
Andreas M Grabrucker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7183709/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Editorial: Autism Spectrum Disorders and Metal Dyshomeostasis. Frontiers in Molecular Neuroscience, 2022, 15, 861483.	1.4	1
2	Zinc is a key regulator of gastrointestinal development, microbiota composition and inflammation with relevance for autism spectrum disorders. Cellular and Molecular Life Sciences, 2022, 79, 1.	2.4	14
3	Prenatal Zinc Deficient Mice as a Model for Autism Spectrum Disorders. International Journal of Molecular Sciences, 2022, 23, 6082.	1.8	9
4	Glioblastoma Multiforme Selective Nanomedicines for Improved Anti-Cancer Treatments. Pharmaceutics, 2022, 14, 1450.	2.0	7
5	Altered gut–brain signaling in autism spectrum disorders—from biomarkers to possible intervention strategies. , 2021, , 127-149.		0
6	Activation of the medial preoptic area (MPOA) ameliorates loss of maternal behavior in a <i>Shank2</i> mouse model for autism. EMBO Journal, 2021, 40, e104267.	3.5	16
7	IPSC-derived intestinal organoids and current 3D intestinal scaffolds. , 2021, , 293-327.		1
8	Sperm selection by rheotaxis improves sperm quality and early embryo development. Reproduction, 2021, 161, 343-352.	1.1	17
9	Editorial: Interactions of the Nervous System With Bacteria. Frontiers in Neuroscience, 2021, 15, 682744.	1.4	2
10	Expression Analysis of Zinc Transporters in Nervous Tissue Cells Reveals Neuronal and Synaptic Localization of ZIP4. International Journal of Molecular Sciences, 2021, 22, 4511.	1.8	18
11	The Metallome as a Link Between the "Omes―in Autism Spectrum Disorders. Frontiers in Molecular Neuroscience, 2021, 14, 695873.	1.4	9
12	S100B dysregulation during brain development affects synaptic SHANK protein networks via alteration of zinc homeostasis. Translational Psychiatry, 2021, 11, 562.	2.4	7
13	Localizing Therapeutics to the Brain. , 2021, , 207-226.		0
14	Biometals and nutrition in autism spectrum disorders. , 2020, , 81-101.		1
15	Concentrations of Essential Trace Metals in the Brain of Animal Species—A Comparative Study. Brain Sciences, 2020, 10, 460.	1.1	7
16	Zinc Deficiency in Men Over 50 and Its Implications in Prostate Disorders. Frontiers in Oncology, 2020, 10, 1293.	1.3	21
17	Metallic-based nanocarriers: methods employed in nanoparticle characterization and assessing the interaction with the bloodâ \in "brain barrier. , 2020, , 255-282.		0
18	Rho GTPases in the Amygdala—A Switch for Fears?. Cells, 2020, 9, 1972.	1.8	7

#	Article	IF	CITATIONS
19	Introduction to metallomics: the science of biometals. , 2020, , 1-10.		Ο
20	Synthesis, Characterization, and In Vitro Studies of an Reactive Oxygen Species (ROS)-Responsive Methoxy Polyethylene Glycol-Thioketal-Melphalan Prodrug for Glioblastoma Treatment. Frontiers in Pharmacology, 2020, 11, 574.	1.6	21
21	Autism-associated SHANK3 mutations impair maturation of neuromuscular junctions and striated muscles. Science Translational Medicine, 2020, 12, .	5.8	38
22	Metals and amyloid gain-of-toxic mechanisms in neurodegenerative diseases. , 2020, , 181-195.		1
23	Drug delivery across the blood–brain barrier: recent advances in the use of nanocarriers. Nanomedicine, 2020, 15, 205-214.	1.7	101
24	Comparing nanoparticles for drug delivery: The effect of physiological dispersion media on nanoparticle properties. Materials Science and Engineering C, 2020, 113, 110985.	3.8	9
25	Linking trace metal abnormalities to autism—insights from epidemiological studies. , 2020, , 103-114.		1
26	Essential trace metals and their function in brain development. , 2020, , 43-60.		1
27	Animal models for trace metal abnormalities—links to autism. , 2020, , 131-147.		0
28	Nonessential metals and their brain pathology. , 2020, , 61-79.		0
29	The specific role of zinc in autism spectrum disorders. , 2020, , 115-130.		0
30	Measuring biometals. , 2020, , 11-23.		0
31	Animal models for autismâ \in "links to biometal abnormalities. , 2020, , 149-157.		0
32	Human stem cell models linking biometal abnormalities and autism. , 2020, , 159-167.		0
33	Biometal homeostasis as a therapeutic strategy in autism spectrum disorders. , 2020, , 181-192.		0
34	Extracerebral biometals in autism spectrum disorders: the gut–brain axis. , 2020, , 169-180.		0
35	The history of metals in autism spectrum disorders. , 2020, , 25-41.		0
36	Future perspectives: autism, a disorder of biometal imbalance?. , 2020, , 193-199.		0

ANDREAS M GRABRUCKER

#	Article	IF	CITATIONS
37	Distribution and Relative Abundance of S100 Proteins in the Brain of the APP23 Alzheimer's Disease Model Mice. Frontiers in Neuroscience, 2019, 13, 640.	1.4	31
38	Nanomedicine Against Aβ Aggregation by β–Sheet Breaker Peptide Delivery: In Vitro Evidence. Pharmaceutics, 2019, 11, 572.	2.0	18
39	ROS-responsive "smart―polymeric conjugate: Synthesis, characterization and proof-of-concept study. International Journal of Pharmaceutics, 2019, 570, 118655.	2.6	31
40	Standardization of research methods employed in assessing the interaction between metallic-based nanoparticles and the blood-brain barrier: Present and future perspectives. Journal of Controlled Release, 2019, 296, 202-224.	4.8	12
41	Altered Intestinal Morphology and Microbiota Composition in the Autism Spectrum Disorders Associated SHANK3 Mouse Model. International Journal of Molecular Sciences, 2019, 20, 2134.	1.8	59
42	Shank3 Transgenic and Prenatal Zinc-Deficient Autism Mouse Models Show Convergent and Individual Alterations of Brain Structures in MRI. Frontiers in Neural Circuits, 2019, 13, 6.	1.4	27
43	Zinc Deficiency During Pregnancy Leads to Altered Microbiome and Elevated Inflammatory Markers in Mice. Frontiers in Neuroscience, 2019, 13, 1295.	1.4	51
44	Reduced plaque size and inflammation in the APP23 mouse model for Alzheimer's disease after chronic application of polymeric nanoparticles for CNS targeted zinc delivery. Journal of Trace Elements in Medicine and Biology, 2018, 49, 210-221.	1.5	64
45	Hybrid nanoparticles as a new technological approach to enhance the delivery of cholesterol into the brain. International Journal of Pharmaceutics, 2018, 543, 300-310.	2.6	26
46	Prospects of Zinc Supplementation in Autism Spectrum Disorders and Shankopathies Such as Phelan McDermid Syndrome. Frontiers in Synaptic Neuroscience, 2018, 10, 11.	1.3	33
47	Novel Curcumin loaded nanoparticles engineered for Blood-Brain Barrier crossing and able to disrupt Abeta aggregates. International Journal of Pharmaceutics, 2017, 526, 413-424.	2.6	127
48	Extracerebral Dysfunction in Animal Models of Autism Spectrum Disorder. Advances in Anatomy, Embryology and Cell Biology, 2017, 224, 159-187.	1.0	4
49	Zinc deficiency and low enterocyte zinc transporter expression in human patients with autism related mutations in SHANK3. Scientific Reports, 2017, 7, 45190.	1.6	56
50	De Novo Mutations in Protein Kinase Genes CAMK2A and CAMK2B Cause Intellectual Disability. American Journal of Human Genetics, 2017, 101, 768-788.	2.6	136
51	Characterization of zinc amino acid complexes for zinc delivery in vitro using Caco-2 cells and enterocytes from hiPSC. BioMetals, 2017, 30, 643-661.	1.8	60
52	Object Phobia and Altered RhoA Signaling in Amygdala of Mice Lacking RICH2. Frontiers in Molecular Neuroscience, 2017, 10, 180.	1.4	11
53	Molecular and Cellular Mechanisms of Synaptopathies. Neural Plasticity, 2017, 2017, 1-3.	1.0	17

#	Article	IF	CITATIONS
55	Brain Lateralization in Mice Is Associated with Zinc Signaling and Altered in Prenatal Zinc Deficient Mice That Display Features of Autism Spectrum Disorder. Frontiers in Molecular Neuroscience, 2017, 10, 450.	1.4	37
56	Zinc Binding to S100B Affords Regulation of Trace Metal Homeostasis and Excitotoxicity in the Brain. Frontiers in Molecular Neuroscience, 2017, 10, 456.	1.4	29
57	Zinc Deficiency. , 2016, , .		10
58	Cellular Zinc Homeostasis Contributes to Neuronal Differentiation in Human Induced Pluripotent Stem Cells. Neural Plasticity, 2016, 2016, 1-15.	1.0	40
59	Actin-Dependent Alterations of Dendritic Spine Morphology in Shankopathies. Neural Plasticity, 2016, 2016, 1-15.	1.0	39
60	Gender Dependent Evaluation of Autism like Behavior in Mice Exposed to Prenatal Zinc Deficiency. Frontiers in Behavioral Neuroscience, 2016, 10, 37.	1.0	71
61	The Shank3 Interaction Partner ProSAPiP1 Regulates Postsynaptic SPAR Levels and the Maturation of Dendritic Spines in Hippocampal Neurons. Frontiers in Synaptic Neuroscience, 2016, 8, 13.	1.3	7
62	Enlarged dendritic spines and pronounced neophobia in mice lacking the PSD protein RICH2. Molecular Brain, 2016, 9, 28.	1.3	27
63	Activity and circadian rhythm influence synaptic Shank3 protein levels in mice. Journal of Neurochemistry, 2016, 138, 887-895.	2.1	21
64	EXPLOITING THE VERSATILITY OF CHOLESTEROL IN NANOPARTICLES FORMULATION. International Journal of Pharmaceutics, 2016, 511, 331-340.	2.6	18
65	Nanoparticle transport across the blood brain barrier. Tissue Barriers, 2016, 4, e1153568.	1.6	121
66	Zinc in Gut-Brain Interaction in Autism and Neurological Disorders. Neural Plasticity, 2015, 2015, 1-15.	1.0	75
67	Effects of Trace Metal Profiles Characteristic for Autism on Synapses in Cultured Neurons. Neural Plasticity, 2015, 2015, 1-16.	1.0	30
68	N-cadherin-mediated cell adhesion is regulated by extracellular Zn ²⁺ . Metallomics, 2015, 7, 355-362.	1.0	15
69	Emerging Use of Nanotechnology in the Treatment of Neurological Disorders. Current Pharmaceutical Design, 2015, 21, 3111-3130.	0.9	28
70	Application of Polymeric Nanoparticles for CNS Targeted Zinc Delivery In Vivo. CNS and Neurological Disorders - Drug Targets, 2015, 14, 1041-1053.	0.8	12
71	The PSD protein ProSAP2/Shank3 displays synapto-nuclear shuttling which is deregulated in a schizophrenia-associated mutation. Experimental Neurology, 2014, 253, 126-137.	2.0	59
72	Insight on the fate of CNS-targeted nanoparticles. Part I: Rab5-dependent cell-specific uptake and distribution. Journal of Controlled Release, 2014, 174, 195-201.	4.8	63

ANDREAS M GRABRUCKER

#	Article	IF	CITATIONS
73	Insight on the fate of CNS-targeted nanoparticles. Part II: Intercellular neuronal cell-to-cell transport. Journal of Controlled Release, 2014, 177, 96-107.	4.8	48
74	A role for synaptic zinc in ProSAP/Shank PSD scaffold malformation in autism spectrum disorders. Developmental Neurobiology, 2014, 74, 136-146.	1.5	91
75	Characterization of biometal profiles in neurological disorders. Metallomics, 2014, 6, 960-977.	1.0	101
76	Loss of COMMD1 and copper overload disrupt zinc homeostasis and influence an autism-associated pathway at glutamatergic synapses. BioMetals, 2014, 27, 715-730.	1.8	24
77	Zinc deficiency dysregulates the synaptic ProSAP/Shank scaffold and might contribute to autism spectrum disorders. Brain, 2014, 137, 137-152.	3.7	154
78	Characterization of lysosome-destabilizing DOPE/PLGA nanoparticles designed for cytoplasmic drug release. International Journal of Pharmaceutics, 2014, 471, 349-357.	2.6	17
79	Behavioral impairments in animal models for zinc deficiency. Frontiers in Behavioral Neuroscience, 2014, 8, 443.	1.0	83
80	Nanoparticles as Blood–Brain Barrier Permeable CNS Targeted Drug Delivery Systems. Topics in Medicinal Chemistry, 2013, , 71-89.	0.4	22
81	The Nedd4-binding protein 3 (N4BP3) is crucial for axonal and dendritic branching in developing neurons. Neural Development, 2013, 8, 18.	1.1	21
82	Autism-Associated Mutations in ProSAP2/Shank3 Impair Synaptic Transmission and Neurexin–Neuroligin-Mediated Transsynaptic Signaling. Journal of Neuroscience, 2012, 32, 14966-14978.	1.7	154
83	Autistic-like behaviours and hyperactivity in mice lacking ProSAP1/Shank2. Nature, 2012, 486, 256-260.	13.7	570
84	Environmental Factors in Autism. Frontiers in Psychiatry, 2012, 3, 118.	1.3	168
85	Brain-Delivery of Zinc-Ions as Potential Treatment for Neurological Diseases: Mini Review. Drug Delivery Letters, 2011, 1, 13-23.	0.2	23
86	Development of Novel Zn2+ Loaded Nanoparticles Designed for Cell-Type Targeted Drug Release in CNS Neurons: In Vitro Evidences. PLoS ONE, 2011, 6, e17851.	1.1	46
87	Concerted action of zinc and ProSAP/Shank in synaptogenesis and synapse maturation. EMBO Journal, 2011, 30, 569-581.	3.5	204
88	Postsynaptic ProSAP/Shank scaffolds in the cross-hair of synaptopathies. Trends in Cell Biology, 2011, 21, 594-603.	3.6	238
89	Amyloid beta protein-induced zinc sequestration leads to synaptic loss via dysregulation of the ProSAP2/Shank3 scaffold. Molecular Neurodegeneration, 2011, 6, 65.	4.4	66
90	Brain-Delivery of Zinc-Ions as Potential Treatment for Neurological Diseases: Mini Review. Drug Delivery Letters, 2011, 1, 13-23.	0.2	60

#	Article	IF	CITATIONS
91	Rare Feeding Behavior of Great-Tailed Grackles (Quiscalus mexicanus) in the Extreme Habitat of Death Valley~!2010-01-08~!2010-03-08~!2010-05-21~!. Open Ornithology Journal, 2010, 3, 101-104.	0.4	8
92	Abstract 3480: XIAP inhibitors prime glioblastoma cells for \hat{I}^3 -irradiation-induced apoptosis and circumvent radioresistance of glioblastoma stem cells. , 2010, , .		0
93	Synaptic Cross-talk between N-Methyl-d-aspartate Receptors and LAPSER1-β-Catenin at Excitatory Synapses. Journal of Biological Chemistry, 2009, 284, 29146-29157.	1.6	53
94	Synaptogenesis of hippocampal neurons in primary cell culture. Cell and Tissue Research, 2009, 338, 333-341.	1.5	97
95	Efficient targeting of proteins to post-synaptic densities of excitatory synapses using a novel pSDTarget vector system. Journal of Neuroscience Methods, 2009, 181, 227-234.	1.3	9
96	Small-Molecule XIAP Inhibitors Enhance γ-Irradiation-Induced Apoptosis in Glioblastoma. Neoplasia, 2009, 11, 743-W9.	2.3	98
97	Autism Spectrum Disorders: Etiology and Pathology. , 0, , 1-16.		23
98	The Role of Trace Metals in Alzheimer's Disease. , 0, , 85-106.		7
99	Targeting Metal Homeostasis as a Therapeutic Strategy for Alzheimer's Disease. , 0, , 83-98.		3