
Nathan L Clark

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7184362/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Activation by cleavage of the epithelial Na+ channel α and γ subunits independently coevolved with the vertebrate terrestrial migration. ELife, 2022, 11, .	6.0	5
2	Multiple 9-1-1 complexes promote homolog synapsis, DSB repair, and ATR signaling during mammalian meiosis. ELife, 2022, 11, .	6.0	7
3	Phylogenetic Permulations: A Statistically Rigorous Approach to Measure Confidence in Associations in a Phylogenetic Context. Molecular Biology and Evolution, 2021, 38, 3004-3021.	8.9	16
4	Experimental exchange of paralogous domains in the MLH family provides evidence of sub-functionalization after gene duplication. G3: Genes, Genomes, Genetics, 2021, 11, .	1.8	2
5	αâ€Arrestin regulation of protein trafficking: Using evolutionary rate covariation to define protein trafficking regulatory networks. FASEB Journal, 2021, 35, .	0.5	0
6	Evolutionary, proteomic, and experimental investigations suggest the extracellular matrix of cumulus cells mediates fertilization outcomesâ€. Biology of Reproduction, 2021, 105, 1043-1055.	2.7	7
7	Evolutionary rate covariation identifies SLC30A9 (ZnT9) as a mitochondrial zinc transporter. Biochemical Journal, 2021, 478, 3205-3220.	3.7	17
8	MCM8IP activates the MCM8-9 helicase to promote DNA synthesis and homologous recombination upon DNA damage. Nature Communications, 2020, 11, 2948.	12.8	28
9	Pan-mammalian analysis of molecular constraints underlying extended lifespan. ELife, 2020, 9, .	6.0	57
10	A Drosophila screen identifies NKCC1 as a modifier of NGLY1 deficiency. ELife, 2020, 9, .	6.0	28
11	Characterization of Female Reproductive Proteases in a Butterfly from Functional and Evolutionary Perspectives. Physiological and Biochemical Zoology, 2019, 92, 579-590.	1.5	11
12	Evolution-based screening enables genome-wide prioritization and discovery of DNA repair genes. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 19593-19599.	7.1	22
13	RERconverge: an R package for associating evolutionary rates with convergent traits. Bioinformatics, 2019, 35, 4815-4817.	4.1	72
14	Convergent evolution in the genomics era: new insights and directions. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20190102.	4.0	78
15	Unprecedented reorganization of holocentric chromosomes provides insights into the enigma of lepidopteran chromosome evolution. Science Advances, 2019, 5, eaau3648.	10.3	66
16	Robust Method for Detecting Convergent Shifts in Evolutionary Rates. Molecular Biology and Evolution, 2019, 36, 1817-1830.	8.9	32
17	Evolutionary rate covariation analysis of E-cadherin identifies Raskol as a regulator of cell adhesion and actin dynamics in Drosophila. PLoS Genetics, 2019, 15, e1007720.	3.5	30
18	The molecular genetic basis of herbivory between butterflies and their host plants. Nature Ecology and Evolution, 2018, 2, 1418-1427.	7.8	56

NATHAN L CLARK

#	Article	IF	CITATIONS
19	Ancient convergent losses of <i>Paraoxonase 1</i> yield potential risks for modern marine mammals. Science, 2018, 361, 591-594.	12.6	79
20	Cleavage of ENaC \hat{I}_{\pm} and \hat{I}_{3} Subunits Evolved with the Terrestrial Migration. FASEB Journal, 2018, 32, 624.16.	0.5	2
21	Structural complexity and molecular heterogeneity of a butterfly ejaculate reflect a complex history of selection. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E5406-E5413.	7.1	37
22	Subterranean mammals show convergent regression in ocular genes and enhancers, along with adaptation to tunneling. ELife, 2017, 6, .	6.0	138
23	Candida albicans Transcriptional Profiling Within Biliary Fluid From a Patient With Cholangitis, Before and After Antifungal Treatment and Surgical Drainage. Open Forum Infectious Diseases, 2016, 3, ofw120.	0.9	0
24	The Amino Acid Transporter JhI-21 Coevolves with Glutamate Receptors, Impacts NMJ Physiology and Influences Locomotor Activity in Drosophila Larvae. Scientific Reports, 2016, 6, 19692.	3.3	20
25	The Budding Yeast Ubiquitin Protease Ubp7 Is a Novel Component Involved in S Phase Progression. Journal of Biological Chemistry, 2016, 291, 4442-4452.	3.4	11
26	Hundreds of Genes Experienced Convergent Shifts in Selective Pressure in Marine Mammals. Molecular Biology and Evolution, 2016, 33, 2182-2192.	8.9	171
27	Digestive Organ in the Female Reproductive Tract Borrows Genes from Multiple Organ Systems to Adopt Critical Functions. Molecular Biology and Evolution, 2015, 32, 1567-1580.	8.9	27
28	Dynamic digestive physiology of a female reproductive organ in a polyandrous butterfly. Journal of Experimental Biology, 2015, 218, 1548-1555.	1.7	20
29	Genetic and phenotypic influences on copulatory plug survival in mice. Heredity, 2015, 115, 496-502.	2.6	27
30	ERC analysis: web-based inference of gene function via evolutionary rate covariation. Bioinformatics, 2015, 31, 3835-3837.	4.1	22
31	Evolutionary Signatures amongst Disease Genes Permit Novel Methods for Gene Prioritization and Construction of Informative Gene-Based Networks. PLoS Genetics, 2015, 11, e1004967.	3.5	23
32	Overlapping Patterns of Rapid Evolution in the Nucleic Acid Sensors cGAS and OAS1 Suggest a Common Mechanism of Pathogen Antagonism and Escape. PLoS Genetics, 2015, 11, e1005203.	3.5	82
33	Evolutionary and Functional Analysis of the Invariant SWIM Domain in the Conserved Shu2/SWS1 Protein Family from <i>Saccharomyces cerevisiae</i> to <i>Homo sapiens</i> . Genetics, 2015, 199, 1023-1033.	2.9	33
34	Evolutionary Rate Covariation Identifies New Members of a Protein Network Required for Drosophila melanogaster Female Post-Mating Responses. PLoS Genetics, 2014, 10, e1004108.	3.5	137
35	Evolutionary Rate Covariation in Meiotic Proteins Results from Fluctuating Evolutionary Pressure in Yeasts and Mammals. Genetics, 2013, 193, 529-538.	2.9	34
36	Evolutionary rate covariation reveals shared functionality and coexpression of genes. Genome Research, 2012, 22, 714-720.	5.5	89

NATHAN L CLARK

#	Article	IF	CITATIONS
37	Diversity-Enhancing Selection Acts on a Female Reproductive Protease Family in Four Subspecies of Drosophila mojavensis. Genetics, 2011, 187, 865-876.	2.9	14
38	A Novel Method to Detect Proteins Evolving at Correlated Rates: Identifying New Functional Relationships between Coevolving Proteins. Molecular Biology and Evolution, 2010, 27, 1152-1161.	8.9	42
39	Proteomics and Comparative Genomic Investigations Reveal Heterogeneity in Evolutionary Rate of Male Reproductive Proteins in Mice (Mus domesticus). Molecular Biology and Evolution, 2009, 26, 1733-1743.	8.9	93
40	Coevolution of Interacting Fertilization Proteins. PLoS Genetics, 2009, 5, e1000570.	3.5	125
41	Adaptive Evolution in Rodent Seminal Vesicle Secretion Proteins. Molecular Biology and Evolution, 2008, 25, 2301-2310.	8.9	52
42	Duplication and Selection on Abalone Sperm Lysin in an Allopatric Population. Molecular Biology and Evolution, 2007, 24, 2081-2090.	8.9	46
43	Evolution of reproductive proteins from animals and plants. Reproduction, 2006, 131, 11-22.	2.6	319
44	Rapid evolution of reproductive proteins in abalone and Drosophila. Philosophical Transactions of the Royal Society B: Biological Sciences, 2006, 361, 261-268.	4.0	112
45	High Genetic Diversity in the Chemoreceptor Superfamily of Caenorhabditis elegans. Genetics, 2005, 169, 1985-1996.	2.9	43
46	Pervasive Adaptive Evolution in Primate Seminal Proteins. PLoS Genetics, 2005, 1, e35.	3.5	155