Bruce Waldman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7184206/publications.pdf Version: 2024-02-01

RDUCE WAIDMAN

#	Article	IF	CITATIONS
1	Novel chytrid pathogen variants and the global amphibian pet trade. Conservation Biology, 2022, 36, .	2.4	9
2	Coevolution between MHC Class I and Antigen-Processing Genes in Salamanders. Molecular Biology and Evolution, 2021, 38, 5092-5106.	3.5	5
3	Early-diverging fungal phyla: taxonomy, species concept, ecology, distribution, anthropogenic impact, and novel phylogenetic proposals. Fungal Diversity, 2021, 109, 59-98.	4.7	35
4	Molecular Evolution of Antigen-Processing Genes in Salamanders: Do They Coevolve with MHC Class I Genes?. Genome Biology and Evolution, 2021, 13, .	1.1	2
5	Phylogeographic study of the <i>Bufo gargarizans</i> species complex, with emphasis on Northeast Asia. Animal Cells and Systems, 2021, 25, 434-444.	0.8	6
6	Structural implications of traditional agricultural landscapes on the functional diversity of birds near the Korean Demilitarized Zone. Ecology and Evolution, 2020, 10, 12973-12982.	0.8	7
7	Phylogenetic Systematics of the Water Toad (Bufo stejnegeri) Elucidates the Evolution of Semi-aquatic Toad Ecology and Pleistocene Glacial Refugia. Frontiers in Ecology and Evolution, 2020, 7, .	1.1	13
8	Fungal Elevational Rapoport pattern from a High Mountain in Japan. Scientific Reports, 2019, 9, 6570.	1.6	32
9	Ancestral chytrid pathogen remains hypervirulent following its long coevolution with amphibian hosts. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20190833.	1.2	23
10	Changes in soil taxonomic and functional diversity resulting from gamma irradiation. Scientific Reports, 2019, 9, 7894.	1.6	15
11	Community Ecology of Deinococcus in Irradiated Soil. Microbial Ecology, 2019, 78, 855-872.	1.4	13
12	Community richness of amphibian skin bacteria correlates with bioclimate at the global scale. Nature Ecology and Evolution, 2019, 3, 381-389.	3.4	68
13	Improving the remediation capacity of a landfill leachate channel by selecting suitable macrophytes. Journal of Hydro-Environment Research, 2018, 20, 31-37.	1.0	18
14	Skin Bacterial Community Reorganization Following Metamorphosis of the Fire-Bellied Toad (Bombina) Tj ETQqO	0 0 rgBT / 1.4	Overlock 10
15	Development and worldwide use of non-lethal, and minimal population-level impact, protocols for the isolation of amphibian chytrid fungi. Scientific Reports, 2018, 8, 7772.	1.6	24
16	Recent Asian origin of chytrid fungi causing global amphibian declines. Science, 2018, 360, 621-627.	6.0	389
17	Characterization of MHC class IA in the endangered southern corroboree frog. Immunogenetics, 2017, 69, 165-174.	1.2	15

18Multiple major histocompatibility complex class I genes in Asian anurans: Ontogeny and phylogeny.1.01118Developmental and Comparative Immunology, 2017, 70, 69-79.1.011

#	Article	IF	CITATIONS
19	Major histocompatibility complex variation and the evolution of resistance to amphibian chytridiomycosis. Immunogenetics, 2017, 69, 529-536.	1.2	34

Major histocompatibility complex selection dynamics in pathogen-infected t \tilde{A}° ngara frog () Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 702 Td 1.0^{-10}

21	From phytoaccumulation to post-harvest use of water fern for landfill management. Journal of Environmental Management, 2016, 182, 13-20.	3.8	14
22	Chemical Communication in Archaic New Zealand Frogs. , 2016, , 351-360.		2
23	Enhanced call effort in Japanese tree frogs infected by amphibian chytrid fungus. Biology Letters, 2016, 12, 20160018.	1.0	41
24	Influence of geology and human activity on the genetic structure and demography of the Oriental fire-bellied toad (Bombina orientalis). Molecular Phylogenetics and Evolution, 2016, 97, 69-75.	1.2	20
25	Microbiome Variation Across Amphibian Skin Regions: Implications for Chytridiomycosis Mitigation Efforts. Microbial Ecology, 2016, 71, 221-232.	1.4	83
26	Early 1900s Detection of Batrachochytrium dendrobatidis in Korean Amphibians. PLoS ONE, 2015, 10, e0115656.	1.1	38
27	Kin discrimination in polyphenic salamander larvae: trade-offs between inclusive fitness and pathogen transmission. Behavioral Ecology and Sociobiology, 2015, 69, 1473-1481.	0.6	10
28	Sex-Chromosome Homomorphy in Palearctic Tree Frogs Results from Both Turnovers and X–Y Recombination. Molecular Biology and Evolution, 2015, 32, 2328-2337.	3.5	57
29	Susceptibility of amphibians to chytridiomycosis is associated with MHC class II conformation. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20143127.	1.2	114
30	Effects of Three Fire-Suppressant Foams on the Germination and Physiological Responses of Plants. Environmental Management, 2014, 54, 865-874.	1.2	12
31	Swabbing Often Fails to Detect Amphibian Chytridiomycosis under Conditions of Low Infection Load. PLoS ONE, 2014, 9, e111091.	1.1	41
32	Genetic evidence for a high diversity and wide distribution of endemic strains of the pathogenic chytrid fungus <i><scp>B</scp>atrachochytrium dendrobatidis</i> in wild <scp>A</scp> sian amphibians. Molecular Ecology, 2013, 22, 4196-4209.	2.0	113
33	Wetlands are an effective green roof system. Building and Environment, 2013, 66, 141-147.	3.0	42
34	Functional analyses of nanoparticle toxicity: A comparative study of the effects of TiO2 and Ag on tomatoes (Lycopersicon esculentum). Ecotoxicology and Environmental Safety, 2013, 93, 60-67.	2.9	286
35	Ecological immunogenetics of life-history traits in a model amphibian. Biology Letters, 2012, 8, 405-407.	1.0	9
36	Social discrimination by quantitative assessment of immunogenetic similarity. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 4368-4374.	1.2	17

BRUCE WALDMAN

#	Article	IF	CITATIONS
37	Phylogeography of Leiopelma hochstetteri reveals strong genetic structure and suggests new conservation priorities. Conservation Genetics, 2010, 11, 907-919.	0.8	35
38	Does Chytridiomycosis Disrupt Amphibian Skin Function?. Copeia, 2010, 2010, 487-495.	1.4	43
39	Crossing the Tasman Sea: Inferring the introduction history of <i>Litoria aurea</i> and <i>Litoria raniformis</i> (Anura: Hylidae) from Australia into New Zealand. Austral Ecology, 2008, 33, 623-629.	0.7	10
40	Self-referent MHC type matching in frog tadpoles. Proceedings of the Royal Society B: Biological Sciences, 2008, 275, 1225-1230.	1.2	30
41	Major Histocompatibility Complex Based Resistance to a Common Bacterial Pathogen of Amphibians. PLoS ONE, 2008, 3, e2692.	1.1	39
42	Polymorphism, natural selection, and structural modeling of class Ia MHC in the African clawed frog (Xenopus laevis). Immunogenetics, 2006, 58, 433-442.	1.2	14
43	Evolution by Recombination and Transspecies Polymorphism in the MHC Class I Gene of Xenopus laevis. Molecular Biology and Evolution, 2006, 23, 137-143.	3.5	46
44	Chemical communication in an archaic anuran amphibian. Behavioral Ecology, 2004, 15, 88-93.	1.0	60
45	Communication by Fecal Chemosignals in an Archaic Frog, Leiopelma hamiltoni. Copeia, 2002, 2002, 679-686.	1.4	21
46	Habitat-use by the Green and Golden Bell Frog <i>Litoria aurea</i> in Australia and New Zealand. Australian Zoologist, 2002, 32, 12-31.	0.6	31
47	Determining the species status of one of the world's rarest frogs: a conservation dilemma. Animal Conservation, 2001, 4, 29-35.	1.5	31
48	Hamilton's frog,Leiopelma hamiltoni. Biodiversity, 2000, 1, 30-31.	0.5	0
49	Kin Recognition and Incest Avoidance in Toads. American Zoologist, 1992, 32, 18-30.	0.7	37
50	Kin recognition in anuran amphibians. Animal Behaviour, 1992, 44, 207-221.	0.8	117
51	Embryonic olfactory learning in frogs. Quarterly Journal of Experimental Psychology Section B: Comparative and Physiological Psychology, 1992, 44, 179-97.	2.8	25
52	Kin recognition in amphibians. , 1991, , 162-219.		57
53	Do anuran larvae retain kin recognition abilities following metamorphosis?. Animal Behaviour, 1989, 37, 1055-1058.	0.8	12
54	Sociobiology, sociology, and pseudoevolutionary reasoning. Behavioral and Brain Sciences, 1989, 12, 547-548.	0.4	1

BRUCE WALDMAN

#	Article	IF	CITATIONS
55	Kin Association in Japanese Quail Chicks. Ethology, 1989, 80, 283-291.	0.5	15
56	Problems of kin recognition. Trends in Ecology and Evolution, 1988, 3, 8-13.	4.2	142
57	The Ecology of Kin Recognition. Annual Review of Ecology, Evolution, and Systematics, 1988, 19, 543-571.	6.7	210
58	Mechanisms of kin recognition. Journal of Theoretical Biology, 1987, 128, 159-185.	0.8	168
59	Preference for unfamiliar siblings over familiar non-siblings in American toad (Bufo americanus) tadpoles. Animal Behaviour, 1986, 34, 48-53.	0.8	27
60	Chemical Ecology of Kin Recognition in Anuran Amphibians. , 1986, , 225-242.		37
61	Olfactory basis of kin recognition in toad tadpoles. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1985, 156, 565-577.	0.7	65
62	Sibling Recognition in Toad Tadpoles: Are Kinship Labels Transferred among Individuals?. Zeitschrift Für Tierpsychologie, 1985, 68, 41-57.	0.2	17
63	Kin recognition and sibling association among wood frog (Rana sylvatica) tadpoles. Behavioral Ecology and Sociobiology, 1984, 14, 171-180.	0.6	67
64	Thermal Advantages of Communal Egg Mass Deposition in Wood Frogs (Rana sylvatica). Journal of Herpetology, 1983, 17, 70.	0.2	24
65	Sibling association among schooling toad tadpoles: field evidence and implications. Animal Behaviour, 1982, 30, 700-713.	0.8	109
66	Quantitative and Developmental Analyses of the Alarm Reaction in the Zebra Danio, Brachydanio rerio. Copeia, 1982, 1982, 1.	1.4	82
67	Adaptive significance of communal oviposition in wood frogs (Rana sylvatica). Behavioral Ecology and Sociobiology, 1982, 10, 169-174.	0.6	77
68	Sibling Recognition in Toad Tadpoles: The Role of Experience. Zeitschrift FÅ1⁄4r Tierpsychologie, 1981, 56, 341-358.	0.2	113
69	Toad tadpoles associate preferentially with siblings. Nature, 1979, 282, 611-613.	13.7	126