
David Craik

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7184764/publications.pdf Version: 2024-02-01

ΠΑΥΙΟ ΟΡΑΙΚ

#	Article	IF	CITATIONS
1	Ribosomally synthesized and post-translationally modified peptide natural products: overview and recommendations for a universal nomenclature. Natural Product Reports, 2013, 30, 108-160.	5.2	1,692
2	The Future of Peptideâ€based Drugs. Chemical Biology and Drug Design, 2013, 81, 136-147.	1.5	1,483
3	Plant cyclotides: A unique family of cyclic and knotted proteins that defines the cyclic cystine knot structural motif. Journal of Molecular Biology, 1999, 294, 1327-1336.	2.0	734
4	Thermal, Chemical, and Enzymatic Stability of the Cyclotide Kalata B1:Â The Importance of the Cyclic Cystine Knotâ€. Biochemistry, 2004, 43, 5965-5975.	1.2	520
5	A common structural motif incorporating a cystine knot and a tripleâ€stranded βâ€sheet in toxic and inhibitory polypeptides. Protein Science, 1994, 3, 1833-1839.	3.1	518
6	Functional group contributions to drug-receptor interactions. Journal of Medicinal Chemistry, 1984, 27, 1648-1657.	2.9	502
7	Solution Structure of Amyloid β-Peptide(1â~'40) in a Waterâ~'Micelle Environment. Is the Membrane-Spanning Domain Where We Think It Is?â€,‡. Biochemistry, 1998, 37, 11064-11077.	1.2	498
8	Biosynthesis and insecticidal properties of plant cyclotides: The cyclic knotted proteins from Oldenlandia affinis. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 10614-10619.	3.3	475
9	The cystine knot motif in toxins and implications for drug design. Toxicon, 2001, 39, 43-60.	0.8	436
10	Elucidation of the Primary and Three-Dimensional Structure of the Uterotonic Polypeptide Kalata B1. Biochemistry, 1995, 34, 4147-4158.	1.2	420
11	Accurate de novo design of hyperstable constrained peptides. Nature, 2016, 538, 329-335.	13.7	327
12	ConoServer: updated content, knowledge, and discovery tools in the conopeptide database. Nucleic Acids Research, 2012, 40, D325-D330.	6.5	298
13	Protein disulfide isomerase: the structure of oxidative folding. Trends in Biochemical Sciences, 2006, 31, 455-464.	3.7	293
14	Twists, Knots, and Rings in Proteins. Journal of Biological Chemistry, 2003, 278, 8606-8616.	1.6	292
15	CHEMISTRY: Seamless Proteins Tie Up Their Loose Ends. Science, 2006, 311, 1563-1564.	6.0	281
16	The Engineering of an Orally Active Conotoxin for the Treatment of Neuropathic Pain. Angewandte Chemie - International Edition, 2010, 49, 6545-6548.	7.2	280
17	Circular proteins — no end in sight. Trends in Biochemical Sciences, 2002, 27, 132-138.	3.7	258
18	Discovery, Synthesis, and Structure–Activity Relationships of Conotoxins. Chemical Reviews, 2014, 114, 5815-5847.	23.0	258

#	Article	IF	CITATIONS
19	Microcin J25 Has a Threaded Sidechain-to-Backbone Ring Structure and Not a Head-to-Tail Cyclized Backbone. Journal of the American Chemical Society, 2003, 125, 12464-12474.	6.6	248
20	CyBase: a database of cyclic protein sequences and structures, with applications in protein discovery and engineering. Nucleic Acids Research, 2007, 36, D206-D210.	6.5	242
21	Low-Molecular-Weight Peptidic and Cyclic Antagonists of the Receptor for the Complement Factor C5a. Journal of Medicinal Chemistry, 1999, 42, 1965-1974.	2.9	241
22	Distribution and Evolution of Circular Miniproteins in Flowering Plants. Plant Cell, 2008, 20, 2471-2483.	3.1	234
23	Two new classes of conopeptides inhibit the α1-adrenoceptor and noradrenaline transporter. Nature Neuroscience, 2001, 4, 902-907.	7.1	233
24	Isolation, Solution Structure, and Insecticidal Activity of Kalata B2, a Circular Protein with a Twist:Â Do Möbius Strips Exist in Nature?â€,‡. Biochemistry, 2005, 44, 851-860.	1.2	225
25	Solution structures by 1 H NMR of the novel cyclic trypsin inhibitor SFTI-1 from sunflower seeds and an acyclic permutant 1 1Edited by M. F. Summers. Journal of Molecular Biology, 2001, 311, 579-591.	2.0	220
26	Engineering stable peptide toxins by means of backbone cyclization: Stabilization of the Â-conotoxin MII. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 13767-13772.	3.3	220
27	Chemical Synthesis and Folding Pathways of Large Cyclic Polypeptides:Â Studies of the Cystine Knot Polypeptide Kalata B1â€. Biochemistry, 1999, 38, 10606-10614.	1.2	219
28	Circular Proteins in Plants. Journal of Biological Chemistry, 2001, 276, 22875-22882.	1.6	209
29	An Asparaginyl Endopeptidase Mediates in Vivo Protein Backbone Cyclization. Journal of Biological Chemistry, 2007, 282, 29721-29728.	1.6	207
30	Novel ω-Conotoxins from Conus catus Discriminate among Neuronal Calcium Channel Subtypes. Journal of Biological Chemistry, 2000, 275, 35335-35344.	1.6	199
31	Conopeptide characterization and classifications: An analysis using ConoServer. Toxicon, 2010, 55, 1491-1509.	0.8	198
32	Engineering pro-angiogenic peptides using stable, disulfide-rich cyclic scaffolds. Blood, 2011, 118, 6709-6717.	0.6	197
33	Plant cyclotides disrupt epithelial cells in the midgut of lepidopteran larvae. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 1221-1225.	3.3	194
34	ConoServer, a database for conopeptide sequences and structures. Bioinformatics, 2008, 24, 445-446.	1.8	193
35	Efficient backbone cyclization of linear peptides by a recombinant asparaginyl endopeptidase. Nature Communications, 2015, 6, 10199.	5.8	186
36	Engineering Stabilized Vascular Endothelial Growth Factor-A Antagonists: Synthesis, Structural Characterization, and Bioactivity of Grafted Analogues of Cyclotides. Journal of Medicinal Chemistry, 2008, 51, 7697-7704.	2.9	177

#	Article	IF	CITATIONS
37	Discovery, structure and biological activities of cyclotidesâ~†. Advanced Drug Delivery Reviews, 2009, 61, 918-930.	6.6	176
38	Designing macrocyclic disulfide-rich peptides for biotechnological applications. Nature Chemical Biology, 2018, 14, 417-427.	3.9	174
39	Conotoxins: Chemistry and Biology. Chemical Reviews, 2019, 119, 11510-11549.	23.0	174
40	Biosynthesis of circular proteins in plants. Plant Journal, 2008, 53, 505-515.	2.8	172
41	α-Selenoconotoxins, a New Class of Potent α7 Neuronal Nicotinic Receptor Antagonists. Journal of Biological Chemistry, 2006, 281, 14136-14143.	1.6	171
42	A novel suite of cyclotides from Viola odorata: sequence variation and the implications for structure, function and stability. Biochemical Journal, 2006, 400, 1-12.	1.7	170
43	Discovery, Structure and Biological Activities of the Cyclotides. Current Protein and Peptide Science, 2004, 5, 297-315.	0.7	167
44	The Vast Structural Diversity of Antimicrobial Peptides. Trends in Pharmacological Sciences, 2019, 40, 517-528.	4.0	165
45	Structure determination of the three disulfide bond isomers of α-conotoxin GI: a model for the role of disulfide bonds in structural stability 1 1Edited by P. E. Wright. Journal of Molecular Biology, 1998, 278, 401-415.	2.0	163
46	Backbone Cyclised Peptides from Plants Show Molluscicidal Activity against the Rice Pest <i>Pomacea canaliculata</i> (Golden Apple Snail). Journal of Agricultural and Food Chemistry, 2008, 56, 5237-5241.	2.4	163
47	Anti-HIV Cyclotides from the Chinese Medicinal Herb <i>Viola yedoensis</i> . Journal of Natural Products, 2008, 71, 47-52.	1.5	163
48	Structural plasticity of the cyclic-cystine-knot framework: implications for biological activity and drug design. Biochemical Journal, 2006, 394, 85-93.	1.7	162
49	Cyclotides: Natural, Circular Plant Peptides that Possess Significant Activity against Gastrointestinal Nematode Parasites of Sheep. Biochemistry, 2008, 47, 5581-5589.	1.2	162
50	Identification and Characterization of a New Family of Cell-penetrating Peptides. Journal of Biological Chemistry, 2011, 286, 36932-36943.	1.6	159
51	Analgesic α-Conotoxins Vc1.1 and Rg1A Inhibit N-Type Calcium Channels in Rat Sensory Neurons via GABA _B Receptor Activation. Journal of Neuroscience, 2008, 28, 10943-10951.	1.7	158
52	A Continent of Plant Defense Peptide Diversity: Cyclotides in Australian Hybanthus (Violaceae). Plant Cell, 2005, 17, 3176-3189.	3.1	156
53	Nonadditive carbon-13 nuclear magnetic resonance substituent shifts in 1,4-disubstituted benzenes. Nonlinear resonance and shift-charge ratio effects. Journal of Organic Chemistry, 1980, 45, 2429-2438.	1.7	155
54	Decoding the Membrane Activity of the Cyclotide Kalata B1. Journal of Biological Chemistry, 2011, 286, 24231-24241.	1.6	155

#	Article	IF	CITATIONS
55	Three-Dimensional Structure of RTD-1, a Cyclic Antimicrobial Defensin from Rhesus Macaque Leukocytesâ€,‡. Biochemistry, 2001, 40, 4211-4221.	1.2	153
56	Alanine Scanning Mutagenesis of the Prototypic Cyclotide Reveals a Cluster of Residues Essential for Bioactivity. Journal of Biological Chemistry, 2008, 283, 9805-9813.	1.6	153
57	Discovery of Cyclotides in the Fabaceae Plant Family Provides New Insights into the Cyclization, Evolution, and Distribution of Circular Proteins. ACS Chemical Biology, 2011, 6, 345-355.	1.6	151
58	Solution Structure of Methionine-Oxidized Amyloid β-Peptide (1â^'40). Does Oxidation Affect Conformational Switching?â€,‡. Biochemistry, 1998, 37, 12700-12706.	1.2	144
59	The Biological Activity of the Prototypic Cyclotide Kalata B1 Is Modulated by the Formation of Multimeric Pores. Journal of Biological Chemistry, 2009, 284, 20699-20707.	1.6	144
60	Design and characterization of novel antimicrobial peptides, R-BP100 and RW-BP100, with activity against Gram-negative and Gram-positive bacteria. Biochimica Et Biophysica Acta - Biomembranes, 2013, 1828, 944-955.	1.4	144
61	Discovery of an unusual biosynthetic origin for circular proteins in legumes. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 10127-10132.	3.3	143
62	The cyclotide family of circular miniproteins: Nature's combinatorial peptide template. Biopolymers, 2006, 84, 250-266.	1.2	142
63	Bioactive cystine knot proteins. Current Opinion in Chemical Biology, 2011, 15, 362-368.	2.8	142
64	Albumins and their processing machinery are hijacked for cyclic peptides in sunflower. Nature Chemical Biology, 2011, 7, 257-259.	3.9	141
65	Cyclotides: From Structure to Function. Chemical Reviews, 2019, 119, 12375-12421.	23.0	141
66	Cyclotides as natural antiâ€HIV agents. Biopolymers, 2008, 90, 51-60.	1.2	140
67	CyBase: a database of cyclic protein sequence and structure. Nucleic Acids Research, 2006, 34, D192-D194.	6.5	137
68	Insecticidal plant cyclotides and related cystine knot toxins. Toxicon, 2007, 49, 561-575.	0.8	137
69	Disulfide Mapping of the Cyclotide Kalata B1. Journal of Biological Chemistry, 2003, 278, 48188-48196.	1.6	136
70	Cyclotides as templates in drug design. Drug Discovery Today, 2010, 15, 57-64.	3.2	133
71	The alpine violet, Viola biflora, is a rich source of cyclotides with potent cytotoxicity. Phytochemistry, 2008, 69, 939-952.	1.4	131
72	Rational design and synthesis of an orally bioavailable peptide guided by NMR amide temperature coefficients. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 17504-17509.	3.3	130

#	Article	IF	CITATIONS
73	Isolation, Structure, and Activity of GID, a Novel α4/7-Conotoxin with an Extended N-terminal Sequence. Journal of Biological Chemistry, 2003, 278, 3137-3144.	1.6	129
74	Conotoxins: natural product drug leads. Natural Product Reports, 2009, 26, 526.	5.2	129
75	Cyclic Peptides Arising by Evolutionary Parallelism via Asparaginyl-Endopeptidase–Mediated Biosynthesis. Plant Cell, 2012, 24, 2765-2778.	3.1	129
76	Oxytocic plant cyclotides as templates for peptide G protein-coupled receptor ligand design. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 21183-21188.	3.3	129
77	Molecular Grafting onto a Stable Framework Yields Novel Cyclic Peptides for the Treatment of Multiple Sclerosis. ACS Chemical Biology, 2014, 9, 156-163.	1.6	128
78	Cyclotides Associate with Leaf Vasculature and Are the Products of a Novel Precursor in Petunia (Solanaceae). Journal of Biological Chemistry, 2012, 287, 27033-27046.	1.6	126
79	Studies on the membrane interactions of the cyclotides kalata B1 and kalata B6 on model membrane systems by surface plasmon resonance. Analytical Biochemistry, 2005, 337, 149-153.	1.1	125
80	Î ₋ Defensins Prevent HIV-1 Env-mediated Fusion by Binding gp41 and Blocking 6-Helix Bundle Formation. Journal of Biological Chemistry, 2006, 281, 18787-18792.	1.6	125
81	The Three-dimensional Solution Structure of NaD1, a New Floral Defensin from Nicotiana alata and its Application to a Homology Model of the Crop Defense Protein alfAFP. Journal of Molecular Biology, 2003, 325, 175-188.	2.0	124
82	The Anthelmintic Activity of the Cyclotides: Natural Variants with Enhanced Activity. ChemBioChem, 2008, 9, 1939-1945.	1.3	124
83	Solving the α-Conotoxin Folding Problem: Efficient Selenium-Directed On-Resin Generation of More Potent and Stable Nicotinic Acetylcholine Receptor Antagonists. Journal of the American Chemical Society, 2010, 132, 3514-3522.	6.6	124
84	Improving on Nature: Making a Cyclic Heptapeptide Orally Bioavailable. Angewandte Chemie - International Edition, 2014, 53, 12059-12063.	7.2	123
85	Conserved Structural and Sequence Elements Implicated in the Processing of Gene-encoded Circular Proteins. Journal of Biological Chemistry, 2004, 279, 46858-46867.	1.6	122
86	The Synthesis, Structural Characterization, and Receptor Specificity of the α-Conotoxin Vc1.1. Journal of Biological Chemistry, 2006, 281, 23254-23263.	1.6	122
87	High-affinity Cyclic Peptide Matriptase Inhibitors. Journal of Biological Chemistry, 2013, 288, 13885-13896.	1.6	122
88	Structural analysis of the carbohydrate moiety of arabinogalactan-proteins from stigmas and styles of Nicotiana alata. Carbohydrate Research, 1995, 277, 67-85.	1.1	119
89	Functional Analysis of the α-Defensin Disulfide Array in Mouse Cryptdin-4. Journal of Biological Chemistry, 2004, 279, 44188-44196.	1.6	119
90	A Novel Plant Protein-disulfide Isomerase Involved in the Oxidative Folding of Cystine Knot Defense Proteins. Journal of Biological Chemistry, 2007, 282, 20435-20446.	1.6	119

#	Article	IF	CITATIONS
91	Isolation and Characterization of Novel Cyclotides from Viola hederaceae. Journal of Biological Chemistry, 2005, 280, 22395-22405.	1.6	117
92	Disulfide-rich macrocyclic peptides as templates in drug design. European Journal of Medicinal Chemistry, 2014, 77, 248-257.	2.6	117
93	Disulfide Folding Pathways of Cystine Knot Proteins. Journal of Biological Chemistry, 2003, 278, 6314-6322.	1.6	116
94	Phosphatidylethanolamine Binding Is a Conserved Feature of Cyclotide-Membrane Interactions. Journal of Biological Chemistry, 2012, 287, 33629-33643.	1.6	115
95	A New Level of Conotoxin Diversity, a Non-native Disulfide Bond Connectivity in α-Conotoxin AulB Reduces Structural Definition but Increases Biological Activity. Journal of Biological Chemistry, 2002, 277, 48849-48857.	1.6	114
96	Solution structure by NMR of circulin A: a macrocyclic knotted peptide having anti-HIV activity 1 1Edited by P. E. Wright. Journal of Molecular Biology, 1999, 285, 333-345.	2.0	113
97	Cyclotides as grafting frameworks for protein engineering and drug design applications. Biopolymers, 2013, 100, 480-491.	1.2	113
98	Linearization of a Naturally Occurring Circular Protein Maintains Structure but Eliminates Hemolytic Activity,. Biochemistry, 2003, 42, 6688-6695.	1.2	110
99	Fmoc-Based Synthesis of Disulfide-Rich Cyclic Peptides. Journal of Organic Chemistry, 2014, 79, 5538-5544.	1.7	110
100	The role of the cyclic peptide backbone in the anti-HIV activity of the cyclotide kalata B1. FEBS Letters, 2004, 574, 69-72.	1.3	108
101	The Cyclotide Fingerprint inOldenlandia affinis: Elucidation of Chemically Modified, Linear and Novel Macrocyclic Peptides. ChemBioChem, 2007, 8, 1001-1011.	1.3	108
102	Kalata B8, a novel antiviral circular protein, exhibits conformational flexibility in the cystine knot motif. Biochemical Journal, 2006, 393, 619-626.	1.7	107
103	Three-Dimensional Solution Structure of μ-Conotoxin GIIIB, a Specific Blocker of Skeletal Muscle Sodium Channelsâ€,‡. Biochemistry, 1996, 35, 8824-8835.	1.2	106
104	Discovery and Characterization of a Linear Cyclotide from Viola odorata: Implications for the Processing of Circular Proteins. Journal of Molecular Biology, 2006, 357, 1522-1535.	2.0	106
105	Are α9α10 Nicotinic Acetylcholine Receptors a Pain Target for α-Conotoxins?. Molecular Pharmacology, 2007, 72, 1406-1410.	1.0	106
106	Conformational Flexibility Is a Determinant of Permeability for Cyclosporin. Journal of Physical Chemistry B, 2018, 122, 2261-2276.	1.2	104
107	Plant cyclotides: circular, knotted peptide toxins. Toxicon, 2001, 39, 1809-1813.	0.8	103
108	Tissue-Specific Expression of Head-to-Tail Cyclized Miniproteins in Violaceae and Structure Determination of the Root Cyclotide Viola hederacea root cyclotide1[W]. Plant Cell, 2004, 16, 2204-2216.	3.1	102

#	Article	IF	CITATIONS
109	Cyclotides as a basis for drug design. Expert Opinion on Drug Discovery, 2012, 7, 179-194.	2.5	102
110	Magnetization changes induced by stress in a constant applied field. Journal Physics D: Applied Physics, 1970, 3, 1009-1016.	1.3	101
111	Anthelmintic activity of cyclotides: In vitro studies with canine and human hookworms. Acta Tropica, 2009, 109, 163-166.	0.9	100
112	The 1.1 å crystal structure of the neuronal acetylcholine receptor antagonist, α-conotoxin PnIA from Conus pennaceus. Structure, 1996, 4, 417-423.	1.6	99
113	Acyclic Permutants of Naturally Occurring Cyclic Proteins. Journal of Biological Chemistry, 2000, 275, 19068-19075.	1.6	99
114	Lysine-scanning Mutagenesis Reveals an Amendable Face of the Cyclotide Kalata B1 for the Optimization of Nematocidal Activity. Journal of Biological Chemistry, 2010, 285, 10797-10805.	1.6	99
115	Cyclotides as drug design scaffolds. Current Opinion in Chemical Biology, 2017, 38, 8-16.	2.8	99
116	Molecular basis for the production of cyclic peptides by plant asparaginyl endopeptidases. Nature Communications, 2018, 9, 2411.	5.8	99
117	alpha Conotoxins Nicotinic Acetylcholine Receptor Antagonists as Pharmacological Tools and Potential Drug Leads. Current Medicinal Chemistry, 2001, 8, 327-344.	1.2	98
118	A Consensus Structure for ω-Conotoxins with Different Selectivities for Voltage-sensitive Calcium Channel Subtypes: Comparison of MVIIA, SVIB and SNX-202. Journal of Molecular Biology, 1996, 263, 297-310.	2.0	97
119	Purification and Structural Characterization of a Filamentous, Mucin-like Proteophosphoglycan Secreted by Leishmania Parasites. Journal of Biological Chemistry, 1996, 271, 21583-21596.	1.6	97
120	Conotoxins and their potential pharmaceutical applications. , 1999, 46, 219-234.		97
121	Host-Defense Activities of Cyclotides. Toxins, 2012, 4, 139-156.	1.5	97
122	Cyclic MrIA:Â A Stable and Potent Cyclic Conotoxin with a Novel Topological Fold that Targets the Norepinephrine Transporter. Journal of Medicinal Chemistry, 2006, 49, 6561-6568.	2.9	96
123	The cyclic cystine knot miniprotein MCoTI-II is internalized into cells by macropinocytosis. International Journal of Biochemistry and Cell Biology, 2007, 39, 2252-2264.	1.2	96
124	Combined X-ray and NMR Analysis of the Stability of the Cyclotide Cystine Knot Fold That Underpins Its Insecticidal Activity and Potential Use as a Drug Scaffold. Journal of Biological Chemistry, 2009, 284, 10672-10683.	1.6	96
125	Drug Competition for Thyroxine Binding to Transthyretin (Prealbumin): Comparison with Effects on Thyroxine-Binding Globulin*. Journal of Clinical Endocrinology and Metabolism, 1989, 68, 1141-1147.	1.8	95
126	Discovery, structure, function, and applications of cyclotides: circular proteins from plants. Journal of Experimental Botany, 2016, 67, 4801-4812.	2.4	95

#	Article	IF	CITATIONS
127	Solution Structure and Novel Insights into the Determinants of the Receptor Specificity of Human Relaxin-3. Journal of Biological Chemistry, 2006, 281, 5845-5851.	1.6	93
128	Chemical Modification of Conotoxins to Improve Stability and Activity. ACS Chemical Biology, 2007, 2, 457-468.	1.6	93
129	Cyclic peptide oral bioavailability: Lessons from the past. Biopolymers, 2016, 106, 901-909.	1.2	93
130	Cell-wall polysaccharides from Australian red algae of the family Solieriaceae (Gigartinales,) Tj ETQq0 0 0 rgBT /C Research, 1997, 299, 229-243.	Dverlock 1 1.1	0 Tf 50 627 To 92
131	Chemical Re-engineering of Chlorotoxin Improves Bioconjugation Properties for Tumor Imaging and Targeted Therapy. Journal of Medicinal Chemistry, 2011, 54, 782-787.	2.9	91
132	Cloning, synthesis, and characterization of αO-conotoxin GeXIVA, a potent α9α10 nicotinic acetylcholine receptor antagonist. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E4026-35.	3.3	91
133	Carbon-13 substituent chemical shifts in the side-chain carbons of aromatic systems: the importance of π-polarization in determining chemical shifts. Journal of the Chemical Society Perkin Transactions II, 1981, , 753-759.	0.9	90
134	Structure of Petunia hybrida Defensin 1, a Novel Plant Defensin with Five Disulfide Bonds. Biochemistry, 2003, 42, 8214-8222.	1.2	90
135	Invited reviewnative chemical ligation applied to the synthesis and bioengineering of circular peptides and proteins. Biopolymers, 2010, 94, 414-422.	1.2	90
136	Naturally occurring circular proteins: distribution, biosynthesis and evolution. Organic and Biomolecular Chemistry, 2010, 8, 5035.	1.5	89
137	Solution structure and proposed binding mechanism of a novel potassium channel toxin κ-conotoxin PVIIA. Structure, 1997, 5, 1585-1597.	1.6	88
138	Small Molecular Probes for G-Protein-Coupled C5a Receptors:Â Conformationally Constrained Antagonists Derived from the C Terminus of the Human Plasma Protein C5a. Journal of Medicinal Chemistry, 1998, 41, 3417-3425.	2.9	88
139	Total Synthesis of the Analgesic Conotoxin MrVIB through Selenocysteineâ€Assisted Folding. Angewandte Chemie - International Edition, 2011, 50, 6527-6529.	7.2	88
140	Design, Synthesis, Structural and Functional Characterization of Novel Melanocortin Agonists Based on the Cyclotide Kalata B1. Journal of Biological Chemistry, 2012, 287, 40493-40501.	1.6	88
141	Butterfly Pea (Clitoria ternatea), a Cyclotide-Bearing Plant With Applications in Agriculture and Medicine. Frontiers in Plant Science, 2019, 10, 645.	1.7	88
142	Ultra‣table Peptide Scaffolds for Protein Engineering—Synthesis and Folding of the Circular Cystine Knotted Cyclotide Cycloviolacin O2. ChemBioChem, 2008, 9, 103-113.	1.3	87
143	Design, Synthesis, and Characterization of a Single-Chain Peptide Antagonist for the Relaxin-3 Receptor RXFP3. Journal of the American Chemical Society, 2011, 133, 4965-4974.	6.6	86
144	Peptide Macrocyclization by a Bifunctional Endoprotease. Chemistry and Biology, 2015, 22, 571-582.	6.2	86

#	Article	IF	CITATIONS
145	Sunflower Trypsin Inhibitor-1. Current Protein and Peptide Science, 2004, 5, 351-364.	0.7	85
146	Interaction of Hoechst 33258 with the minor groove of the A + T-rich DNA duplex d(GGTAATTACC)2 studied in solution by NMR spectroscopy. FEBS Journal, 1993, 211, 437-447.	0.2	84
147	Crystal Structure at 1.1 à Resolution of α-Conotoxin PnIB: Comparison with α-Conotoxins PnIA and Glâ€. Biochemistry, 1997, 36, 11323-11330.	1.2	84
148	Determination of the α-Conotoxin Vc1.1 Binding Site on the α9α10 Nicotinic Acetylcholine Receptor. Journal of Medicinal Chemistry, 2013, 56, 3557-3567.	2.9	84
149	Potential therapeutic applications of the cyclotides and related cystine knot mini-proteins. Expert Opinion on Investigational Drugs, 2007, 16, 595-604.	1.9	83
150	Semienzymatic Cyclization of Disulfide-rich Peptides Using Sortase A. Journal of Biological Chemistry, 2014, 289, 6627-6638.	1.6	83
151	Mechanisms of bacterial membrane permeabilization by crotalicidin (Ctn) and its fragment Ctn(15–34), antimicrobial peptides from rattlesnake venom. Journal of Biological Chemistry, 2018, 293, 1536-1549.	1.6	83
152	Variations in Cyclotide Expression inViolaSpecies. Journal of Natural Products, 2004, 67, 806-810.	1.5	82
153	A Novel Conotoxin Inhibitor of Kv1.6 Channel and nAChR Subtypes Defines a New Superfamily of Conotoxins,. Biochemistry, 2006, 45, 8331-8340.	1.2	81
154	α-Conotoxin ImI Incorporating Stable Cystathionine Bridges Maintains Full Potency and Identical Three-Dimensional Structure. Journal of the American Chemical Society, 2011, 133, 15866-15869.	6.6	81
155	Structural characterisation of xyloglucan secreted by suspension-cultured cells of Nicotiana plumbaginifolia. Carbohydrate Research, 1996, 293, 147-172.	1.1	80
156	Structure-activity relationships of ï‰-conotoxins MVIIA, MVIIC and 14 loop splice hybrids at N and P/Q-type calcium channels 1 1Edited by P. E. Wright. Journal of Molecular Biology, 1999, 289, 1405-1421.	2.0	80
157	Structures of μ4O-conotoxins from Conus marmoreus. Journal of Biological Chemistry, 2004, 279, 25774-25782.	1.6	80
158	Circular proteins and mechanisms of cyclization. Biopolymers, 2010, 94, 573-583.	1.2	79
159	Enzymatic Cyclization of a Potent Bowman-Birk Protease Inhibitor, Sunflower Trypsin Inhibitor-1, and Solution Structure of an Acyclic Precursor Peptide. Journal of Biological Chemistry, 2003, 278, 21782-21789.	1.6	78
160	Processing of a 22 kDa Precursor Protein to Produce the Circular Protein Tricyclon A. Structure, 2005, 13, 691-701.	1.6	78
161	Scanning Mutagenesis of α-Conotoxin Vc1.1 Reveals Residues Crucial for Activity at the α9α10 Nicotinic Acetylcholine Receptor. Journal of Biological Chemistry, 2009, 284, 20275-20284.	1.6	78
162	Identification and Structural Characterization of Novel Cyclotide with Activity against an Insect Pest of Sugar Cane. Journal of Biological Chemistry, 2012, 287, 134-147.	1.6	78

#	Article	IF	CITATIONS
163	Blockade of Neuronal α7-nAChR by α-Conotoxin ImI Explained by Computational Scanning and Energy Calculations. PLoS Computational Biology, 2011, 7, e1002011.	1.5	77
164	α-Conotoxin Vc1.1 inhibits human dorsal root ganglion neuroexcitability and mouse colonic nociception via GABA _B receptors. Gut, 2017, 66, 1083-1094.	6.1	77
165	Structural characterisation of galactoglucomannan secreted by suspension-cultured cells of Nicotiana plumbaginifolia. Carbohydrate Research, 1997, 303, 79-92.	1.1	76
166	Difficult Macrocyclizations:  New Strategies for Synthesizing Highly Strained Cyclic Tetrapeptides. Organic Letters, 2003, 5, 2711-2714.	2.4	76
167	Conopressin-T from Conus tulipa Reveals an Antagonist Switch in Vasopressin-like Peptides. Journal of Biological Chemistry, 2008, 283, 7100-7108.	1.6	76
168	Exploring experimental and computational markers of cyclic peptides: Charting islands of permeability. European Journal of Medicinal Chemistry, 2015, 97, 202-213.	2.6	76
169	Chemical synthesis and biosynthesis of the cyclotide family of circular proteins. IUBMB Life, 2006, 58, 515-524.	1.5	75
170	Circling the enemy: cyclic proteins in plant defence. Trends in Plant Science, 2009, 14, 328-335.	4.3	75
171	Cyclotides: macrocyclic peptides with applications in drug design and agriculture. Cellular and Molecular Life Sciences, 2010, 67, 9-16.	2.4	75
172	Role of Phosphorylation in the Conformation of Ï" Peptides Implicated in Alzheimer's Diseaseâ€. Biochemistry, 2000, 39, 9039-9046.	1.2	74
173	Despite a Conserved Cystine Knot Motif, Different Cyclotides Have Different Membrane Binding Modes. Biophysical Journal, 2009, 97, 1471-1481.	0.2	74
174	Solution Structure and Characterization of the LGR8 Receptor Binding Surface of Insulin-like Peptide 3. Journal of Biological Chemistry, 2006, 281, 28287-28295.	1.6	73
175	Cyclotide biosynthesis. Current Opinion in Chemical Biology, 2013, 17, 546-554.	2.8	73
176	Substituent effects on nitrogen-15 and oxygen-17 chemical shifts in nitrobenzenes: correlations with electron densities. Journal of Organic Chemistry, 1983, 48, 1601-1606.	1.7	72
177	Solution Structure of μ-Conotoxin PIIIA, a Preferential Inhibitor of Persistent Tetrodotoxin-sensitive Sodium Channels. Journal of Biological Chemistry, 2002, 277, 27247-27255.	1.6	72
178	Design of a Cyclotide Antagonist of Neuropilin-1 and -2 That Potently Inhibits Endothelial Cell Migration. ACS Chemical Biology, 2013, 8, 1147-1154.	1.6	72
179	PTRF/cavin-1 neutralizes non-caveolar caveolin-1 microdomains in prostate cancer. Oncogene, 2014, 33, 3561-3570.	2.6	72
180	The Chemistry and Biology of Theta Defensins. Angewandte Chemie - International Edition, 2014, 53, 10612-10623.	7.2	72

#	Article	IF	CITATIONS
181	Single Amino Acid Substitutions in α-Conotoxin PnIA Shift Selectivity for Subtypes of the Mammalian Neuronal Nicotinic Acetylcholine Receptor. Journal of Biological Chemistry, 1999, 274, 36559-36564.	1.6	71
182	Dermatophytic defensin with antiinfective potential. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 8495-8500.	3.3	71
183	The Prototypic Cyclotide Kalata B1 Has a Unique Mechanism of Entering Cells. Chemistry and Biology, 2015, 22, 1087-1097.	6.2	71
184	Determination of the Solution Structures of Conantokin-G and Conantokin-T by CD and NMR Spectroscopy. Journal of Biological Chemistry, 1997, 272, 2291-2299.	1.6	70
185	Conformational Studies by NMR of the Antimicrobial Peptide, Drosocin, and Its Non-Glycosylated Derivative:  Effects of Glycosylation on Solution Conformation. Biochemistry, 1999, 38, 705-714.	1.2	70
186	Structure of Thermolysin Cleaved Microcin J25:Â Extreme Stability of a Two-Chain Antimicrobial Peptide Devoid of Covalent Linksâ€,‡. Biochemistry, 2004, 43, 4696-4702.	1.2	70
187	Discovery of Cyclotide-Like Protein Sequences in Graminaceous Crop Plants: Ancestral Precursors of Circular Proteins?. Plant Cell, 2006, 18, 2134-2144.	3.1	70
188	Magnetic Interaction Domains. Proceedings of the Physical Society, 1960, 76, 160-162.	1.6	69
189	Synthesis, Structure Elucidation, in Vitro Biological Activity, Toxicity, and Caco-2 Cell Permeability of Lipophilic Analogues of α-Conotoxin MII. Journal of Medicinal Chemistry, 2003, 46, 1266-1272.	2.9	69
190	Sunflower trypsin inhibitorâ€1, proteolytic studies on a trypsin inhibitor peptide and its analogs. Biopolymers, 2010, 94, 665-672.	1.2	69
191	The Chemistry of Cyclotides. Journal of Organic Chemistry, 2011, 76, 4805-4817.	1.7	69
192	Cyclization of conotoxins to improve their biopharmaceutical properties. Toxicon, 2012, 59, 446-455.	0.8	68
193	Analysis and classification of circular proteins in CyBase. Biopolymers, 2010, 94, 584-591.	1.2	67
194	The Cyclic Cystine Ladder in Î,-Defensins Is Important for Structure and Stability, but Not Antibacterial Activity. Journal of Biological Chemistry, 2013, 288, 10830-10840.	1.6	67
195	Cyclotides Suppress Human T-Lymphocyte Proliferation by an Interleukin 2-Dependent Mechanism. PLoS ONE, 2013, 8, e68016.	1.1	67
196	Synergistic Activity of the Plant Defensin HsAFP1 and Caspofungin against Candida albicans Biofilms and Planktonic Cultures. PLoS ONE, 2015, 10, e0132701.	1.1	67
197	Substituent Effects on Chemical Shifts in the Sidechains of Aromatic Systems. Progress in Physical Organic Chemistry, 0, , 1-73.	1.2	67
198	Non-additive carbon-13 NMR substituent chemical shifts. Il—1,3-disubstituted benzenes. Magnetic Resonance in Chemistry, 1986, 24, 862-871.	1.1	66

#	Article	IF	CITATIONS
199	The Absolute Structural Requirement for a Proline in the P3′-position of Bowman-Birk Protease Inhibitors Is Surmounted in the Minimized SFTI-1 Scaffold. Journal of Biological Chemistry, 2006, 281, 23668-23675.	1.6	66
200	Chemical Synthesis, 3D Structure, and ASIC Binding Site of the Toxin Mambalginâ€⊋. Angewandte Chemie - International Edition, 2014, 53, 1017-1020.	7.2	66
201	Solution Structure of the Acetylated and Noncleavable Mitochondrial Targeting Signal of Rat Chaperonin 10. Journal of Biological Chemistry, 1995, 270, 1323-1331.	1.6	65
202	Isolation and characterization of cytotoxic cyclotides from Viola tricolor. Peptides, 2010, 31, 1434-1440.	1.2	65
203	Chlorotoxin: Structure, activity, and potential uses in cancer therapy. Biopolymers, 2016, 106, 25-36.	1.2	65
204	Dual-targeting anti-angiogenic cyclic peptides as potential drug leads for cancer therapy. Scientific Reports, 2016, 6, 35347.	1.6	65
205	Site-Specific Sequential Protein Labeling Catalyzed by a Single Recombinant Ligase. Journal of the American Chemical Society, 2019, 141, 17388-17393.	6.6	65
206	Isolation, Sequencing, and Structureâ´'Activity Relationships of Cyclotides. Journal of Natural Products, 2010, 73, 1610-1622.	1.5	64
207	The Flow Properties of Powders Under Humid Conditions. Journal of Pharmacy and Pharmacology, 2011, 10, 136T-144T.	1.2	64
208	A novel α4/7â€conotoxin LvIA from Conus lividus that selectively blocks α3β2 vs. α6/α3β2β3 nicotinic acetylcholine receptors. FASEB Journal, 2014, 28, 1842-1853.	0.2	64
209	Insect peptides with improved proteaseâ€resistance protect mice against bacterial infection. Protein Science, 2000, 9, 742-749.	3.1	63
210	Molecular basis for the resistance of an insect chymotrypsin to a potato type II proteinase inhibitor. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 15016-15021.	3.3	63
211	Characterization of a Novel α-Conotoxin TxID from <i>Conus textile</i> That Potently Blocks Rat α3β4 Nicotinic Acetylcholine Receptors. Journal of Medicinal Chemistry, 2013, 56, 9655-9663.	2.9	63
212	Design and Synthesis of Truncated EGF-A Peptides that Restore LDL-R Recycling in the Presence of PCSK9 InÂVitro. Chemistry and Biology, 2014, 21, 284-294.	6.2	63
213	Magnetic domains. Reports on Progress in Physics, 1961, 24, 116-166.	8.1	62
214	MiAMP1, a novel protein from Macadamia integrifolia adopts a greek key β-barrel fold unique amongst plant antimicrobial proteins 1 1Edited by P. E. Wright. Journal of Molecular Biology, 1999, 293, 629-638.	2.0	62
215	Cyclization of the Antimicrobial Peptide Gomesin with Native Chemical Ligation: Influences on Stability and Bioactivity. ChemBioChem, 2013, 14, 617-624.	1.3	62
216	Identification, Characterization, and Three-Dimensional Structure of the Novel Circular Bacteriocin, Enterocin NKR-5-3B, from <i>Enterococcus faecium</i> . Biochemistry, 2015, 54, 4863-4876.	1.2	62

#	Article	IF	CITATIONS
217	Discovery and optimization of peptide macrocycles. Expert Opinion on Drug Discovery, 2016, 11, 1151-1163.	2.5	62
218	Interaction of Tarantula Venom Peptide ProTx-II with Lipid Membranes Is a Prerequisite for Its Inhibition of Human Voltage-gated Sodium Channel NaV1.7. Journal of Biological Chemistry, 2016, 291, 17049-17065.	1.6	62
219	The cyclotides and related macrocyclic peptides as scaffolds in drug design. Current Opinion in Drug Discovery & Development, 2006, 9, 251-60.	1.9	62
220	Cycloviolacin H4, a Hydrophobic Cyclotide fromViola hederaceae. Journal of Natural Products, 2006, 69, 23-28.	1.5	61
221	A bifunctional asparaginyl endopeptidase efficiently catalyzes both cleavage and cyclization of cyclic trypsin inhibitors. Nature Communications, 2020, 11, 1575.	5.8	61
222	Solution Structure of α-Conotoxin ImI by 1H Nuclear Magnetic Resonance. Journal of Medicinal Chemistry, 1999, 42, 2364-2372.	2.9	60
223	Anticancer and Toxic Properties of Cyclotides are Dependent on Phosphatidylethanolamine Phospholipid Targeting. ChemBioChem, 2014, 15, 1956-1965.	1.3	60
224	Ab initio MO calculations and170 NMR at natural abundance ofpara-substituted acetophenones. Magnetic Resonance in Chemistry, 1983, 21, 616-620.	0.7	59
225	Structure-activity relationships of alpha-conotoxins targeting neuronal nicotinic acetylcholine receptors. FEBS Journal, 2004, 271, 2320-2326.	0.2	59
226	Isolation and characterization of cytotoxic cyclotides from Viola philippica. Peptides, 2011, 32, 1719-1723.	1.2	59
227	Effects of Cyclization on Stability, Structure, and Activity of α-Conotoxin RgIA at the α9α10 Nicotinic Acetylcholine Receptor and GABABReceptor. Journal of Medicinal Chemistry, 2011, 54, 6984-6992.	2.9	59
228	Structural Characterization of the Cyclic Cystine Ladder Motif of Î,-Defensins. Biochemistry, 2012, 51, 9718-9726.	1.2	59
229	Racemic and Quasiâ€Racemic Xâ€ray Structures of Cyclic Disulfideâ€Rich Peptide Drug Scaffolds. Angewandte Chemie - International Edition, 2014, 53, 11236-11241.	7.2	59
230	The radish defensins RsAFP1 and RsAFP2 act synergistically with caspofungin against Candida albicans biofilms. Peptides, 2016, 75, 71-79.	1.2	59
231	Three-Dimensional Solution Structure of α-Conotoxin MII by NMR Spectroscopy: Effects of Solution Environment on Helicityâ€,‡. Biochemistry, 1998, 37, 15621-15630.	1.2	58
232	Distribution of circular proteins in plants: large-scale mapping of cyclotides in the Violaceae. Frontiers in Plant Science, 2015, 6, 855.	1.7	58
233	Design of substrate-based BCR-ABL kinase inhibitors using the cyclotide scaffold. Scientific Reports, 2015, 5, 12974.	1.6	58
234	Gene coevolution and regulation lock cyclic plant defence peptides to their targets. New Phytologist, 2016, 210, 717-730.	3.5	58

#	Article	IF	CITATIONS
235	Substituent effects on the carbon-13 N.M.R. chemical shifts of side-chain carbons in aromatic systems. Australian Journal of Chemistry, 1977, 30, 351.	0.5	57
236	Structures of Naturally Occurring Circular Proteins from Bacteria. Journal of Bacteriology, 2003, 185, 4011-4021.	1.0	57
237	A Comparison of the Self-association Behavior of the Plant Cyclotides Kalata B1 and Kalata B2 via Analytical Ultracentrifugation. Journal of Biological Chemistry, 2004, 279, 562-570.	1.6	57
238	Engineered protease inhibitors based on sunflower trypsin inhibitor-1 (SFTI-1) provide insights into the role of sequence and conformation in Laskowski mechanism inhibition. Biochemical Journal, 2015, 469, 243-253.	1.7	57
239	Cyclotides Insert into Lipid Bilayers to Form Membrane Pores and Destabilize the Membrane through Hydrophobic and Phosphoethanolamine-specific Interactions. Journal of Biological Chemistry, 2012, 287, 43884-43898.	1.6	56
240	Approaches to the stabilization of bioactive epitopes by grafting and peptide cyclization. Biopolymers, 2016, 106, 89-100.	1.2	56
241	New Indole Alkaloids from the Bark ofAlstoniascholaris. Journal of Natural Products, 2004, 67, 1591-1594.	1.5	55
242	Dissecting the Oxidative Folding of Circular Cystine Knot Miniproteins. Antioxidants and Redox Signaling, 2009, 11, 971-980.	2.5	55
243	Discovery and applications of the plant cyclotides. Toxicon, 2010, 56, 1092-1102.	0.8	55
244	The Antimicrobial Activity of Sub3 is Dependent on Membrane Binding and Cellâ€Penetrating Ability. ChemBioChem, 2013, 14, 2013-2022.	1.3	55
245	Cyclic Penta- and Hexaleucine Peptides without <i>N</i> -Methylation Are Orally Absorbed. ACS Medicinal Chemistry Letters, 2014, 5, 1148-1151.	1.3	55
246	Mirror Images of Antimicrobial Peptides Provide Reflections on Their Functions and Amyloidogenic Properties. Journal of the American Chemical Society, 2016, 138, 5706-5713.	6.6	55
247	Solution structure of the sodium channel antagonist conotoxin GS: a new molecular caliper for probing sodium channel geometry. Structure, 1997, 5, 571-583.	1.6	54
248	Functional evolution of scorpion venom peptides with an inhibitor cystine knot fold. Bioscience Reports, 2013, 33, .	1.1	54
249	Structure–Activity Studies of Cysteineâ€Rich αâ€Conotoxins that Inhibit Highâ€Voltageâ€Activated Calcium Channels via GABA _B Receptor Activation Reveal a Minimal Functional Motif. Angewandte Chemie - International Edition, 2016, 55, 4692-4696.	7.2	54
250	Disulfide Bond Mutagenesis and the Structure and Function of the Head-to-Tail Macrocyclic Trypsin Inhibitor SFTI-1,. Biochemistry, 2005, 44, 1145-1153.	1.2	53
251	Characterization of a Novel α-Conotoxin from Conus textile That Selectively Targets α6/α3β2β3 Nicotinic Acetylcholine Receptors. Journal of Biological Chemistry, 2013, 288, 894-902.	1.6	53
252	Cyclotides as Tools in Chemical Biology. Accounts of Chemical Research, 2017, 50, 1557-1565.	7.6	53

#	Article	IF	CITATIONS
253	Co-expression of a cyclizing asparaginyl endopeptidase enables efficient production of cyclic peptides in planta. Journal of Experimental Botany, 2018, 69, 633-641.	2.4	53
254	Converting peptides into drugs targeting intracellular protein–protein interactions. Drug Discovery Today, 2021, 26, 1521-1531.	3.2	53
255	The cyclotides: novel macrocyclic peptides as scaffolds in drug design. Current Opinion in Drug Discovery & Development, 2002, 5, 251-60.	1.9	53
256	Conotoxin modulation of voltage-gated sodium channels. International Journal of Biochemistry and Cell Biology, 2008, 40, 2363-2368.	1.2	52
257	Discovery and applications of naturally occurring cyclic peptides. Drug Discovery Today: Technologies, 2012, 9, e13-e21.	4.0	52
258	Importance of the Cell Membrane on the Mechanism of Action of Cyclotides. ACS Chemical Biology, 2012, 7, 626-636.	1.6	52
259	Mining the genome of Arabidopsis thaliana as a basis for the identification of novel bioactive peptides involved in oxidative stress tolerance. Journal of Experimental Botany, 2013, 64, 5297-5307.	2.4	52
260	Structural parameters modulating the cellular uptake of disulfide-rich cyclic cell-penetrating peptides: MCoTI-II and SFTI-1. European Journal of Medicinal Chemistry, 2014, 88, 10-18.	2.6	52
261	A novel two-chain proteinase inhibitor generated by circularization of a multidomain precursor protein. Nature Structural Biology, 1999, 6, 526-530.	9.7	51
262	Formation of cyclotides and variations in cyclotide expression in Oldenlandia affinis suspension cultures. Applied Microbiology and Biotechnology, 2007, 77, 275-284.	1.7	51
263	Structure of catalytic domain of Matriptase in complex with Sunflower trypsin inhibitor-1. BMC Structural Biology, 2011, 11, 30.	2.3	51
264	Isolation and characterization of α-conotoxin LsIA with potent activity at nicotinic acetylcholine receptors. Biochemical Pharmacology, 2013, 86, 791-799.	2.0	51
265	Evolutionary Origins of a Bioactive Peptide Buried within Preproalbumin Â. Plant Cell, 2014, 26, 981-995.	3.1	51
266	Improving the Selectivity of Engineered Protease Inhibitors: Optimizing the P2 Prime Residue Using a Versatile Cyclic Peptide Library. Journal of Medicinal Chemistry, 2015, 58, 8257-8268.	2.9	51
267	Nicotiana alata Defensin Chimeras Reveal Differences in the Mechanism of Fungal and Tumor Cell Killing and an Enhanced Antifungal Variant. Antimicrobial Agents and Chemotherapy, 2016, 60, 6302-6312.	1.4	51
268	Using the MCoTI-II Cyclotide Scaffold To Design a Stable Cyclic Peptide Antagonist of SET, a Protein Overexpressed in Human Cancer. Biochemistry, 2016, 55, 396-405.	1.2	51
269	Understanding the Structure/Activity Relationships of the Iron Regulatory Peptide Hepcidin. Chemistry and Biology, 2011, 18, 336-343.	6.2	50
270	The C-terminal propeptide of a plant defensin confers cytoprotective and subcellular targeting functions. BMC Plant Biology, 2014, 14, 41.	1.6	50

#	Article	IF	CITATIONS
271	Structural analysis of the N-linked glycan chains from a stylar glycoprotein associated with expression of self-incompatibility in Nicotiana alata. Glycobiology, 1992, 2, 241-250.	1.3	49
272	Structure determination of extracellular fragments of amyloid proteins involved in Alzheimer's disease and Dutch-type hereditary cerebral haemorrhage with amyloidosis. FEBS Journal, 1994, 219, 237-251.	0.2	49
273	A pyruvated carrageenan from Australian specimens of the red alga Sarconema filiforme1Cell-wall polysaccharides from Australian red algae of the family Solieriaceae (Gigartinales, Rhodophyta). For previous instalment, see ref.[1].1. Carbohydrate Research, 1998, 310, 77-83.	1.1	49
274	Atypical α-Conotoxin LtIA from Conus litteratus Targets a Novel Microsite of the α3β2 Nicotinic Receptor. Journal of Biological Chemistry, 2010, 285, 12355-12366.	1.6	49
275	A Synthetic Mirror Image of Kalata B1 Reveals that Cyclotide Activity Is Independent of a Protein Receptor. ChemBioChem, 2011, 12, 2456-2462.	1.3	49
276	RegIIA: An α4/7-conotoxin from the venom of Conus regius that potently blocks α3β4 nAChRs. Biochemical Pharmacology, 2012, 83, 419-426.	2.0	49
277	Chemical synthesis, antibacterial activity and conformation of diptericin, an 82-mer peptide originally isolated from insects. FEBS Journal, 1999, 266, 549-558.	0.2	48
278	Structural and Functional Analysis of Human Liverâ€Expressed Antimicrobial Peptide 2. ChemBioChem, 2010, 11, 2148-2157.	1.3	48
279	Design of Potent and Selective Cathepsin G Inhibitors Based on the Sunflower Trypsin Inhibitor-1 Scaffold. Journal of Medicinal Chemistry, 2017, 60, 658-667.	2.9	48
280	MOLDYN: a generalized program for the evaluation of molecular dynamics models using nuclear magnetic resonance spin-relaxation data. Journal of Chemical Information and Computer Sciences, 1983, 23, 30-38.	2.8	47
281	Effects of Chirality at Tyr13 on the Structureâ^'Activity Relationships of ω-Conotoxins from Conus magus. Biochemistry, 1999, 38, 6741-6751.	1.2	47
282	Establishing regiocontrol of disulfide bond isomers of αâ€conotoxin ImI via the synthesis of Nâ€ŧo cyclic analogs. Biopolymers, 2010, 94, 307-313.	1.2	47
283	Structure of human insulin-like peptide 5 and characterization of conserved hydrogen bonds and electrostatic interactions within the relaxin framework. Biochemical Journal, 2009, 419, 619-627.	1.7	47
284	Engineering of Conotoxins for the Treatment of Pain. Current Pharmaceutical Design, 2011, 17, 4242-4253.	0.9	47
285	A suite of kinetically superior AEP ligases can cyclise an intrinsically disordered protein. Scientific Reports, 2019, 9, 10820.	1.6	47
286	Conformational Analysis of LYS(11â^'36), a Peptide Derived from the β-Sheet Region of T4 Lysozyme, in TFE and SDSâ€. Biochemistry, 1997, 36, 11525-11533.	1.2	46
287	The interactions of the N-terminal fusogenic peptide of HIV-1 gp41 with neutral phospholipids. European Biophysics Journal, 1999, 28, 427-436.	1.2	46
288	Structure of α-conotoxin BuIA: influences of disulfide connectivity on structural dynamics. BMC Structural Biology, 2007, 7, 28.	2.3	46

#	Article	IF	CITATIONS
289	Structural studies of conotoxins. IUBMB Life, 2009, 61, 144-150.	1.5	46
290	Knots in Rings. Journal of Biological Chemistry, 2006, 281, 8224-8232.	1.6	45
291	Identification of two suites of cyclotide precursor genes from metallophyte Viola baoshanensis: cDNA sequence variation, alternative RNA splicing and potential cyclotide diversity. Gene, 2009, 431, 23-32.	1.0	45
292	A new "era―for cyclotide sequencing. Biopolymers, 2010, 94, 592-601.	1.2	45
293	Cyclotides are a component of the innate defense of <i>Oldenlandia affinis</i> . Biopolymers, 2010, 94, 635-646.	1.2	45
294	Interlocking Disulfides in Circular Proteins: Toward Efficient Oxidative Folding of Cyclotides. Antioxidants and Redox Signaling, 2011, 14, 77-86.	2.5	45
295	The Cyclic Cystine Ladder of Thetaâ€Defensins as a Stable, Bifunctional Scaffold: A Proofâ€ofâ€Concept Study Using the Integrinâ€Binding RGD Motif ChemBioChem, 2014, 15, 451-459.	1.3	45
296	Cyclotide Structure and Function: The Role of Membrane Binding and Permeation. Biochemistry, 2017, 56, 669-682.	1.2	45
297	Salt-Tolerant Antifungal and Antibacterial Activities of the Corn Defensin ZmD32. Frontiers in Microbiology, 2019, 10, 795.	1.5	45
298	BETA/KAPPA-CARRAGEENANS AS EVIDENCE FOR CONTINUED SEPARATION OF THE FAMILIES DICRANEMATACEAE AND SARCODIACEAE (GIGARTINALES, RHODOPHYTA)1. Journal of Phycology, 1993, 29, 833-844.	1.0	44
299	NMR of conotoxins: structural features and an analysis of chemical shifts of post-translationally modified amino acids. Magnetic Resonance in Chemistry, 2006, 44, S41-S50.	1.1	44
300	NMR as a tool for elucidating the structures of circular and knotted proteins. Molecular BioSystems, 2007, 3, 257.	2.9	44
301	Microwaveâ€essisted Bocâ€solid phase peptide synthesis of cyclic cysteineâ€rich peptides. Journal of Peptide Science, 2008, 14, 683-689.	0.8	44
302	Cyclotide proteins and precursors from the genus Gloeospermum: Filling a blank spot in the cyclotide map of Violaceae. Phytochemistry, 2010, 71, 13-20.	1.4	44
303	Cyclotide Interactions with the Nematode External Surface. Antimicrobial Agents and Chemotherapy, 2010, 54, 2160-2166.	1.4	44
304	The Yariv reagent: Behaviour in different solvents and interaction with a gum arabic arabinogalactanprotein. Carbohydrate Polymers, 2014, 106, 460-468.	5.1	44
305	Papain-like cysteine proteases prepare plant cyclic peptide precursors for cyclization. Proceedings of the United States of America, 2019, 116, 7831-7836.	3.3	44
306	X-Ray-Diffraction Studies of Fibrils Formed from Peptide Fragments of Transthyretin. Biochemical and Biophysical Research Communications, 1993, 192, 991-998.	1.0	43

#	Article	IF	CITATIONS
307	Retrocyclin-2:  Structural Analysis of a Potent Anti-HIV Î,-Defensin [,] . Biochemistry, 2007, 46, 9920-9928.	1.2	43
308	Stabilization of Î \pm -Conotoxin AulB: Influences of Disulfide Connectivity and Backbone Cyclization. Antioxidants and Redox Signaling, 2011, 14, 87-95.	2.5	43
309	Structure and Activity of α-Conotoxin PeIA at Nicotinic Acetylcholine Receptor Subtypes and GABAB Receptor-coupled N-type Calcium Channels. Journal of Biological Chemistry, 2011, 286, 10233-10237.	1.6	43
310	Identifying Key Amino Acid Residues That Affect α-Conotoxin AulB Inhibition of α3β4 Nicotinic Acetylcholine Receptors. Journal of Biological Chemistry, 2013, 288, 34428-34442.	1.6	43
311	Redesigned Spider Peptide with Improved Antimicrobial and Anticancer Properties. ACS Chemical Biology, 2017, 12, 2324-2334.	1.6	43
312	Altered Metabolism of Growth Hormone Receptor Mutant Mice: A Combined NMR Metabonomics and Microarray Study. PLoS ONE, 2008, 3, e2764.	1.1	43
313	Structure of the R3/I5 Chimeric Relaxin Peptide, a Selective GPCR135 and GPCR142 Agonist. Journal of Biological Chemistry, 2008, 283, 23811-23818.	1.6	42
314	Isolation and Characterization of Peptides from <i>Momordica cochinchinensis</i> Seeds. Journal of Natural Products, 2009, 72, 1453-1458.	1.5	42
315	Less is More: Design of a Highly Stable Disulfide-Deleted Mutant of Analgesic Cyclic α-Conotoxin Vc1.1. Scientific Reports, 2015, 5, 13264.	1.6	42
316	Inhibition of tau aggregation using a naturally-occurring cyclic peptide scaffold. European Journal of Medicinal Chemistry, 2016, 109, 342-349.	2.6	42
317	Structures of a Series of 6-kDa Trypsin Inhibitors Isolated from the Stigma of Nicotiana alata. Biochemistry, 1995, 34, 14304-14311.	1.2	41
318	Stage-specific Proteophosphoglycan from Leishmania mexicana Amastigotes. Journal of Biological Chemistry, 1998, 273, 13509-13523.	1.6	41
319	Solution Structure of the Cyclotide Palicourein. Structure, 2004, 12, 85-94.	1.6	41
320	Cyclic thrombospondin-1 mimetics: grafting of a thrombospondin sequence into circular disulfide-rich frameworks to inhibit endothelial cell migration. Bioscience Reports, 2015, 35, .	1.1	41
321	A conformational study by proton NMR of a cyclic pentapeptide antagonist of endothelin. Journal of Medicinal Chemistry, 1993, 36, 2658-2665.	2.9	40
322	Inhibitors of β-Amyloid Formation Based on the β-Secretase Cleavage Site. Biochemical and Biophysical Research Communications, 2000, 268, 133-135.	1.0	40
323	Structural and Functional Characterization of the Conserved Salt Bridge in Mammalian Paneth Cell α-Defensins. Journal of Biological Chemistry, 2006, 281, 28068-28078.	1.6	40
324	Circular proteins from Melicytus (Violaceae) refine the conserved protein and gene architecture of cyclotides. Organic and Biomolecular Chemistry, 2009, 7, 2378.	1.5	40

#	Article	IF	CITATIONS
325	Therapeutic potential of conopeptides. Future Medicinal Chemistry, 2012, 4, 1243-1255.	1.1	40
326	Constrained Cyclic Peptides as Immunomodulatory Inhibitors of the CD2:CD58 Protein–Protein Interaction. ACS Chemical Biology, 2016, 11, 2366-2374.	1.6	40
327	Spider peptide toxin HwTx-IV engineered to bind to lipid membranes has an increased inhibitory potency at human voltage-gated sodium channel hNa V 1.7. Biochimica Et Biophysica Acta - Biomembranes, 2017, 1859, 835-844.	1.4	40
328	Solution conformation of endothelin, a potent vaso-constricting bicyclic peptide A combined use1H NMR spectroscopy and distance geometry calculations. FEBS Letters, 1991, 278, 9-13.	1.3	39
329	Solution structure of χ-conopeptide MrIA, a modulator of the human norepinephrine transporter. Biopolymers, 2005, 80, 815-823.	1.2	39
330	Evaluation of toxicity and antitumor activity of cycloviolacin O2 in mice. Biopolymers, 2010, 94, 626-634.	1.2	39
331	The Role of Conserved Glu Residue on Cyclotide Stability and Activity: A Structural and Functional Study of Kalata B12, a Naturally Occurring Glu to Asp Mutant. Biochemistry, 2011, 50, 4077-4086.	1.2	39
332	Insights into Processing and Cyclization Events Associated with Biosynthesis of the Cyclic Peptide Kalata B1. Journal of Biological Chemistry, 2012, 287, 28037-28046.	1.6	39
333	Is the Mirror Image a True Reflection? Intrinsic Membrane Chirality Modulates Peptide Binding. Journal of the American Chemical Society, 2019, 141, 20460-20469.	6.6	39
334	Structural Analysis and Molecular Model of a Self-Incompatibility RNase from Wild Tomato1. Plant Physiology, 1998, 116, 463-469.	2.3	38
335	Solution Structures of thecis- andtrans-Pro30 Isomers of a Novel 38-Residue Toxin from the Venom ofHadronyche Infensa sp. that Contains a Cystine-Knot Motif within Its Four Disulfide Bondsâ€,‡. Biochemistry, 2002, 41, 3294-3301.	1.2	38
336	The Structure of a Two-Disulfide Intermediate Assists in Elucidating the Oxidative Folding Pathway of a Cyclic Cystine Knot Protein. Structure, 2008, 16, 842-851.	1.6	38
337	Inhibition of Neuronal Nicotinic Acetylcholine Receptor Subtypes by α-Conotoxin GID and Analogues*. Journal of Biological Chemistry, 2009, 284, 4944-4951.	1.6	38
338	Structural Insights into the Role of the Cyclic Backbone in a Squash Trypsin Inhibitor. Journal of Biological Chemistry, 2013, 288, 36141-36148.	1.6	38
339	Bioinformatics-Aided Venomics. Toxins, 2015, 7, 2159-2187.	1.5	38
340	Characterization of Tachyplesin Peptides and Their Cyclized Analogues to Improve Antimicrobial and Anticancer Properties. International Journal of Molecular Sciences, 2019, 20, 4184.	1.8	38
341	Sunflower Trypsin Inhibitorâ€1 (SFTIâ€1): Sowing Seeds in the Fields of Chemistry and Biology. Angewandte Chemie - International Edition, 2021, 60, 8050-8071.	7.2	38
342	Effects of cyclotides against cutaneous infections caused by Staphylococcus aureus. Peptides, 2015, 63, 38-42.	1.2	37

#	Article	IF	CITATIONS
343	Development of a μO-Conotoxin Analogue with Improved Lipid Membrane Interactions and Potency for the Analgesic Sodium Channel NaV1.8. Journal of Biological Chemistry, 2016, 291, 11829-11842.	1.6	37
344	Short Cationic Peptide Derived from Archaea with Dual Antibacterial Properties and Anti-Infective Potential. ACS Infectious Diseases, 2019, 5, 1081-1086.	1.8	37
345	Thyroid hormone uptake by hepatocytes: structure-activity relationships of phenylanthranilic acids with inhibitory activity. Journal of Medicinal Chemistry, 1993, 36, 1272-1277.	2.9	36
346	The Three-dimensional Solution Structure by 1H NMR of a 6-Kda Proteinase Inhibitor Isolated from the Stigma of Nicotiana alata. Journal of Molecular Biology, 1994, 242, 231-243.	2.0	36
347	Sulfated galactans from Australian specimens of the red alga Phacelocarpus peperocarpos (Gigartinales, Rhodophyta). Carbohydrate Research, 1996, 296, 237-247.	1.1	36
348	Turbo-charged crosslinking. Nature Chemistry, 2012, 4, 600-602.	6.6	36
349	Engineering Cyclic Peptide Toxins. Methods in Enzymology, 2012, 503, 57-74.	0.4	36
350	Effects of Cyclization on Peptide Backbone Dynamics. Journal of Physical Chemistry B, 2015, 119, 15821-15830.	1.2	36
351	Cyclic analogues of α onotoxin Vc1.1 inhibit colonic nociceptors and provide analgesia in a mouse model of chronic abdominal pain. British Journal of Pharmacology, 2018, 175, 2384-2398.	2.7	36
352	Cyclotides: Disulfide-rich peptide toxins in plants. Toxicon, 2019, 172, 33-44.	0.8	36
353	Conformation of a Peptide Corresponding to T4 Lysozyme Residues 59-81 by NMR and CD Spectroscopy. Biochemistry, 1994, 33, 11174-11183.	1.2	35
354	Structure of N-glycans on the S3- and S6-stylar self-incompatibility ribonucleases of Nicotiana alata. Glycobiology, 1996, 6, 611-618.	1.3	35
355	Structureâ^'Activity Studies of Conantokins as Human N-Methyl-d-aspartate Receptor Modulators,. Journal of Medicinal Chemistry, 1999, 42, 415-426.	2.9	35
356	Discovery and Applications of Disulfide-Rich Cyclic Peptides. Current Topics in Medicinal Chemistry, 2012, 12, 1534-1545.	1.0	35
357	Translational Diffusion of Cyclic Peptides Measured Using Pulsed-Field Gradient NMR. Journal of Physical Chemistry B, 2014, 118, 11129-11136.	1.2	35
358	Mapping of voltage sensor positions in resting and inactivated mammalian sodium channels by LRET. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E1857-E1865.	3.3	35
359	Gating modifier toxins isolated from spider venom: Modulation of voltage-gated sodium channels and the role of lipid membranes. Journal of Biological Chemistry, 2018, 293, 9041-9052.	1.6	35
360	Ribosomally-synthesised cyclic peptides from plants as drug leads and pharmaceutical scaffolds. Bioorganic and Medicinal Chemistry, 2018, 26, 2727-2737.	1.4	35

#	Article	IF	CITATIONS
361	An ¹ H NMR determination of the threeâ€dimensional structures of mirrorâ€image forms of a Leuâ€5 variant of the trypsin inhibitor from <i>Ecballium elaterium</i> (EETlâ€II). Protein Science, 1994, 3, 291-302.	3.1	34
362	Lysine-rich Cyclotides: A New Subclass of Circular Knotted Proteins from Violaceae. ACS Chemical Biology, 2015, 10, 2491-2500.	1.6	34
363	Substrate-Guided Design of Selective FXIIa Inhibitors Based on the Plant-Derived <i>Momordica cochinchinensis</i> Trypsin Inhibitor-II (MCoTI-II) Scaffold. Journal of Medicinal Chemistry, 2016, 59, 7287-7292.	2.9	34
364	EGFâ€like and Other Disulfideâ€rich Microdomains as Therapeutic Scaffolds. Angewandte Chemie - International Edition, 2020, 59, 11218-11232.	7.2	34
365	Cell Wall Polysaccharides from Australian Red Algae of the Family Solieriaceae (Gigartinales,) Tj ETQq1 1 0.7843	14 rgBT /	Oveglock 10 T
366	Solution Structures in Aqueous SDS Micelles of Two Amyloid β Peptides of Aβ(1–28) Mutated at the α-Secretase Cleavage Site (K16E, K16F). Journal of Structural Biology, 2000, 130, 142-152.	1.3	33
367	Solution Structure, Membrane Interactions, and Protein Binding Partners of the Tetraspanin Sm-TSP-2, a Vaccine Antigen from the Human Blood Fluke Schistosoma mansoni. Journal of Biological Chemistry, 2014, 289, 7151-7163.	1.6	33
368	A theoretical investigation of the π-polarization mechanism. The importance of localized and extended polarization. Journal of the Chemical Society Perkin Transactions II, 1981, , 760-764.	0.9	32
369	Discovery, Structural Determination, and Putative Processing of the Precursor Protein That Produces the Cyclic Trypsin Inhibitor Sunflower Trypsin Inhibitor 1. Journal of Biological Chemistry, 2005, 280, 32245-32253.	1.6	32
370	THE FLOW PROPERTIES OF STARCH POWDERS AND MIXTURES. Journal of Pharmacy and Pharmacology, 2011, 10, 73-79.	1.2	32
371	Kalata B1 and Kalata B2 Have a Surfactant-Like Activity in Phosphatidylethanolomine-Containing Lipid Membranes. Langmuir, 2017, 33, 6630-6637.	1.6	32
372	NMR solution structure of the RNA-binding peptide from HIV-1 Rev protein. Biochemistry, 1995, 34, 8242-8249.	1.2	31
373	Three-Dimensional Structure of RK-1: A Novel α-Defensin Peptideâ€. Biochemistry, 2000, 39, 15757-15764.	1.2	31
374	The threeâ€dimensional structure of the analgesic α onotoxin, RgIA. FEBS Letters, 2008, 582, 597-602.	1.3	31
375	Delineation of the Unbinding Pathway of α-Conotoxin ImI from the α7 Nicotinic Acetylcholine Receptor. Journal of Physical Chemistry B, 2012, 116, 6097-6105.	1.2	31
376	Optimization of the cyclotide framework to improve cell penetration properties. Frontiers in Pharmacology, 2015, 6, 17.	1.6	31
377	Na _V 1.6 regulates excitability of mechanosensitive sensory neurons. Journal of Physiology, 2019, 597, 3751-3768.	1.3	31
378	Synthesis and Structure Determination by NMR of a Putative Vacuolar Targeting Peptide and Model of a Proteinase Inhibitor fromNicotiana alataâ€,‖. Biochemistry, 1996, 35, 369-378.	1.2	30

#	Article	IF	CITATIONS
379	Structure and metal binding studies of the second copper binding domain of the Menkes ATPase. Journal of Structural Biology, 2003, 143, 209-218.	1.3	30
380	Structure of Circulin B and Implications for Antimicrobial Activity of the Cyclotides. International Journal of Peptide Research and Therapeutics, 2005, 11, 99-106.	0.9	30
381	Oxidative Folding of Cyclic Cystine Knot Proteins. Antioxidants and Redox Signaling, 2008, 10, 103-112.	2.5	30
382	Molecular Engineering of Conotoxins: The Importance of Loop Size to α-Conotoxin Structure and Function. Journal of Medicinal Chemistry, 2008, 51, 5575-5584.	2.9	30
383	Neural correlates of observing pretend play in which one object is represented as another. Social Cognitive and Affective Neuroscience, 2009, 4, 369-378.	1.5	30
384	^l H NMR analysis of fibrilâ€forming peptide fragments of transthyretin. International Journal of Peptide and Protein Research, 1994, 44, 388-398.	0.1	30
385	Identification of candidates for cyclotide biosynthesis and cyclisation by expressed sequence tag analysis of Oldenlandia affinis. BMC Genomics, 2010, 11, 111.	1.2	30
386	NMR and protein structure in drug design: application to cyclotides and conotoxins. European Biophysics Journal, 2011, 40, 359-370.	1.2	30
387	Plant-Derived Decapeptide OSIP108 Interferes with Candida albicans Biofilm Formation without Affecting Cell Viability. Antimicrobial Agents and Chemotherapy, 2014, 58, 2647-2656.	1.4	30
388	Transcriptomic screening for cyclotides and other cysteine-rich proteins in the metallophyte Viola baoshanensis. Journal of Plant Physiology, 2015, 178, 17-26.	1.6	30
389	α-Conotoxin [S9A]TxID Potently Discriminates between α3β4 and α6/α3β4 Nicotinic Acetylcholine Receptors. Journal of Medicinal Chemistry, 2017, 60, 5826-5833.	2.9	30
390	A Computationally Designed Peptide Derived from <i>Escherichia coli</i> as a Potential Drug Template for Antibacterial and Antibiofilm Therapies. ACS Infectious Diseases, 2018, 4, 1727-1736.	1.8	30
391	A Study of Bitter Figures using the Electron Microscope. Proceedings of the Physical Society Section B, 1956, 69, 647-650.	0.9	29
392	New techniques for the study of Bitter figures. British Journal of Applied Physics, 1958, 9, 279-282.	0.7	29
393	Ring Flexibility within Tricyclic Antidepressant Drugs. Journal of Pharmaceutical Sciences, 2001, 90, 713-721.	1.6	29
394	The cyclic antimicrobial peptide RTD-1 induces stabilized lipid-peptide domains more efficiently than its open-chain analogue. FEBS Letters, 2004, 566, 301-306.	1.3	29
395	Thematic Minireview Series on Circular Proteins. Journal of Biological Chemistry, 2012, 287, 26999-27000.	1.6	29
396	The α-defensin salt-bridge induces backbone stability to facilitate folding and confer proteolytic resistance. Amino Acids, 2012, 43, 1471-1483.	1.2	29

#	Article	IF	CITATIONS
397	A radish seed antifungal peptide with a high amyloid fibril-forming propensity. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2013, 1834, 1615-1623.	1.1	29
398	Development of cellâ€penetrating peptideâ€based drug leads to inhibit MDMX:p53 and MDM2:p53 interactions. Biopolymers, 2016, 106, 853-863.	1.2	29
399	αO-Conotoxin GeXIVA disulfide bond isomers exhibit differential sensitivity for various nicotinic acetylcholine receptors but retain potency and selectivity for the human α9α10 subtype. Neuropharmacology, 2017, 127, 243-252.	2.0	29
400	Development of Novel Melanocortin Receptor Agonists Based on the Cyclic Peptide Framework of Sunflower Trypsin Inhibitor-1. Journal of Medicinal Chemistry, 2018, 61, 3674-3684.	2.9	29
401	Isolation and Characterization of Antimicrobial Peptides with Unusual Disulfide Connectivity from the Colonial Ascidian Synoicum turgens. Marine Drugs, 2020, 18, 51.	2.2	29
402	Structural analysis of peptide fragment 71-93 of transthyretin by NMR spectroscopy and electron microscopy: Insight into amyloid fibril formation. Biochemistry, 1994, 33, 33-41.	1.2	28
403	Carrageenans with complex substitution patterns from red algae of the genus Erythroclonium. Carbohydrate Research, 1997, 305, 243-252.	1.1	28
404	Structure–Activity Studies Reveal the Molecular Basis for GABA _B -Receptor Mediated Inhibition of High Voltage-Activated Calcium Channels by α-Conotoxin Vc1.1. ACS Chemical Biology, 2018, 13, 1577-1587.	1.6	28
405	Structural Characterization of the 1:1 Adduct Formed between the Antitumor Antibiotic Hedamycin and the Oligonucleotide Duplex d(CACGTG)2by 2D NMR Spectroscopyâ€. Biochemistry, 1996, 35, 9314-9324.	1.2	27
406	Synthesis, NMR studies and conformational analysis of oxazolidine derivatives of the β-adrenoreceptor antagonists metoprolol, atenolol and timolol. Journal of the Chemical Society Perkin Transactions II, 1998, , 199-206.	0.9	27
407	New Alkaloids fromPandanusamaryllifolius. Journal of Natural Products, 2004, 67, 54-57.	1.5	27
408	Tyrosine-rich Conopeptides Affect Voltage-gated K+ Channels. Journal of Biological Chemistry, 2008, 283, 23026-23032.	1.6	27
409	Solution structure of the Bâ€chain of insulin as determined by ¹ H NMR spectroscopy Comparison with the crystal structure of the insulin hexamer and with the solution structure of the insulin monomer. International Journal of Peptide and Protein Research, 1995, 46, 424-433.	0.1	27
410	Solution Structure, Aggregation Behavior, and Flexibility of Human Relaxin-2. ACS Chemical Biology, 2015, 10, 891-900.	1.6	27
411	Highly Potent and Selective Plasmin Inhibitors Based on the Sunflower Trypsin Inhibitor-1 Scaffold Attenuate Fibrinolysis in Plasma. Journal of Medicinal Chemistry, 2019, 62, 552-560.	2.9	27
412	Application and Structural Analysis of Triazoleâ€Bridged Disulfide Mimetics in Cyclic Peptides. Angewandte Chemie - International Edition, 2020, 59, 11273-11277.	7.2	27
413	Studies of Protein–ligand Interactions by NMR. , 1997, 60, 195-232.		26
414	Capped acyclic permutants of the circular protein kalata B1. FEBS Letters, 2004, 577, 399-402.	1.3	26

#	Article	IF	CITATIONS
415	Peptide quantification by matrix-assisted laser desorption ionisation time-of-flight mass spectrometry: Investigations of the cyclotide kalata B1 in biological fluids. Journal of Chromatography A, 2005, 1091, 187-193.	1.8	26
416	Protease-catalysed protein splicing: a new post-translational modification?. Trends in Biochemical Sciences, 2008, 33, 363-368.	3.7	26
417	A systematic approach to document cyclotide distribution in plant species from genomic, transcriptomic, and peptidomic analysis. Biopolymers, 2013, 100, 433-437.	1.2	26
418	Anthelminthic activity of the cyclotides (kalata B1 and B2) against schistosome parasites. Biopolymers, 2013, 100, 461-470.	1.2	26
419	The role of disulfide bonds in structure and activity of chlorotoxin. Future Medicinal Chemistry, 2014, 6, 1617-1628.	1.1	26
420	A comparative study of extraction methods reveals preferred solvents for cystine knot peptide isolation from Momordica cochinchinensis seeds. FĬtoterapĬĢ, 2014, 95, 22-33.	1.1	26
421	The Evolution of <i>Momordica</i> Cyclic Peptides. Molecular Biology and Evolution, 2015, 32, 392-405.	3.5	26
422	Transmission of substituent effects via molecular lines of force: defense of the DSP method and an illustration of its use in explaining .pi. polarization. Journal of Organic Chemistry, 1982, 47, 657-661.	1.7	25
423	A critical evaluation of models for complex molecular dynamics: Application to NMR studies of double- and single-stranded DNA. Biopolymers, 1983, 22, 2703-2726.	1.2	25
424	A Determination of the Solution Conformation of the Nonmammalian Tachykinin Eledoisin by NMR and CD Spectroscopy. Biochemistry, 1994, 33, 6802-6811.	1.2	25
425	Photodegradation of Irinotecan (CPT-11) in Aqueous Solutions: Identification of Fluorescent Products and Influence of Solution Composition. Journal of Pharmaceutical Sciences, 1997, 86, 1410-1416.	1.6	25
426	CARRAGEENANS FROM AUSTRALIAN REPRESENTATIVES OF THE FAMILY CYSTOCLONIACEAE (GIGARTINALES,) TJ AUSTROCLONIUM TO THE FAMILY ARESCHOUGIACEAE. Journal of Phycology, 1998, 34, 515-535.	ETQq0 0 (1.0) rgBT /Overl 25
427	Solution Structure of BSTI: A New Trypsin Inhibitor from Skin Secretions ofBombina bombinaâ€,‡. Biochemistry, 2001, 40, 4601-4609.	1.2	25
428	A nearly idealized 6′-O-methylated Îcarrageenan from the Australian red alga Claviclonium ovatum (Acrotylaceae, Gigartinales). Carbohydrate Research, 2004, 339, 1459-1466.	1.1	25
429	Therapeutic conotoxins: a US patent literature survey. Expert Opinion on Therapeutic Patents, 2015, 25, 1159-1173.	2.4	25
430	Characterization of a Bioactive Acyclotide from <i>Palicourea rigida</i> . Journal of Natural Products, 2016, 79, 2767-2773.	1.5	25
431	Understanding the Diversity and Distribution of Cyclotides from Plants of Varied Genetic Origin. Journal of Natural Products, 2017, 80, 1522-1530.	1.5	25
432	Potent, Selective, and Cell-Penetrating Inhibitors of Kallikrein-Related Peptidase 4 Based on the Cyclic Peptide MCoTI-II. ACS Medicinal Chemistry Letters, 2018, 9, 1258-1262.	1.3	25

#	Article	IF	CITATIONS
433	Recent Progress Towards Pharmaceutical Applications of Disulfide-Rich Cyclic Peptides. Current Protein and Peptide Science, 2013, 14, 532-552.	0.7	25
434	Determination of the solution structure of neuropeptide K by high-resolution nuclear magnetic resonance spectroscopy. Biochemistry, 1993, 32, 7406-7412.	1.2	24
435	New Indole Alkaloids from the Roots ofOchrosiaacuminata. Journal of Natural Products, 2004, 67, 1719-1721.	1.5	24
436	Isolation and Characterization of Bioactive Cyclotides from <i>Viola labridorica</i> . Helvetica Chimica Acta, 2010, 93, 2287-2295.	1.0	24
437	Structural and biochemical characteristics of the cyclotide kalata B5 from <i>Oldenlandia affinis</i> . Biopolymers, 2010, 94, 647-658.	1.2	24
438	Cyclotides: a patent review. Expert Opinion on Therapeutic Patents, 2011, 21, 1657-1672.	2.4	24
439	Rapid and Scalable Plant-Based Production of a Potent Plasmin Inhibitor Peptide. Frontiers in Plant Science, 2019, 10, 602.	1.7	24
440	Conformational Dynamics of Thyroid Hormones by Variable Temperature Nuclear Magnetic Resonance:Â The Role of Side Chain Rotations and Cisoid/Transoid Interconversions. Journal of Medicinal Chemistry, 1997, 40, 2259-2265.	2.9	23
441	Holocyclotoxin-1, a cystine knot toxin from Ixodes holocyclus. Toxicon, 2014, 90, 308-317.	0.8	23
442	Insecticidal spider toxins are high affinity positive allosteric modulators of the nicotinic acetylcholine receptor. FEBS Letters, 2019, 593, 1336-1350.	1.3	23
443	Where cone snails and spiders meet: design of small cyclic sodium hannel inhibitors. FASEB Journal, 2019, 33, 3693-3703.	0.2	23
444	An environmentally sustainable biomimetic production of cyclic disulfide-rich peptides. Green Chemistry, 2020, 22, 5002-5016.	4.6	23
445	The emerging landscape of peptide-based inhibitors of PCSK9. Atherosclerosis, 2021, 330, 52-60.	0.4	23
446	Carbon-13 and nitrogen-15 nuclear magnetic resonance of polycyclic polyamines. A study of solution nitrogen-hydrogen hydrogen bonding and protonation. The Journal of Physical Chemistry, 1982, 86, 3893-3900.	2.9	22
447	Purification and Characterization of a Plant Antimicrobial Peptide Expressed inEscherichia coli. Protein Expression and Purification, 1999, 15, 171-177.	0.6	22
448	Chemical Synthesis and Structure of the Prokineticin Bv8. ChemBioChem, 2010, 11, 1882-1888.	1.3	22
449	Insights into the Molecular Flexibility of Î,-Defensins by NMR Relaxation Analysis. Journal of Physical Chemistry B, 2014, 118, 14257-14266.	1.2	22
450	Membrane-binding properties of gating modifier and pore-blocking toxins: Membrane interaction is not a prerequisite for modification of channel gating. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 872-882.	1.4	22

#	Article	IF	CITATIONS
451	Efficient enzymatic cyclization of an inhibitory cystine knotâ€containing peptide. Biotechnology and Bioengineering, 2016, 113, 2202-2212.	1.7	22
452	Efficient Enzymatic Cyclization of Disulfideâ€Rich Peptides by Using Peptide Ligases. ChemBioChem, 2019, 20, 1524-1529.	1.3	22
453	Discovery and mechanistic studies of cytotoxic cyclotides from the medicinal herb Hybanthus enneaspermus. Journal of Biological Chemistry, 2020, 295, 10911-10925.	1.6	22
454	Improved Asparaginylâ€Ligaseâ€Catalyzed Transpeptidation via Selective Nucleophile Quenching. Angewandte Chemie - International Edition, 2021, 60, 4004-4008.	7.2	22
455	Rational Design of Potent Peptide Inhibitors of the PD-1:PD-L1 Interaction for Cancer Immunotherapy. Journal of the American Chemical Society, 2021, 143, 18536-18547.	6.6	22
456	An Ultrapotent and Selective Cyclic Peptide Inhibitor of Human β-Factor XIIa in a Cyclotide Scaffold. Journal of the American Chemical Society, 2021, 143, 18481-18489.	6.6	22
457	Enzymatic C-Terminal Protein Engineering with Amines. Journal of the American Chemical Society, 2021, 143, 19498-19504.	6.6	22
458	The 6-X-benzonorbornyl system: a new motional dynamics probe. Journal of the American Chemical Society, 1982, 104, 25-28.	6.6	21
459	13C NMR Studies of the Molecular Flexibility of Antidepressants. Journal of Pharmaceutical Sciences, 1986, 75, 133-141.	1.6	21
460	Qualitative Analysis of the Stability of the Oxazine Ring of Various Benzoxazine and Pyridooxazine Derivatives with Proton Nuclear Magnetic Resonance Spectroscopy. Journal of Pharmaceutical Sciences, 1992, 81, 692-697.	1.6	21
461	The use of dietary loading of133Cs as a potassium substitute in NMR studies of tissues. Magnetic Resonance in Medicine, 1993, 30, 573-582.	1.9	21
462	Structure of a putative ancestral protein encoded by a single sequence repeat from a multidomain proteinase inhibitor gene fromNicotiana alata. Structure, 1999, 7, 793-802.	1.6	21
463	Cyclization of pyrrhocoricin retains structural elements crucial for the antimicrobial activity of the native peptide. Biopolymers, 2004, 76, 446-458.	1.2	21
464	Quantitative analysis of backbone-cyclised peptides in plants. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2008, 872, 107-114.	1.2	21
465	Lengths of the C-Terminus and Interconnecting Loops Impact Stability of Spider-Derived Gating Modifier Toxins. Toxins, 2017, 9, 248.	1.5	21
466	Molecular determinants of α-conotoxin potency for inhibition of human and rat α6β4 nicotinic acetylcholine receptors. Journal of Biological Chemistry, 2018, 293, 17838-17852.	1.6	21
467	Cyclic Analogues of Horseshoe Crab Peptide Tachyplesin I with Anticancer and Cell Penetrating Properties. ACS Chemical Biology, 2019, 14, 2895-2908.	1.6	21
468	Yeast-based bioproduction of disulfide-rich peptides and their cyclization via asparaginyl endopeptidases. Nature Protocols, 2021, 16, 1740-1760.	5.5	21

#	Article	IF	CITATIONS
469	The chemistry and biology of cyclotides. Current Opinion in Drug Discovery & Development, 2007, 10, 176-84.	1.9	21
470	Homology model of thyroxine binding globulin and elucidation of the thyroid hormone binding site. Protein Engineering, Design and Selection, 1992, 5, 61-67.	1.0	20
471	Cell wall polysaccharides from Australian red algae of the family Solieriaceae (Gigartinales,) Tj ETQq1 1 0.7843	14 rgBT /O\ 0.6	verlock 10 Tf 20
472	Phosphorylation of the C-Terminal Sites of Human p53 Reduces Non-Sequence-Specific DNA Binding as Modeled with Synthetic Peptides. Biochemistry, 1998, 37, 13755-13764.	1.2	20
473	The solution structure of C1-T1, a two-domain proteinase inhibitor derived from a circular precursor protein from Nicotiana alata11Edited by P. E. Wright. Journal of Molecular Biology, 2001, 306, 69-79.	2.0	20
474	Secondary Structure of the Third Extracellular Loop Responsible for Ligand Selectivity of a Mammalian Gonadotropin-Releasing Hormone Receptor. Journal of Medicinal Chemistry, 2002, 45, 1026-1034.	2.9	20
475	Quantification of small cyclic disulfideâ€rich peptides. Biopolymers, 2012, 98, 518-524.	1.2	20
476	A new family of cystine knot peptides from the seeds of Momordica cochinchinensis. Peptides, 2013, 39, 29-35.	1.2	20
477	Cyclic alpha-conotoxin peptidomimetic chimeras as potent GLP-1R agonists. European Journal of Medicinal Chemistry, 2015, 103, 175-184.	2.6	20
478	Interaction of Synthetic Human SLURP-1 with the Nicotinic Acetylcholine Receptors. Scientific Reports, 2017, 7, 16606.	1.6	20
479	Engineering potent mesotrypsin inhibitors based on the plant-derived cyclic peptide, sunflower trypsin inhibitor-1. European Journal of Medicinal Chemistry, 2018, 155, 695-704.	2.6	20
480	Enhanced Activity against Multidrug-Resistant Bacteria through Coapplication of an Analogue of Tachyplesin I and an Inhibitor of the QseC/B Signaling Pathway. Journal of Medicinal Chemistry, 2020, 63, 3475-3484.	2.9	20
481	Asparaginyl Ligases: New Enzymes for the Protein Engineer's Toolbox. ChemBioChem, 2021, 22, 2079-2086.	1.3	20
482	A Novel Quantitative Kinase Assay Using Bacterial Surface Display and Flow Cytometry. PLoS ONE, 2013, 8, e80474.	1.1	20
483	The relationship between19F and13C substituent chemical shifts and electron densities. 2—p-phenylacetyl fluorides. Magnetic Resonance in Chemistry, 1981, 15, 248-256.	0.7	19
484	Anomalies in the Reduction of the Schiff Bases 5-(Diethylamino)-2-(phenyliminomethyl)phenol and 2-[(4-Diethylaminophenyl)iminomethyl]-phenol and Their Crystal Structures. Australian Journal of Chemistry, 1990, 43, 99.	0.5	19
485	Carbon-13 and proton NMR studies of the interaction of tricyclic antidepressant drugs with micellar aggregates. The Journal of Physical Chemistry, 1991, 95, 7093-7099.	2.9	19
486	Beta-arrestin 2 is required for complement C1q expression in macrophages and constrains factor-independent survival. Molecular Immunology, 2009, 47, 340-347.	1.0	19

#	Article	IF	CITATIONS
487	The Folding of Disulfide-Rich Proteins. Antioxidants and Redox Signaling, 2011, 14, 61-64.	2.5	19
488	Cyclotide Isolation and Characterization. Methods in Enzymology, 2012, 516, 37-62.	0.4	19
489	The selfâ€association of the cyclotide kalata B2 in solution is guided by hydrophobic interactions. Biopolymers, 2013, 100, 453-460.	1.2	19
490	Prediction and characterization of cyclic proteins from sequences in three domains of life. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2014, 1844, 181-190.	1.1	19
491	Orientation and Location of the Cyclotide Kalata B1 in Lipid Bilayers Revealed by Solid-State NMR. Biophysical Journal, 2017, 112, 630-642.	0.2	19
492	Single Amino Acid Substitution in α-Conotoxin TxID Reveals a Specific α3β4 Nicotinic Acetylcholine Receptor Antagonist. Journal of Medicinal Chemistry, 2018, 61, 9256-9265.	2.9	19
493	Efficient Enzymatic Ligation of Inhibitor Cystine Knot Spider Venom Peptides: Using Sortase A To Form Double-Knottins That Probe Voltage-Gated Sodium Channel Na _V 1.7. Bioconjugate Chemistry, 2018, 29, 3309-3319.	1.8	19
494	Computer-Aided Design of Mastoparan-like Peptides Enables the Generation of Nontoxic Variants with Extended Antibacterial Properties. Journal of Medicinal Chemistry, 2019, 62, 8140-8151.	2.9	19
495	Make it or break it: Plant AEPs on stage in biotechnology. Biotechnology Advances, 2020, 45, 107651.	6.0	19
496	Design and therapeutic applications of cyclotides. Future Medicinal Chemistry, 2009, 1, 1613-1622.	1.1	18
497	Key Residues in the Nicotinic Acetylcholine Receptor β2 Subunit Contribute to α-Conotoxin LvIA Binding. Journal of Biological Chemistry, 2015, 290, 9855-9862.	1.6	18
498	Two Blast-independent tools, CyPerl and CyExcel, for harvesting hundreds of novel cyclotides and analogues from plant genomes and protein databases. Planta, 2015, 241, 929-940.	1.6	18
499	Harnessing cyclotides to design and develop novel peptide GPCR ligands. RSC Chemical Biology, 2020, 1, 177-191.	2.0	18
500	Oxidative Folding of the Cystine Knot Motif in Cyclotide Proteins. Protein and Peptide Letters, 2005, 12, 147-152.	0.4	18
501	Substituent Effects on Nuclear Shielding. Annual Reports on NMR Spectroscopy, 1984, 15, 1-104.	0.7	17
502	The Solution Structure of a Monocyclic Analog of Endothelin [1,15 Aba]-ET-1, Determined by 1H NMR Spectroscopy. Journal of Medicinal Chemistry, 1994, 37, 656-664.	2.9	17
503	Structure of the N-Linked Oligosaccharides from Tridacnin, a Lectin Found in the Haemolymph of the Giant Clam Hippopus Hippopus. FEBS Journal, 1995, 232, 873-880.	0.2	17
504	Identification of Initiation Sites for T4 Lysozyme Folding Using CD and NMR Spectroscopy of Peptide Fragmentsâ€. Biochemistry, 2000, 39, 5911-5920.	1.2	17

#	Article	IF	CITATIONS
505	Structure and folding of disulfideâ€rich miniproteins: Insights from molecular dynamics simulations and MMâ€PBSA free energy calculations. Proteins: Structure, Function and Bioinformatics, 2008, 73, 87-103.	1.5	17
506	Selective Removal of Individual Disulfide Bonds within a Potato Type II Serine Proteinase Inhibitor from Nicotiana alata Reveals Differential Stabilization of the Reactive-Site Loop. Journal of Molecular Biology, 2010, 395, 609-626.	2.0	17
507	Making Ends Meet: Chemically Mediated Circularization of Recombinant Proteins. ChemBioChem, 2013, 14, 809-812.	1.3	17
508	Joseph Rudinger memorial lecture: Discovery and applications of cyclotides. Journal of Peptide Science, 2013, 19, 393-407.	0.8	17
509	Discovery, isolation, and structural characterization of cyclotides from <i>Viola sumatrana</i> Miq. Biopolymers, 2016, 106, 796-805.	1.2	17
510	Bioactive Compounds Isolated from Neglected Predatory Marine Gastropods. Marine Drugs, 2018, 16, 118.	2.2	17
511	A Centipede Toxin Family Defines an Ancient Class of CSαβ Defensins. Structure, 2019, 27, 315-326.e7.	1.6	17
512	Design of a Stable Cyclic Peptide Analgesic Derived from Sunflower Seeds that Targets the κ-Opioid Receptor for the Treatment of Chronic Abdominal Pain. Journal of Medicinal Chemistry, 2021, 64, 9042-9055.	2.9	17
513	Domain Configurations on Ferrites. Proceedings of the Physical Society, 1959, 73, 1-13.	1.6	16
514	The relationship between19F substituent chemical shifts and electron densities:meta- andpara-substituted benzoyl fluorides. Magnetic Resonance in Chemistry, 1980, 14, 186-191.	0.7	16
515	Conformational analysis of cyproheptadine hydrochloride. Journal of Medicinal Chemistry, 1990, 33, 1098-1107.	2.9	16
516	Carbon-13 and proton NMR studies of the interaction of tricyclic antidepressant drugs with dodecyldimethylammonium chloride micelles. The Journal of Physical Chemistry, 1992, 96, 3146-3151.	2.9	16
517	A peptide corresponding to the N-terminal 13 residues of T4 lysozyme forms an α-helix. FEBS Letters, 1993, 315, 323-328.	1.3	16
518	Structure and Folding of Potato Type II Proteinase Inhibitors: Circular Permutation and Intramolecular Domain Swapping. Protein and Peptide Letters, 2005, 12, 421-431.	0.4	16
519	¹⁵ N cyclotides by whole plant labeling. Biopolymers, 2008, 90, 575-580.	1.2	16
520	Biochemical and biophysical characterization of a novel plant protein disulfide isomerase. Biopolymers, 2009, 92, 35-43.	1.2	16
521	How Bugs Make Lassos. Chemistry and Biology, 2009, 16, 1211-1212.	6.2	16
522	Gly6 of kalata B1 is critical for the selective binding to phosphatidylethanolamine membranes. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 2354-2361.	1.4	16

#	Article	IF	CITATIONS
523	Novel Inhibitor Cystine Knot Peptides from Momordica charantia. PLoS ONE, 2013, 8, e75334.	1.1	16
524	Biodistribution of the cyclotide MCoTlâ€I, a cyclic disulfideâ€rich peptide drug scaffold. Journal of Peptide Science, 2016, 22, 305-310.	0.8	16
525	Synthesis and Protein Engineering Applications of Cyclotides. Australian Journal of Chemistry, 2017, 70, 152.	0.5	16
526	Synthesis, Racemic X-ray Crystallographic, and Permeability Studies of Bioactive Orbitides from <i>Jatropha</i> Species. Journal of Natural Products, 2018, 81, 2436-2445.	1.5	16
527	Chemical Synthesis, Proper Folding, Nav Channel Selectivity Profile and Analgesic Properties of the Spider Peptide Phlotoxin 1. Toxins, 2019, 11, 367.	1.5	16
528	Neurotoxic peptides from the venom of the giant Australian stinging tree. Science Advances, 2020, 6, .	4.7	16
529	Cyclic gomesin, a stable redesigned spider peptide able to enter cancer cells. Biochimica Et Biophysica Acta - Biomembranes, 2021, 1863, 183480.	1.4	16
530	Angler Peptides: Macrocyclic Conjugates Inhibit p53:MDM2/X Interactions and Activate Apoptosis in Cancer Cells. ACS Chemical Biology, 2021, 16, 414-428.	1.6	16
531	Importance of the Cyclic Cystine Knot Structural Motif for Immunosuppressive Effects of Cyclotides. ACS Chemical Biology, 2021, 16, 2373-2386.	1.6	16
532	Factors Affecting 133Cs Chemical Shifts in Erythrocytes from Cesium-Fed Rats. Journal of Magnetic Resonance Series B, 1994, 104, 276-279.	1.6	15
533	Chemical synthesis, characterization and activity of RK-1, a novel ?-defensin-related peptide. Journal of Peptide Science, 2000, 6, 19-25.	0.8	15
534	Factors Influencing the Stability of Cyclotides: Proteins with a Circular Backbone and Cystine Knot Motif. International Journal of Peptide Research and Therapeutics, 2006, 12, 253-260.	0.9	15
535	Backbone cyclization of analgesic conotoxin GeXIVA facilitates direct folding of the ribbon isomer. Journal of Biological Chemistry, 2017, 292, 17101-17112.	1.6	15
536	Cell Membrane Composition Drives Selectivity and Toxicity of Designed Cyclic Helix–Loop–Helix Peptides with Cell Penetrating and Tumor Suppressor Properties. ACS Chemical Biology, 2019, 14, 2071-2087.	1.6	15
537	Peptide-Membrane Interactions Affect the Inhibitory Potency and Selectivity of Spider Toxins ProTx-II and GpTx-1. ACS Chemical Biology, 2019, 14, 118-130.	1.6	15
538	Insecticidal diversity of butterfly pea (Clitoria ternatea) accessions. Industrial Crops and Products, 2020, 147, 112214.	2.5	15
539	How can we improve peptide drug discovery? Learning from the past. Expert Opinion on Drug Discovery, 2021, 16, 1399-1402.	2.5	15
540	Domain Structures and Coercivity of Alcomax III. Proceedings of the Physical Society, 1962, 79, 970-976.	1.6	14

#	Article	IF	CITATIONS
541	Magnetic fields from subdivided surfaces. British Journal of Applied Physics, 1966, 17, 873-977.	0.7	14
542	The evaluation of magnetic bubble domain specimens. Journal Physics D: Applied Physics, 1973, 6, 872-884.	1.3	14
543	Recent developments in nuclear magnetic resonance spectroscopy. Science, 1981, 214, 291-299.	6.0	14
544	Anisatin: a Crystallographic, N.M.R. and Theoretical Conformation Study. Australian Journal of Chemistry, 1988, 41, 1071.	0.5	14
545	13C NMR studies of the solution molecular dynamics of tricyclic antidepressants. Magnetic Resonance in Chemistry, 1990, 28, 533-540.	1.1	14
546	Factors affecting39K NMR detectability in rat tissue. Magnetic Resonance in Medicine, 1991, 17, 213-224.	1.9	14
547	The Cell Wall Galactan of Catenella nipae Zanardini from Southern Australia. Botanica Marina, 1993, 36, .	0.6	14
548	CD and NMR determination of the solution structure of a peptide corresponding to T4 lysozyme residues 38–51. BBA - Proteins and Proteomics, 1995, 1250, 163-170.	2.1	14
549	CHEMISTRY, PROPERTIES, AND PHYLOGENETIC IMPLICATIONS OF THE METHYLATED CARRAGEENANS FROM RED ALGAE OF THE GENUS ARESCHOUGIA (ARESCHOUGIACEAE, GIGARTINALES, RHODOPHYTA). Journal of Phycology, 2001, 37, 1127-1137.	1.0	14
550	Discovery and structures of the cyclotides: novel macrocyclic peptides from plants. International Journal of Peptide Research and Therapeutics, 2001, 8, 119-128.	0.1	14
551	Structure and Activity of the Leaf-Specific Cyclotide vhl-2. Australian Journal of Chemistry, 2010, 63, 771.	0.5	14
552	<i>In Vivo</i> Efficacy of Anuran Trypsin Inhibitory Peptides against Staphylococcal Skin Infection and the Impact of Peptide Cyclization. Antimicrobial Agents and Chemotherapy, 2015, 59, 2113-2121.	1.4	14
553	Natural structural diversity within a conserved cyclic peptide scaffold. Amino Acids, 2017, 49, 103-116.	1.2	14
554	Discovery and Characterization of Cyclotides from <i>Rinorea</i> Species. Journal of Natural Products, 2018, 81, 2512-2520.	1.5	14
555	Stoichiometry dependent inhibition of rat α3β4 nicotinic acetylcholine receptor by the ribbon isomer of α-conotoxin AulB. Biochemical Pharmacology, 2018, 155, 288-297.	2.0	14
556	Discovery and Characterization of Cyclic and Acyclic Trypsin Inhibitors fromMomordica dioica. Journal of Natural Products, 2019, 82, 293-300.	1.5	14
557	Cellular Uptake and Cytosolic Delivery of a Cyclic Cystine Knot Scaffold. ACS Chemical Biology, 2020, 15, 1650-1661.	1.6	14
558	Bioactive Cyclization Optimizes the Affinity of a Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) Peptide Inhibitor. Journal of Medicinal Chemistry, 2021, 64, 2523-2533.	2.9	14

#	Article	IF	CITATIONS
559	Small cyclic sodium channel inhibitors. Biochemical Pharmacology, 2021, 183, 114291.	2.0	14
560	Magnetization Processes in a Polycrystalline Manganese Zinc Ferrite. Proceedings of the Physical Society, 1958, 72, 224-232.	1.6	13
561	The magnetic domain structures of small crystals. Contemporary Physics, 1970, 11, 65-97.	0.8	13
562	Problems in the assessment of magnesium depletion in the rat byin vivo31P NMR. Magnetic Resonance in Medicine, 1988, 7, 300-310.	1.9	13
563	Models for the binding of amiodarone to the thyroid hormone receptor. Journal of Computer-Aided Molecular Design, 1992, 6, 19-31.	1.3	13
564	The cell wall galactans from Australian representatives of the genus Meristotheca (Solieriaceae,) Tj ETQq0 0 0 rg	BT /Overlo	ck 10 Tf 50 5

565	The role of disulfide bonds in the structure and function of murine epidermal growth factor (mEGF). Growth Factors, 2005, 23, 97-110.	0.5	13
566	Transforming conotoxins into cyclotides: Backbone cyclization of Pâ€superfamily conotoxins. Biopolymers, 2015, 104, 682-692.	1.2	13
567	Key challenges for the creation and maintenance of specialist protein resources. Proteins: Structure, Function and Bioinformatics, 2015, 83, 1005-1013.	1.5	13
568	Cyclisation of Disulfideâ€Rich Conotoxins in Drug Design Applications. European Journal of Organic Chemistry, 2016, 2016, 3462-3472.	1.2	13
569	Targeted Delivery of Cyclotides <i>via</i> Conjugation to a Nanobody. ACS Chemical Biology, 2018, 13, 2973-2980.	1.6	13
570	Defense Peptides Engineered from Human Platelet Factor 4 Kill Plasmodium by Selective Membrane Disruption. Cell Chemical Biology, 2018, 25, 1140-1150.e5.	2.5	13
571	Amino Acid Scanning at P5′ within the Bowman–Birk Inhibitory Loop Reveals Specificity Trends for Diverse Serine Proteases. Journal of Medicinal Chemistry, 2019, 62, 3696-3706.	2.9	13
572	Anchor Residues Guide Form and Function in Grafted Peptides. Angewandte Chemie - International Edition, 2019, 58, 7652-7656.	7.2	13
573	Binding Loop Substitutions in the Cyclic Peptide SFTI-1 Generate Potent and Selective Chymase Inhibitors. Journal of Medicinal Chemistry, 2020, 63, 816-826.	2.9	13
574	Manipulation of a spider peptide toxin alters its affinity for lipid bilayers and potency and selectivity for voltage-gated sodium channel subtype 1.7. Journal of Biological Chemistry, 2020, 295, 5067-5080.	1.6	13
575	Structure and Activity Studies of Disulfide-Deficient Analogues of αO-Conotoxin GeXIVA. Journal of Medicinal Chemistry, 2020, 63, 1564-1575.	2.9	13
576	Cyclotides from Brazilian <i>Palicourea sessilis</i> and Their Effects on Human Lymphocytes. Journal of Natural Products, 2021, 84, 81-90.	1.5	13

#	Article	IF	CITATIONS
577	Comparison of a Short Linear Antimicrobial Peptide with Its Disulfide-Cyclized and Cyclotide-Grafted Variants against Clinically Relevant Pathogens. Microorganisms, 2021, 9, 1249.	1.6	13
578	19F N.M.R. chemical shifts in substituted benzotrifluorides and benzal fluorides. Australian Journal of Chemistry, 1980, 33, 2555.	0.5	12
579	Temperature dependence of 19F chemical shifts in substituted benzyl fluorides Tetrahedron Letters, 1980, 21, 1681-1684.	0.7	12
580	NMR measurement of39K detectability and relaxation constants in rat tissue. Magnetic Resonance in Medicine, 1993, 29, 68-76.	1.9	12
581	1H and13C NMR Relaxation Studies of Molecular Dynamics of the Thyroid Hormones Thyroxine, 3,5,3â€~-Triiodothyronine, and 3,5-Diiodothyronineâ€. Journal of Medicinal Chemistry, 1996, 39, 4007-4016.	2.9	12
582	Conotoxin TVIIA, a novel peptide from the venom of Conus tulipa. FEBS Journal, 2000, 267, 4649-4657.	0.2	12
583	Diversity in the disulfide folding pathways of cystine knot peptides. International Journal of Peptide Research and Therapeutics, 2003, 10, 523-531.	0.1	12
584	Design, synthesis, and characterization of cyclic analogues of the iron regulatory peptide hormone hepcidin. Biopolymers, 2013, 100, 519-526.	1.2	12
585	Isolation and Characterization of Cyclotides from BrazilianPsychotria: Significance in Plant Defense and Co-occurrence with Antioxidant Alkaloids. Journal of Natural Products, 2016, 79, 3006-3013.	1.5	12
586	Lysine to arginine mutagenesis of chlorotoxin enhances its cellular uptake. Biopolymers, 2017, 108, e23025.	1.2	12
587	Iterative Optimization of the Cyclic Peptide SFTI-1 Yields Potent Inhibitors of Neutrophil Proteinase 3. ACS Medicinal Chemistry Letters, 2019, 10, 1234-1239.	1.3	12
588	Pharmacokinetic characterization of kalata B1 and related therapeutics built on the cyclotide scaffold. International Journal of Pharmaceutics, 2019, 565, 437-446.	2.6	12
589	Cyclic peptide scaffold with ability to stabilize and deliver a helical cell-impermeable cargo across membranes of cultured cancer cells. RSC Chemical Biology, 2020, 1, 405-420.	2.0	12
590	Exploring the Sequence Diversity of Cyclotides from Vietnamese <i>Viola</i> Species. Journal of Natural Products, 2020, 83, 1817-1828.	1.5	12
591	Designed Î ² -Hairpins Inhibit LDH5 Oligomerization and Enzymatic Activity. Journal of Medicinal Chemistry, 2021, 64, 3767-3779.	2.9	12
592	Variable-temperature NMR studies of thyroid hormone conformations. Magnetic Resonance in Chemistry, 1988, 26, 275-280.	1.1	11
593	The conformation of porcine-brain natriuretic peptide by two-dimensional NMR spectroscopy. FEBS Journal, 1991, 201, 183-190.	0.2	11
594	NMR conformational studies of fenamate non-steroidal anti-inflammatory drugs. Magnetic Resonance in Chemistry, 1994, 32, 335-342.	1.1	11

#	Article	IF	CITATIONS
595	13C NMR Relaxation Studies of Molecular Motion in Peptide Fragments from Human Transthyretin. Journal of Magnetic Resonance Series B, 1995, 107, 95-106.	1.6	11
596	Pyruvated carrageenans from Solieria robusta and its adelphoparasite Tikvahiella candida. Hydrobiologia, 1999, 398/399, 401-409.	1.0	11
597	Characterization of the sequential non-covalent and covalent interactions of the antitumour antibiotic hedamycin with double stranded DNA by NMR spectroscopy. Journal of Molecular Recognition, 1999, 12, 346-354.	1.1	11
598	Conotoxin TVIIA, a novel peptide from the venom of Conus tulipa. FEBS Journal, 2000, 267, 4642-4648.	0.2	11
599	Synthesis of an Analog of the Thyroid Hormone-binding Protein Transthyretin via Regioselective Chemical Ligation. Journal of Biological Chemistry, 2001, 276, 25997-26003.	1.6	11
600	STRUCTURE AND FUNCTION OF PLANT TOXINS (WITH EMPHASIS ON CYSTINE KNOT TOXINS). Toxin Reviews, 2002, 21, 229-271.	1.5	11
601	Structural and functional characterization of chimeric cyclotides from the Möbius and trypsin inhibitor subfamilies. Biopolymers, 2017, 108, e22927.	1.2	11
602	Molecular dynamics simulations of dihydroâ€Î²â€erythroidine bound to the human α4β2 nicotinic acetylcholine receptor. British Journal of Pharmacology, 2019, 176, 2750-2763.	2.7	11
603	Critical residue properties for potency and selectivity of α-Conotoxin RgIA towards α9α10 nicotinic acetylcholine receptors. Biochemical Pharmacology, 2020, 181, 114124.	2.0	11
604	Hormone-like conopeptides – new tools for pharmaceutical design. RSC Medicinal Chemistry, 2020, 11, 1235-1251.	1.7	11
605	Cyclotide Structures Revealed by NMR, with a Little Help from Xâ€ray Crystallography. ChemBioChem, 2020, 21, 3463-3475.	1.3	11
606	Computational and Functional Mapping of Human and Rat α6β4 Nicotinic Acetylcholine Receptors Reveals Species-Specific Ligand-Binding Motifs. Journal of Medicinal Chemistry, 2021, 64, 1685-1700.	2.9	11
607	An Integrated Molecular Grafting Approach for the Design of Keap1-Targeted Peptide Inhibitors. ACS Chemical Biology, 2021, 16, 1276-1287.	1.6	11
608	Enzymatic Câ \in toâ \in C Protein Ligation. Angewandte Chemie - International Edition, 2022, 61, .	7.2	11
609	Modified horseshoe crab peptides target and kill bacteria inside host cells. Cellular and Molecular Life Sciences, 2022, 79, .	2.4	11
610	A New Colloid for use with the Bitter Figure Technique. Proceedings of the Physical Society Section B, 1957, 70, 1000-1002.	0.9	10
611	Thermally Activated Domain Wall Movement. Physica Status Solidi (B): Basic Research, 1966, 16, 321-328.	0.7	10
612	Magnetostatics of axially symmetric structures. Journal Physics D: Applied Physics, 1974, 7, 1566-1573.	1.3	10

#	Article	IF	CITATIONS
613	Conformational Analysis of Flexible Antidepressant Drugs. QSAR and Combinatorial Science, 1987, 6, 104-110.	1.4	10
614	Structural Refinement of Insecticidal Plant Proteinase Inhibitors from Nicotiana alata. Protein and Peptide Letters, 2008, 15, 903-909.	0.4	10
615	Synthesis of Cyclic Disulfide-Rich Peptides. Methods in Molecular Biology, 2013, 1047, 89-101.	0.4	10
616	Effects of linker sequence modifications on the structure, stability, and biological activity of a cyclic αâ€conotoxin. Biopolymers, 2016, 106, 864-875.	1.2	10
617	Truncated Glucagon-like Peptide-1 and Exendin-4 α-Conotoxin pl14a Peptide Chimeras Maintain Potency and α-Helicity and Reveal Interactions Vital for cAMP Signaling in Vitro. Journal of Biological Chemistry, 2016, 291, 15778-15787.	1.6	10
618	Calcium-Mediated Allostery of the EGF Fold. ACS Chemical Biology, 2018, 13, 1659-1667.	1.6	10
619	Enabling Efficient Folding and High-Resolution Crystallographic Analysis of Bracelet Cyclotides. Molecules, 2021, 26, 5554.	1.7	10
620	The Domain Structure of Ordered Platinum-Cobalt Alloy. Proceedings of the Physical Society, 1961, 78, 225-232.	1.6	9
621	13C NMR relaxation and conformational flexibility of the deoxyribose ring. Nucleic Acids Research, 1982, 10, 6067-6083.	6.5	9
622	A 1H-NMR determination of the solution structure of the A-chain of insulin: comparison with the crystal structure and an examination of the role of solvent. BBA - Proteins and Proteomics, 1994, 1209, 177-182.	2.1	9
623	1H-NMR structural studies of a cystine-linked peptide containing residues 71-93 of transthyretin and effects of a Ser84 substitution implicated in familial amyloidotic polyneuropathy. FEBS Journal, 1999, 262, 586-594.	0.2	9
624	Discovery and structures of the cyclotides: novel macrocyclic peptides from plants. International Journal of Peptide Research and Therapeutics, 2001, 8, 119-128.	0.1	9
625	Chemical synthesis and structure elucidation of bovine κ-casein (1–44). Biochemical and Biophysical Research Communications, 2006, 340, 1098-1103.	1.0	9
626	Peptides from Mamba Venom as Pain Killers. Angewandte Chemie - International Edition, 2013, 52, 3071-3073.	7.2	9
627	The E15R Point Mutation in Scorpion Toxin Cn2 Uncouples Its Depressant and Excitatory Activities on Human Na _V 1.6. Journal of Medicinal Chemistry, 2018, 61, 1730-1736.	2.9	9
628	Domain Patterns on a Single Crystal of Manganese Ferrite. Proceedings of the Physical Society, 1958, 71, 789-796.	1.6	8
629	Bloch lines and hysteresis in uniaxial magnetic crystals. Philosophical Magazine and Journal, 1975, 31, 489-502.	1.8	8
630	Prediction ofortho(β)13C chemical shifts in conjugated systems. Magnetic Resonance in Chemistry, 1981, 15, 268-272.	0.7	8

#	Article	IF	CITATIONS
631	Synthesis and Conformational Analysis of the Slime-Mold Acrasin Glorin. Australian Journal of Chemistry, 1989, 42, 2171.	0.5	8
632	Carbon-13 NMR spectral analysis of oxazine derivatives and precursors. Magnetic Resonance in Chemistry, 1990, 28, 824-829.	1.1	8
633	Structure and Distribution of N-Glycans on the S7-Allele Stylar Self-Incompatibility Ribonuclease of Nicotiana alata. Journal of Biochemistry, 1998, 123, 978-983.	0.9	8
634	High level of aspartic acid-bond isomerization during the synthesis of anN-linked Ï" glycopeptide. , 1999, 5, 442-456.		8
635	Structural Insights into the Function of Relaxins. Annals of the New York Academy of Sciences, 2009, 1160, 20-26.	1.8	8
636	Chemical Synthesis of Naturallyâ€Occurring Cyclic Miniâ€Proteins from Plants and Animals. Israel Journal of Chemistry, 2011, 51, 908-916.	1.0	8
637	Creating a specialist protein resource network: a meeting report for the protein bioinformatics and community resources retreat: Figure 1 Database: the Journal of Biological Databases and Curation, 2015, 2015, bav063.	1.4	8
638	The Nâ€ŧerminal proâ€domain of the kalata B1 cyclotide precursor is intrinsically unstructured. Biopolymers, 2016, 106, 825-833.	1.2	8
639	<scp>N</scp> omenclature of homodetic cyclic peptides produced from ribosomal precursors: <scp>A</scp> n IUPAC task group interim report. Biopolymers, 2016, 106, 917-924.	1.2	8
640	Periplasmic Expression of 4/7 α-Conotoxin TxIA Analogs in E. coli Favors Ribbon Isomer Formation – Suggestion of a Binding Mode at the α7 nAChR. Frontiers in Pharmacology, 2019, 10, 577.	1.6	8
641	The interaction with fungal cell wall polysaccharides determines the salt tolerance of antifungal plant defensins. Cell Surface, 2019, 5, 100026.	1.5	8
642	Characterization of Synthetic Tf2 as a NaV1.3 Selective Pharmacological Probe. Biomedicines, 2020, 8, 155.	1.4	8
643	Magnetization reversal mechanisms in assemblies of elongated single-domain particles. British Journal of Applied Physics, 1967, 18, 1269-1356-5.	0.7	7
644	Magnetostatic and exchange interactions between particles in permanent magnet materials. Journal Physics D: Applied Physics, 1969, 2, 33-45.	1.3	7
645	Derivation of magnetic parameters from domain theory and observation. Journal Physics D: Applied Physics, 1972, 5, L37-L39.	1.3	7
646	Two-dimensional nuclear magnetic resonance spectra of selected tricyclic antidepressants Chemical and Pharmaceutical Bulletin, 1987, 35, 188-194.	0.6	7
647	13C and1H NMR studies of nitrogen inversion and molecular flexibility in the tricyclic antidepressant drug trimipramine maleate. Magnetic Resonance in Chemistry, 1995, 33, 367-374.	1.1	7
648	133Cs Relaxation Times in Rat Tissues. Journal of Magnetic Resonance Series B, 1995, 107, 179-185.	1.6	7

#	Article	IF	CITATIONS
649	Pharmaceutical applications of NMR. Annual Reports on NMR Spectroscopy, 2000, 42, 115-174.	0.7	7
650	The synthesis and structure of an n-terminal dodecanoic acid conjugate of \hat{I}_{\pm} -conotoxin MII. International Journal of Peptide Research and Therapeutics, 2001, 8, 235-239.	0.1	7
651	NMR of Peptide Toxins. Annual Reports on NMR Spectroscopy, 2009, , 89-147.	0.7	7
652	Proteome analysis of the hyaluronic acid-producing bacterium, Streptococcus zooepidemicus. Proteome Science, 2009, 7, 13.	0.7	7
653	Stability Studies of Oxazolidine-Based Compounds Using 1H NMR Spectroscopy. Journal of Pharmaceutical Sciences, 2010, 99, 3362-3371.	1.6	7
654	Effects of Lys2 to Ala2 substitutions on the structure and potency of ï‰â€€onotoxins MVIIA and CVID. Biopolymers, 2012, 98, 345-356.	1.2	7
655	The three-dimensional solution structure of mini-M conotoxin BtIIIA reveals a disconnection between disulfide connectivity and peptide fold. Bioorganic and Medicinal Chemistry, 2013, 21, 3590-3596.	1.4	7
656	Evaluation of Cyclic Peptide Inhibitors of the Grb7 Breast Cancer Target: Small Change in Cargo Results in Large Change in Cellular Activity. Molecules, 2019, 24, 3739.	1.7	7
657	Circular Permutation of the Native Enzyme-Mediated Cyclization Position in Cyclotides. ACS Chemical Biology, 2020, 15, 962-969.	1.6	7
658	Application and Structural Analysis of Triazoleâ€Bridged Disulfide Mimetics in Cyclic Peptides. Angewandte Chemie, 2020, 132, 11369-11373.	1.6	7
659	Antimicrobial and Anticancer Properties of Synthetic Peptides Derived from the Wasp <i>Parachartergus fraternus</i> . ChemBioChem, 2021, 22, 1415-1423.	1.3	7
660	In Planta Discovery and Chemical Synthesis of Bracelet Cystine Knot Peptides from <i>Rinorea bengalensis</i> . Journal of Natural Products, 2021, 84, 395-407.	1.5	7
661	Engineered Conotoxin Differentially Blocks and Discriminates Rat and Human α7 Nicotinic Acetylcholine Receptors. Journal of Medicinal Chemistry, 2021, 64, 5620-5631.	2.9	7
662	Antimicrobial peptides in plants , 2010, , 40-71.		7
663	Apparatus for quasi-static and dynamic measurements on magnetic films. Journal of Scientific Instruments, 1965, 42, 410-413.	0.5	6
664	Domain Theory and Observation. Journal of Applied Physics, 1967, 38, 931-938.	1.1	6
665	Thermally Activated Domain Wall Movement in Nickelâ€Iron Films. Physica Status Solidi (B): Basic Research, 1968, 28, 407-414.	0.7	6
666	COERCIVITY MECHANISMS IN OXIDE MAGNETS. Journal De Physique Colloque, 1977, 38, C1-39-C1-41.	0.2	6

#	Article	IF	CITATIONS
667	EFFECT OF MAGNESIUM DEPLETION AND POTASSIUM DEPLETION AND CHLOROTHIAZIDE ON INTRACELLULAR pH IN THE RAT, STUDIED BY31P NMR. Clinical and Experimental Pharmacology and Physiology, 1989, 16, 33-40.	0.9	6
668	Probing the interaction of Hoechst 33258 with an A–T rich oligonucleotide duplex using1H NMR spectroscopy. Journal of the Chemical Society Chemical Communications, 1991, , 1770-1771.	2.0	6
669	Solution Dynamics of Imipramine and Amitriptyline in Phospholipid Vesicles as Studied by 1H and 13C NMR. Journal of Colloid and Interface Science, 1993, 158, 326-332.	5.0	6
670	Variable-temperature and pH studies of a DNA minor groove binder, Hoechst 32985, by1H NMR spectroscopy. Magnetic Resonance in Chemistry, 1994, 32, 509-516.	1.1	6
671	Effects of arginine 10 to lysine substitution on ï‰â€conotoxin <scp>CVIE</scp> and <scp>CVIF</scp> block of <scp>Ca_v</scp> 2.2 channels. British Journal of Pharmacology, 2014, 171, 3313-3327.	2.7	6
672	Histidine-Rich Defensins from the Solanaceae and Brasicaceae Are Antifungal and Metal Binding Proteins. Journal of Fungi (Basel, Switzerland), 2020, 6, 145.	1.5	6
673	Evaluation of the <i>in Vivo</i> Aphrodisiac Activity of a Cyclotide Extract from <i>Hybanthus enneaspermus</i> . Journal of Natural Products, 2020, 83, 3736-3743.	1.5	6
674	Production of a structurally validated cyclotide in rice suspension cells is enabled by a supporting biosynthetic enzyme. Planta, 2020, 252, 97.	1.6	6
675	Structure-activity analysis of truncated albumin-binding domains suggests new lead constructs for potential therapeutic delivery. Journal of Biological Chemistry, 2020, 295, 12143-12152.	1.6	6
676	Effects of backbone cyclization on the pharmacokinetics and drug efficiency of the orally active analgesic conotoxin cVc1.1. Medicine in Drug Discovery, 2021, 10, 100087.	2.3	6
677	Melanocortin 1 Receptor Agonists Based on a Bivalent, Bicyclic Peptide Framework. Journal of Medicinal Chemistry, 2021, 64, 9906-9915.	2.9	6
678	É'Oâ€Conotoxin GeXIVA isomers modulate Nâ€type calcium (Ca _V 2.2) channels and inwardlyâ€rectifying potassium (GIRK) channels via GABA _B receptor activation. Journal of Neurochemistry, 2022, 160, 154-171.	2.1	6
679	Cystine Knot Peptides with Tuneable Activity and Mechanism. Angewandte Chemie - International Edition, 2022, 61, .	7.2	6
680	Slow Magnetization Reversals in Cobalt Films. Proceedings of the Physical Society, 1962, 80, 768-770.	1.6	5
681	The measurement of magnetization using Hall probes. Journal of Physics E: Scientific Instruments, 1968, 1, 1193-1196.	0.7	5
682	Simple approximations to the magnetostatic energy of domains in uniaxial platelets. Journal Physics D: Applied Physics, 1973, 6, 1393-1402.	1.3	5
683	13C NMR spin relaxation studies of molecular dynamics of substituted phenylbicyclo[2.2.2]octanes. Magnetic Resonance in Chemistry, 1986, 24, 783-791.	1.1	5
684	Relaxation Processes in Aromatic Methyl-Groups. I. 2-Chloro-Toluene and 2,6-Dichloro-Toluene. Australian Journal of Chemistry, 1986, 39, 2049.	0.5	5

#	Article	IF	CITATIONS
685	A Pharmacophore Hypothesis for Antidepressant Activity. QSAR and Combinatorial Science, 1987, 6, 97-103.	1.4	5
686	13 C NMR studies of insulin. Part l—Spectral assignments. Magnetic Resonance in Chemistry, 1989, 27, 852-862.	1.1	5
687	Conformational Studies of Thyroid Hormones. I. The Diphenyl Ether Moiety. Australian Journal of Chemistry, 1990, 43, 923.	0.5	5
688	An NMR and theoretical study of the conformation and internal flexibility of butaclamol hydrochloride. Journal of Medicinal Chemistry, 1991, 34, 2036-2043.	2.9	5
689	NMR studies of the conformational interconversion of butaclamol in solution. Journal of Medicinal Chemistry, 1991, 34, 2043-2049.	2.9	5
690	13C and2H NMR studies of the molecular flexibility of phenylethylamine and amphetamine derivatives. Magnetic Resonance in Chemistry, 1993, 31, 222-230.	1.1	5
691	1H NMR Spectroscopic Studies of the Stability of an Oxazolidine Condensation Product. Magnetic Resonance in Chemistry, 1997, 35, 337-341.	1.1	5
692	Plant Peptide Toxins from Nonmarine Environments. , 2010, , 257-285.		5
693	Magnesium Trisilicate—Antacid Properties and Crystal Structure. Journal of Pharmacy and Pharmacology, 2011, 7, 862-869.	1.2	5
694	NMR of plant proteins. Progress in Nuclear Magnetic Resonance Spectroscopy, 2013, 71, 1-34.	3.9	5
695	NMR Structure of μ-Conotoxin GIIIC: Leucine 18 Induces Local Repacking of the N-Terminus Resulting in Reduced NaV Channel Potency. Molecules, 2018, 23, 2715.	1.7	5
696	Cyclizing Disulfide-Rich Peptides Using Sortase A. Methods in Molecular Biology, 2019, 2012, 29-41.	0.4	5
697	Characterising the Subsite Specificity of Urokinaseâ€Type Plasminogen Activator and Tissueâ€Type Plasminogen Activator using a Sequenceâ€Defined Peptide Aldehyde Library. ChemBioChem, 2019, 20, 46-50.	1.3	5
698	Engineered EGF-A Peptides with Improved Affinity for Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9). ACS Chemical Biology, 2021, 16, 429-439.	1.6	5
699	Tuning the Anti-Angiogenic Effect of the P15 Peptide Using Cyclic Trypsin Inhibitor Scaffolds. ACS Chemical Biology, 2021, 16, 829-837.	1.6	5
700	Linking molecular evolution to molecular grafting. Journal of Biological Chemistry, 2021, 296, 100425.	1.6	5
701	Cystine Knot Folding in Cyclotides. , 2011, , 43-61.		5
702	Safer In Vitro Drug Screening Models for Melioidosis Therapy Development. American Journal of Tropical Medicine and Hygiene, 2020, 103, 1846-1851.	0.6	5

#	Article	IF	CITATIONS
703	Towards a generic prototyping approach for therapeutically-relevant peptides and proteins in a cell-free translation system. Nature Communications, 2022, 13, 260.	5.8	5
704	Rational domestication of a plant-based recombinant expression system expands its biosynthetic range. Journal of Experimental Botany, 2022, 73, 6103-6114.	2.4	5
705	Neurotoxic and cytotoxic peptides underlie the painful stings of the tree nettle Urtica ferox. Journal of Biological Chemistry, 2022, 298, 102218.	1.6	5
706	Uniaxial films with square hard-direction loops. British Journal of Applied Physics, 1966, 17, 1035-1038.	0.7	4
707	Magneto-optic diffraction and magnetization of thin films. Journal Physics D: Applied Physics, 1976, 9, L81-L83.	1.3	4
708	The distribution of the magnetisation in three-dimensional permeable solids. Journal Physics D: Applied Physics, 1978, 11, L149-L152.	1.3	4
709	Relationship between electron densities and chemical shifts. 3. para-Substituted benzoyl cations. Journal of the American Chemical Society, 1983, 105, 872-875.	6.6	4
710	1H-N.M.R. and Theoretical Studies of the Conformation of the Antibiotic Lincomycin. Australian Journal of Chemistry, 1990, 43, 535.	0.5	4
711	Structureâ€Function Studies of the Plant Cyclotides: The Role of a Circular Protein Backbone. Toxin Reviews, 2003, 22, 555-576.	1.5	4
712	Binding Mode of α-Conotoxins to an Acetylcholine Binding Protein Determined by Saturation Transfer Difference NMR. Protein and Peptide Letters, 2008, 15, 910-914.	0.4	4
713	The Plant Decapeptide OSIP108 Can Alleviate Mitochondrial Dysfunction Induced by Cisplatin in Human Cells. Molecules, 2014, 19, 15088-15102.	1.7	4
714	Structure-Activity Relationship Study of the Plant-Derived Decapeptide OSIP108 Inhibiting Candida albicans Biofilm Formation. Antimicrobial Agents and Chemotherapy, 2014, 58, 4974-4977.	1.4	4
715	Natural Functions and Structure–Activity Relationships of Cyclotides. Advances in Botanical Research, 2015, , 187-226.	0.5	4
716	Toward Structure Determination of Disulfide-Rich Peptides Using Chemical Shift-Based Methods. Journal of Physical Chemistry B, 2019, 123, 1903-1912.	1.2	4
717	Der Sonnenblumenâ€Trypsinâ€Inhibitorâ€1 (SFTlâ€1) in der Chemie und Biologie. Angewandte Chemie, 2021, 8128-8151.	133. 1.6	4
718	Increased Valency Improves Inhibitory Activity of Peptides Targeting Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9). ChemBioChem, 2021, 22, 2154-2160.	1.3	4
719	The discovery and development of a natural combinatorial peptide template: the cyclotides. Advances in Experimental Medicine and Biology, 2009, 611, 477-478.	0.8	4
720	Retrocyclin-2: a potent anti-HIV Î,-defensin that forms a cyclic cystine ladder structural motif. Advances in Experimental Medicine and Biology, 2009, 611, 577-578.	0.8	4

#	Article	IF	CITATIONS
721	Overview on the Discovery and Applications of Cyclotides. Advances in Botanical Research, 2015, , 1-13.	0.5	4
722	Structural Aspects of Hepcidin-Ferroportin Binding. Blood, 2008, 112, 119-119.	0.6	4
723	Evaluation of the in vitro Antitumor Activity of Nanostructured Cyclotides in Polymers of Eudragit® L 100-55 and RS 30 D. Letters in Drug Design and Discovery, 2019, 16, 437-445.	0.4	4
724	Pyruvated carrageenans from Solieria robusta and its adelphoparasite Tikvahiella candida. , 1999, , 401-409.		4
725	Evaluation of Efficient Non-reducing Enzymatic and Chemical Ligation Strategies for Complex Disulfide-Rich Peptides. Bioconjugate Chemistry, 2021, 32, 2407-2419.	1.8	4
726	Comparative analysis of cyclotide-producing plant cell suspensions presents opportunities for cyclotide plant molecular farming. Phytochemistry, 2022, 195, 113053.	1.4	4
727	Mutagenesis of bracelet cyclotide hyen D reveals functionally and structurally critical residues for membrane binding and cytotoxicity. Journal of Biological Chemistry, 2022, 298, 101822.	1.6	4
728	Magnetization distributions and the approach to saturation. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1980, 41, 485-495.	0.6	3
729	C-13 NMR spectral studies of the thyroid hormone transport protein, transthyretin and the pancreatic insulin storage moiety, the zinc-insulin hexamer. Biochemical and Biophysical Research Communications, 1987, 143, 116-125.	1.0	3
730	RELATIONSHIP BETWEEN ATP RESYNTHESIS AND CALCIUM ACCUMULATION IN THE REPERFUSED RAT HEART. Clinical and Experimental Pharmacology and Physiology, 1992, 19, 79-87.	0.9	3
731	NMR and Molecular Modeling-Based Conformational Analysis of Some N-Alkyl 1- and 2-Benzazepinones: Useful Central Nervous System Agent Design Motifs. Biochemical and Biophysical Research Communications, 1994, 205, 98-104.	1.0	3
732	13C NMR Relaxation Study of Molecular Motion in the DNA-Binding Ligand Hoechst 33258. The Journal of Physical Chemistry, 1995, 99, 4831-4836.	2.9	3
733	Synthesis and Structural Analysis of the N-Terminal Domain of the Thyroid Hormone-Binding Protein Transthyretin. Clinical Chemistry and Laboratory Medicine, 2002, 40, 1221-8.	1.4	3
734	Diversity in the disulfide folding pathways of cystine knot peptides. International Journal of Peptide Research and Therapeutics, 2003, 10, 523-531.	0.9	3
735	Structure of the Nâ€Linked Oligosaccharides from Tridacnin, a Lectin Found in the Haemolymph of the Giant Clam <i>Hippopus Hippopus</i> . FEBS Journal, 1995, 232, 873-880.	0.2	3
736	Kappa-/beta-carrageenans from Australian Red Algae of the Acrotylaceae (Gigartinales, Rhodophyta). Phycologia, 2008, 47, 35-40.	0.6	3
737	Structural Properties of Relaxin Chimeras. Annals of the New York Academy of Sciences, 2009, 1160, 27-30.	1.8	3
738	CHAPTER 11. Engineering Venom Peptides toÂlmprove Their Stability andÂBioavailability. RSC Drug Discovery Series, 2015, , 275-289.	0.2	3

#	Article	IF	CITATIONS
739	Antimicrobial Peptide Mimetics Based on a Diphenylacetylene Scaffold: Synthesis, Conformational Analysis, and Activity. ChemMedChem, 2020, 15, 1932-1939.	1.6	3
740	Cyclic Peptides as T-Type Calcium Channel Blockers: Characterization and Molecular Mapping of the Binding Site. ACS Pharmacology and Translational Science, 2021, 4, 1379-1389.	2.5	3
741	NMR in Peptide Drug Development. Methods in Molecular Biology, 2008, 494, 87-113.	0.4	3
742	Phage display-based discovery of cyclic peptides against the broad spectrum bacterial anti-virulence target CsrA. European Journal of Medicinal Chemistry, 2022, 231, 114148.	2.6	3
743	Mutagenesis of cyclotide Cter 27 exemplifies a robust folding strategy for bracelet cyclotides. Peptide Science, 2022, 114, .	1.0	3
744	Simple theory of hard-direction remanence in magnetic fimls. British Journal of Applied Physics, 1967, 18, 689-690.	0.7	2
745	Demagnetizing fields in uniformly magnetized rectangular prismatic crystals. British Journal of Applied Physics, 1967, 18, 1355-1356.	0.7	2
746	Synthesis of cyclic penta- and hexapeptides: A general synthetic strategy on DAS resin. The Protein Journal, 1994, 13, 339-346.	1.1	2
747	The Chemistry and Biology of Human Relaxin-3. Annals of the New York Academy of Sciences, 2005, 1041, 40-46.	1.8	2
748	Forward for ICCP2009 issue of Biopolymers Peptide Science. Biopolymers, 2010, 94, iii-v.	1.2	2
749	Native peptide folding dominates over stereoelectronic effects of prolyl hydroxylation in loop 5 of the macrocyclic peptide kalata B1. Tetrahedron, 2014, 70, 7669-7674.	1.0	2
750	Structure–Activity Studies of Cysteineâ€Rich αâ€Conotoxins that Inhibit Highâ€Voltageâ€Activated Calcium Channels via GABA _B Receptor Activation Reveal a Minimal Functional Motif. Angewandte Chemie, 2016, 128, 4770-4774.	1.6	2
751	Cyclotides: Plant Defense Toxins. Toxinology, 2017, , 221-242.	0.2	2
752	Anchor Residues Guide Form and Function in Grafted Peptides. Angewandte Chemie, 2019, 131, 7734-7738.	1.6	2
753	EGFâ€artige und andere disulfidreiche Mikrodomäen als therapeutische Molekülgerüste. Angewandte Chemie, 2020, 132, 11314-11328.	1.6	2
754	Early development of Monoplex pilearis and Monoplex parthenopeus (Gastropoda: Cymatiidae): biology and morphology. Organisms Diversity and Evolution, 2020, 20, 51-62.	0.7	2
755	Improved Asparaginyl‣igaseâ€Catalyzed Transpeptidation via Selective Nucleophile Quenching. Angewandte Chemie, 2021, 133, 4050-4054.	1.6	2
756	Interactions of Globular and Ribbon [γ4E]GID with α4β2 Neuronal Nicotinic Acetylcholine Receptor. Marine Drugs, 2021, 19, 482.	2.2	2

#	Article	IF	CITATIONS
757	Unambiguous stereochemical assignment of the glycosidic linkages of corynetoxins by 1H - N.H.R Australian Journal of Chemistry, 1989, 42, 541.	0.5	2
758	Enzyme Mechanism and Function of a Novel Plant PDI Involved in the Oxidative Folding of Cystine Knot Defense Peptides. Advances in Experimental Medicine and Biology, 2009, 611, 31-32.	0.8	2
759	Analysis of particle size distribution in colloidal dispersions by electron microscopy. Colloid and Polymer Science, 1965, 205, 108-111.	1.0	1
760	Magnetic studies of oxidation processes and mechanisms. Transactions of the Faraday Society, 1969, 65, 1649.	0.9	1
761	Domain nucleation in uniaxial magnetic platelets. Journal Physics D: Applied Physics, 1973, 6, L101-L102.	1.3	1
762	Comparative magnetostatic analyses of axisymmetric systems. Journal Physics D: Applied Physics, 1974, 7, L107-L109.	1.3	1
763	Dynamic Bloch line formation in magnetic garnet films. Journal Physics D: Applied Physics, 1975, 8, 99-106.	1.3	1
764	Measurement of the domain widths of a magnetic thin film in an in-plane field. AIP Conference Proceedings, 1976, , .	0.3	1
765	Control of bias field profiles in bubble memory devices. Journal of Applied Physics, 1979, 50, 2237-2240.	1.1	1
766	Calcium gain in the ischaemic rat heart: The effect of anipamil. Journal of Molecular and Cellular Cardiology, 1988, 20, V-V.	0.9	1
767	Graphics-aided NMR. Annual Reports on NMR Spectroscopy, 1989, , 1-50.	0.7	1
768	Testing of insulin hexamer-stabilizing ligands using theoretical binding, microcalorimetry, and nuclear magnetic resonance (NMR) line broadening techniques. Pharmaceutical Research, 1990, 07, 600-605.	1.7	1
769	Determining the conformation of a ligand bound to an enzyme: Application of NMR spectroscopy in drug design. Journal of Chemical Education, 1991, 68, 258.	1.1	1
770	Effect of signal-to-noise ratio on the measurement of individual T1 values from superimposed peaks. Journal of Magnetic Resonance, 1991, 91, 261-272.	0.5	1
771	1H and13C NMR studies of aminoglycoside antibiotics. Magnetic Resonance in Chemistry, 1993, 31, 1077-1084.	1.1	1
772	The synthesis and structure of an n-terminal dodecanoic acid conjugate of α-conotoxin MII. International Journal of Peptide Research and Therapeutics, 2001, 8, 235-239.	0.1	1
773	NMRDyn: A Program for NMR Relaxation Studies of Protein Association. PLoS ONE, 2008, 3, e3820.	1.1	1
774	Correction to Chemical Re-engineering of Chlorotoxin Improves Bioconjugation Properties for Tumor Imaging and Targeted Therapy. Journal of Medicinal Chemistry, 2013, 56, 9807-9807.	2.9	1

#	Article	IF	CITATIONS
775	Structure-Activity Relationship Studies Reveal that the Spider Toxin Protx-II has Unusual Membrane-Binding Properties and Inhibits NAV1.7 Channel at the Membrane Surface. Biophysical Journal, 2016, 110, 76a.	0.2	1
776	In Silico Design of MDM2â€Targeting Peptides from a Naturally Occurring Constrained Peptide. ChemMedChem, 2019, 14, 1710-1716.	1.6	1
777	Development of novel frogâ€ s kin peptide scaffolds with selectivity towards melanocortin receptor subtypes. Peptide Science, 2021, 113, e24209.	1.0	1
778	Scalable and Efficient In Planta Biosynthesis of Sunflower Trypsin Inhibitor-1 (SFTI) Peptide Therapeutics. Methods in Molecular Biology, 2022, 2371, 117-142.	0.4	1
779	Enzymatic Câ€ŧoâ€C Protein Ligation. Angewandte Chemie, 2022, 134, .	1.6	1
780	Protocols for measuring the stability and cytotoxicity of cyclotides. Methods in Enzymology, 2022, 663, 19-40.	0.4	1
781	Comparison of 1H NMR chemical shifts of bovine and human insulins. Peptide Research, 1991, 4, 177-86.	0.2	1
782	Conformational Studies of Bioactive Peptides by NMR. Current Medicinal Chemistry, 1994, 1, 115-144.	1.2	1
783	Anhysteretic Magnetization Processes. Journal of Applied Physics, 1968, 39, 871-872.	1.1	0
784	Magnetization dynamics controlled by magnetocrystalline anisotropy. Journal Physics D: Applied Physics, 1973, 6, L49-L51.	1.3	0
785	The effect of the cubic anisotropy on the behaviour of uniaxial garnet films. Journal Physics D: Applied Physics, 1977, 10, 2099-2105.	1.3	0
786	Toluidine Blue Tcnq - A Novel Magnetic Material. Molecular Crystals and Liquid Crystals, 1992, 218, 235-239.	0.3	0
787	NMR relaxation behavior and quadrupole coupling constants of39K and23Na ions in glycerol. Comparisons with39K tissue data. Journal of Magnetic Resonance, 1992, 99, 247-257.	0.5	0
788	Backbone Cyclization Improves the Enzymatic Stability of χ-Conotoxin, MrIA, whilst Maintaining its Structure and NET-Modulating Activity. , 2006, , 641-642.		0
789	Threaded Rings and Complex Topologies in Antimicrobial Peptides: Nature's Engineering Templates. , 2006, , 243-247.		0
790	New Cyclotide Precursor Sequences. , 2006, , 783-784.		0
791	Osteopenia in a teenage boy presenting with previously undiagnosed guanidinoacetate methyltransferase (GAMT) deficiency and response to creatine supplementation. Bone, 2009, 44, S95-S96.	1.4	0
792	Trabecular and cortical bone changes due to long term vitamin D deficiency in senescent animals. Bone, 2009, 44, S168-S169.	1.4	0

#	Article	IF	CITATIONS
793	Structure and function of Fugu parathyroid hormone 1 (–34). Bone, 2009, 44, S168.	1.4	0
794	Membrane Interactions and the Formation of Multimeric Pores by Cyclotides. Biophysical Journal, 2010, 98, 609a.	0.2	0
795	Foreword for ICCP2012 issue of Biopolymers Peptide Science Circular Proteins: Never ending possibilities. Biopolymers, 2013, 100, iii-v.	1.2	0
796	Cyclotides: Plant Defense Toxins. , 2015, , 1-18.		0
797	Probing Voltage-Dependent Structural Changes of the VSD in Mammalian Nav with LRET. Biophysical Journal, 2016, 110, 113a.	0.2	Ο
798	Front Cover: Cyclisation of Disulfide-Rich Conotoxins in Drug Design Applications (Eur. J. Org. Chem.) Tj ETQq0 0	0 rgBT /C	overlock 10 Tf
799	Forward for ICCP2015 issue of Biopolymers Peptide Science. Biopolymers, 2016, 106, 772-773.	1.2	0

800	Membrane-Binding Properties of Gating-Modifier and Pore Blocking Toxins: Membrane Interaction is not a Prerequisite for Modification of Channel Gating. Biophysical Journal, 2016, 110, 29a.	0.2	0
801	Identification of survival-promoting OSIP108 peptide variants and their internalization in human cells. Mechanisms of Ageing and Development, 2017, 161, 247-254.	2.2	0
802	Emerging Peptide Science in Australia. Peptide Science, 2018, 110, e24080.	1.0	0
803	Backbone cyclization of analgesic conotoxin gexiva facilitates direct folding of the ribbon isomer. Toxicon, 2019, 158, S42.	0.8	0
804	β2 subunit contribution to alpha-conotoxin LvIA binding to the α3β2 nicotinic acetycholine receptor subtype. Toxicon, 2019, 158, S64-S65.	0.8	0
805	Innentitelbild: Application and Structural Analysis of Triazoleâ€Bridged Disulfide Mimetics in Cyclic Peptides (Angew. Chem. 28/2020). Angewandte Chemie, 2020, 132, 11258-11258.	1.6	0
806	Challenging the Chirality Paradigm in Peptide-Lipid Interactions. Biophysical Journal, 2020, 118, 343a.	0.2	0
807	Synthesis of N to C Terminal Cyclic Analogues of $\hat{I}\pm$ -Conotoxin Iml by Chemoselective Ligation of Unprotected Linear Precursors. , 2001, , 113-114.		0
808	Chemical and biological consequences of sugar incorporation into a potential N-glycosylation site in the tubulin-binding repeat of tau protein. , 2002, , 767-769.		0
809	Synthesis and folding of the circular cystine knotted cyclotide cycloviolacin O2. Planta Medica, 2008, 74, .	0.7	0
810	Discovery of Cyclotides from Australasian Plants. Australian Journal of Chemistry, 2020, 73, 287.	0.5	0

#	Article	IF	CITATIONS
811	Cystine Knot Peptides with Tuneable Activity and Mechanism. Angewandte Chemie, 0, , .	1.6	Ο
812	ANOMALOUS BEHAVIOUR OF GARNETS NEAR TO COMPENSATION. Journal De Physique Colloque, 1977, 38, C1-61-C1-64.	0.2	0
813	Antinociceptive peptides from venomous arthropods. Toxin Reviews, 2023, 42, 362-381.	1.5	Ο