host Containing Ordered d7 Cation Layers 1.88 nm Apart. Angewandte Chemie - International Edition, 2005, 44, 7733-7736.	13.8	33
46	Comparison of the crystal structure of the heavy-fermion materials CeColn 5 , CeRhIn 5 and CeIrIn 5. Applied Physics A: Materials Science and Processing, 2002, 74, s895-s897.	2.3	32
47	In Situ Measurement of Cation Order and Domain Growth in an Electroceramic. Chemistry of Materials, 2003, 15, 2527-2533.	6.7	32
48	Polymorphism in cyclohexanol. Acta Crystallographica Section B: Structural Science, 2008, 64, 573-582.	1.8	32
49	Structure of Ce2RhIn8: an example of complementary use of high-resolution neutron powder diffraction and reciprocal-space mapping to study complex materials. Acta Crystallographica Section B: Structural Science, 2006, 62, 173-189.	1.8	30
50	The magnetic and structural transitions in CrN and (CrMo)N. Physica B: Condensed Matter, 1992, 180-181, 329-332.	2.7	29
51	New 10-Layer Hexagonal Perovskites: Relationship between Cation and Vacancy Ordering and Microwave Dielectric Loss. Chemistry of Materials, 2006, 18, 6227-6238.	6.7	28
52	<i>ExtSym</i> : a program to aid space-group determination from powder diffraction data. Journal of Applied Crystallography, 2008, 41, 1177-1181.	4.5	27
53	Spin glass behavior in frustrated quantum spin system CuAl ₂ O ₄ with a possible orbital liquid state. Journal of Physics Condensed Matter, 2017, 29, 13LT01.	1.8	27
54	Ab-initio structure determination of Î ² -La2WO6. Journal of Solid State Chemistry, 2009, 182, 209-214.	2.9	26

#	Article	IF	CITATIONS
55	Neutron diffraction study on hydrogen bond structure in K3H(SeO4)2and K3D(SeO4)2crystals. Journal of Physics Condensed Matter, 2000, 12, 8559-8565.	1.8	24
56	Probing the vortex state of PrRu4Sb12through muon spin rotation and relaxation. Physical Review B, 2005, 72, .	3.2	24
57	The ab initio crystal structure determination of $\hat{l}\pm$ -malonic acid from neutron powder diffraction data. Chemical Physics Letters, 1993, 201, 75-78.	2.6	23
58	A neutron powder diffraction study of Fe and Ni distributions in synthetic pentlandite and violarite using 60Ni isotope. American Mineralogist, 2006, 91, 1442-1447.	1.9	23
59	Polymeric fullerene chains in RbC60 and KC60. Chemical Physics Letters, 2001, 347, 13-22.	2.6	22
60	Single-crystal X-ray and neutron powder diffraction investigation of the phase transition in tetrachlorobenzene. Acta Crystallographica Section B: Structural Science, 2006, 62, 287-295.	1.8	21
61	Crystal Structures and Glassy Phase Transition Behavior of Cyclohexene. Crystal Growth and Design, 2008, 8, 512-518.	3.0	20
62	Optimization ofÂ6LiF:ZnS(Ag) scintillator light yield using GEANT4. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2018, 892, 59-69.	1.6	20
63	The Crystal Structures of the Binary Mixed Valence Compound Bi(III)3Bi(V)O7 and Isotypic Bi3SbO7 as Determined by High Resolution X-Ray and Neutron Powder Diffraction. Journal of Solid State Chemistry, 2002, 163, 332-339.	2.9	19
64	Structure determination of α-La6W2O15. Journal of Solid State Chemistry, 2010, 183, 1297-1302.	2.9	19
65	Powder diffraction study on solid ozone. Solid State Sciences, 2001, 3, 195-202.	3.2	18
66	Structure and Phase Behavior of the Expandedâ€Metal Compound ⁷ Li(ND ₃) ₄ . Angewandte Chemie - International Edition, 2009, 48, 1435-1438.	13.8	18
67	Variable temperature neutron powder diffraction study to determine the magnetic interactions in Sr2LnRuO6(Ln = Ho and Tb). Journal of Physics Condensed Matter, 2004, 16, 7611-7624.	1.8	17
68	The effect of temperature and pressure on the crystal structure of piperidine. Chemistry Central Journal, 2015, 9, 18.	2.6	17
69	An inelastic neutron scattering spectroscopic investigation of the adsorption of ethene and propene on carbon. Physical Chemistry Chemical Physics, 2000, 2, 4447-4451.	2.8	16
70	Neutron diffraction investigation of Si site preference in RENi10Si2 compounds. Solid State Communications, 1991, 78, 473-476.	1.9	15
71	The crystal structures of m -xylene and p -xylene, C $8\mathrm{D}10$, at $4.5\mathrm{K}$. Journal of Molecular Structure, 2000, 524, 121-128.	3.6	15
72	Phase inhomogeneities and lattice expansion nearTcin the Mg11B2superconductor. Journal of Physics Condensed Matter, 2001, 13, L795-L802.	1.8	15

#	Article	IF	CITATIONS
73	Orderâ^'Disorder of the Hydronium Ion and Low-Temperature Phase Transition of (H3O)Zr2(PO4)3 NASICON by Neutron Diffraction. Journal of Physical Chemistry B, 2002, 106, 11916-11921.	2.6	15
74	High-Temperature Processing of Ba ₃ ZnTa ₂ O ₉ :  an In situ Study Using Synchrotron X-ray Powder Diffraction. Chemistry of Materials, 2007, 19, 4731-4740.	6.7	15
75	Cation ordering/disordering kinetics in Ba3CoNb2O9: An in situ study using synchrotron x-ray powder diffraction. Applied Physics Letters, 2007, 91, 222901.	3.3	15
76	Accurate molecular structures of chlorothiazide and hydrochlorothiazide by joint refinement against powder neutron and X-ray diffraction data. Acta Crystallographica Section B: Structural Science, 2008, 64, 101-107.	1.8	15
77	Neutron scattering study of crystal structure and proton diffusion in protonic conductors with hydrogen bonds. Physica B: Condensed Matter, 1991, 174, 268-271.	2.7	14
78	Neutron scattering studies of phase segregation in Pr0.7Ca0.3MnO3. Physica B: Condensed Matter, 2000, 276-278, 551-553.	2.7	14
79	Deprotonation and order-disorder reactions as a function of temperature in a phengite 3T (Cima Pal,) Tj ETQq1 1 2003, 15, 357-363.	0.784314 1.3	rgBT /Overlo
80	Order–disorder transition in monoclinic sulfur: a precise structural study by high-resolution neutron powder diffraction. Acta Crystallographica Section B: Structural Science, 2006, 62, 953-959.	1.8	14
81	Solid-state structures of the covalent hydrides germane and stannane. Acta Crystallographica Section B: Structural Science, 2008, 64, 312-317.	1.8	14
82	High-resolution time-of-flight measurements of the lattice parameter and thermal expansion of the icosahedral phase Al62Cu25.5Fe12.5. Journal of Applied Crystallography, 1994, 27, 1010-1014.	4.5	13
83	Accurate determination of hydrogen atom positions in $\hat{l}\pm$ -toluene by neutron powder diffraction. Journal of the Chemical Society Chemical Communications, 1992, , 1438-1439.	2.0	12
84	A strong isotope effect in the phase transition behaviour of ammonium hexachlorotellurate. Physica B: Condensed Matter, 1992, 180-181, 594-596.	2.7	12
85	Time-of-flight neutron diffraction study on the cryolite type phases of Li6NBr3. Journal of Alloys and Compounds, 1997, 261, 123-131.	5.5	11
86	Processing control of phase separation, cation ordering, and the dielectric properties of Ba3(Co0.6Zn0.4)Nb2O9. Applied Physics Letters, 2007, 91, 142906.	3.3	11
87	Alloxanâ€"a new low-temperature phase determined by neutron powder diffraction. CrystEngComm, 2008, 10, 465.	2.6	11
88	The lattice evolution of the spin-Peierls material CuGeO3 studied by neutron scattering. Physica B: Condensed Matter, 1995, 213-214, 288-290.	2.7	10
89	The low-temperature orthorhombic structure of YCu. Journal of Physics Condensed Matter, 1993, 5, L39-L42.	1.8	9
90	Charge ordering in Ag2BiO3. Solid State Sciences, 2006, 8, 267-276.	3.2	9

#	Article	IF	Citations
91	A novel isomorphic phase transition in \hat{l}^2 -pyrochlore oxide KOs2O6: a study using high resolution neutron powder diffraction. Journal of Physics Condensed Matter, 2010, 22, 015403.	1.8	9
92	The crystal structure determination of dimethylsulphide by high-resolution neutron powder diffraction. Journal of Molecular Structure, 1997, 415, 259-266.	3.6	8
93	Crystal structures and phase behaviour of acetaldehyde-d4: a study by high-resolution neutron powder diffraction and calorimetry. Journal of Molecular Structure, 2000, 520, 265-272.	3.6	8
94	Neutron powder and ab initio structure of ortho-xylene: the influence of crystal packing on phenyl ring geometry at 2 K. Chemical Communications, 2000, , 539-540.	4.1	8
95	The low-temperature phase III structure and phase transition behaviour of cyclohexanone. Acta Crystallographica Section B: Structural Science, 2006, 62, 592-598.	1.8	8
96	Selection of silicon photomultipliers for a ⁶ LiF:ZnS(Ag) scintillator based cold neutron detector. Journal of Physics Communications, 2018, 2, 045009.	1.2	8
97	Neutron powder diffraction studies of dimethyl sulfoxide. Acta Crystallographica Section C: Crystal Structure Communications, 2005, 61, o571-o573.	0.4	7
98	Experimental characterization of the Advanced Liquid Hydrogen Cold Neutron Source spectrum of the NBSR reactor at the NIST Center for Neutron Research. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2015, 792, 15-27.	1.6	7
99	Evaluation of a position sensitive neutron detector based on Li 6 Gd(BO 3) 3 scintillator., 2002,,.		6
100	In Situ Neutron and X-Ray Powder Diffraction Study of Cation Ordering and Domain Growth in the Dielectric Ceramic Ba3ZnTa2O9-Sr2GaTaO6. Journal of the American Ceramic Society, 2006, 89, 1827-1833.	3.8	6
101	Temperature-dependent crystal structure analysis of methyl iodide by high-resolution neutron powder diffraction. Zeitschrift FÃ $^1\!\!/4$ r Kristallographie, 2007, 222, 416-419.	1.1	6
102	High resolution neutron powder diffraction investigation of the low temperature crystal structure of molecular iodine (I2). Physica B: Condensed Matter, 1992, 180-181, 639-641.	2.7	5
103	Structure determination and phase transition behaviour of dimethyl sulfate. Acta Crystallographica Section B: Structural Science, 2006, 62, 280-286.	1.8	5
104	The crystal structures and phase behaviour of cyclohexene oxide. Chemical Physics Letters, 2006, 423, 454-458.	2.6	5
105	Polychromatic energy-dispersive neutron diffraction at a continuous source. Journal of Applied Crystallography, 2013, 46, 1347-1352.	4.5	5
106	Structural transformation in Tb0.1Y0.9Cu. Physica B: Condensed Matter, 1992, 180-181, 354-356.	2.7	4
107	Neutron powder diffraction study of perdeuterodimethyl sulfone. Acta Crystallographica Section C: Crystal Structure Communications, 2007, 63, o292-o294.	0.4	4
108	Neutron diffraction investigation of V site preference in RCo10V2 compounds. Journal of Alloys and Compounds, 1993, 196, L1-L2.	5.5	3

#	Article	IF	CITATIONS
109	Does the modulated magnetic structure of BiFeO3change at low temperatures?. Journal of Physics Condensed Matter, 2011, 23, 279501.	1.8	3
110	The crystal structure of 4-methyl pyridine at 4.5 K. Zeitschrift Fur Kristallographie - Crystalline Materials, 1990, 193, 243-250.	0.8	2
111	The crystal structure of \$gamma\$-phase p-dichlorobenzene at low temperature and high pressure by high-resolution neutron powder diffraction. Journal of Physics Condensed Matter, 2002, 14, 7287-7295.	1.8	2
112	Neutorn powder diffraction. , 2006, , 88-97.		2
113	Critical phenomenon in a molecular-ionic crystal (CD3ND3)2 [SnCl6]. Physica B: Condensed Matter, 1995, 213-214, 414-416.	2.7	1
114	Neutron scattering study of K1â^'x(NH4)xH2PO4 mixed crystals. Physica B: Condensed Matter, 1995, 213-214, 390-392.	2.7	0
115	Phase transitions of scandium triacetate. Physica B: Condensed Matter, 1995, 213-214, 402-404.	2.7	О
116	Orderâ€"Disorder of the Hydronium Ion and Low-Temperature Phase Transition of (H3O)Zr2(PO4)3 NASICON by Neutron Diffraction ChemInform, 2003, 34, no.	0.0	0