Cecilia Mattevi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7183508/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	On-chip integrated graphene aptasensor with portable readout for fast and label-free COVID-19 detection in virus transport medium. Sensors & Diagnostics, 2022, 1, 719-730.	1.9	20
2	Durable Zn-ion hybrid capacitors using 3D printed carbon composites. Journal of Materials Chemistry A, 2022, 10, 15665-15676.	5.2	21
3	Laser―and Ionâ€Induced Defect Engineering in WS 2 Monolayers. Physica Status Solidi - Rapid Research Letters, 2021, 15, 2000466.	1.2	6
4	Direct ink writing of energy materials. Materials Advances, 2021, 2, 540-563.	2.6	120
5	Scalable Sacrificial Templating to Increase Porosity and Platinum Utilisation in Graphene-Based Polymer Electrolyte Fuel Cell Electrodes. Nanomaterials, 2021, 11, 2530.	1.9	3
6	Aqueous Inks of Pristine Graphene for 3D Printed Microsupercapacitors with High Capacitance. ACS Nano, 2021, 15, 15342-15353.	7.3	60
7	Synthesis of emerging 2D layered magnetic materials. Nanoscale, 2021, 13, 2157-2180.	2.8	35
8	Effect of graphene flake size on functionalisation: quantifying reaction extent and imaging locus with single Pt atom tags. Chemical Science, 2021, 12, 14907-14919.	3.7	5
9	Strain Induced Phase Transition of WS2 by Local Dewetting of Au/Mica Film upon Annealing. Surfaces, 2021, 4, 1-8.	1.0	8
10	Pristine Graphene Inks for 3D Printed Supercapacitors with High Capacitance. ECS Meeting Abstracts, 2021, MA2021-02, 1472-1472.	0.0	0
11	3D Printed Symmetric Supercapacitors Based on Aqueous Inks of TMDs. ECS Meeting Abstracts, 2021, MA2021-02, 1463-1463.	0.0	0
12	Electronic structure influences on the formation of the solid electrolyte interphase. Energy and Environmental Science, 2020, 13, 4977-4989.	15.6	36
13	Experimental signature of a topological quantum dot. Nanoscale, 2020, 12, 22817-22825.	2.8	15
14	Direct synthesis of metastable phases of 2D transition metal dichalcogenides. Chemical Society Reviews, 2020, 49, 3952-3980.	18.7	142
15	Toward Nanotechnology-Enabled Approaches against the COVID-19 Pandemic. ACS Nano, 2020, 14, 6383-6406.	7.3	455
16	Thermal Decomposition of Ternary Sodium Graphite Intercalation Compounds. Chemistry - A European Journal, 2020, 26, 6545-6553.	1.7	11
17	Spin-Orbit-Enhanced Robustness of Supercurrent in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mi>Graphene</mml:mi><mml:mo>/</mml:mo><mml:msub><mml:mrow>< losenbeen lunctions. Physical Review Latters, 2020, 125, 266801</mml:mrow></mml:msub></mml:mrow></mml:math 	mmî:mi>W	/S<7/mml:mi>
18	Large-Area CVD MoS ₂ /WS ₂ Heterojunctions as a Photoelectrocatalyst for Salt-Water Oxidation. ACS Applied Energy Materials, 2019, 2, 5877-5882.	2.5	23

CECILIA ΜΑΤΤΕVΙ

#	Article	IF	CITATIONS
19	Fabrication of Grapheneâ€Covered Microâ€Tubes for Process Intensification. Advanced Engineering Materials, 2019, 21, 1900642.	1.6	3
20	Spin-orbit interaction induced in graphene by transition metal dichalcogenides. Physical Review B, 2019, 99, .	1.1	45
21	Direct solution-phase synthesis of 1T' WSe2 nanosheets. Nature Communications, 2019, 10, 712.	5.8	152
22	Band-Structure Spin-Filtering in Vertical Spin Valves Based on Chemical Vapor Deposited WS ₂ . ACS Nano, 2019, 13, 14468-14476.	7.3	44
23	Strong Anisotropic Spin-Orbit Interaction Induced in Graphene by Monolayer <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mrow><mml:mi>WS</mml:mi></mml:mrow><ml:mrow><m Physical Review Letters, 2018, 120, 106802.</m </ml:mrow></mml:mrow></mml:math 	ml: <u>79</u> >2<	/mml:mn>
24	Electronic band structure of Two-Dimensional <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi mathvariant="normal">WS<mml:mn>2</mml:mn></mml:mi </mml:msub> /Graphene van der Waals Heterostructures. Physical Review B, 2018, 97, .</mml:math 	1.1	63
25	Dynamic microstructure of graphene oxide membranes and the permeation flux. Journal of Membrane Science, 2018, 549, 385-392.	4.1	100
26	Thickness-Dependent Characterization of Chemically Exfoliated TiS ₂ Nanosheets. ACS Omega, 2018, 3, 8655-8662.	1.6	60
27	Fast Exfoliation and Functionalisation of Twoâ€Dimensional Crystalline Carbon Nitride by Framework Charging. Angewandte Chemie, 2018, 130, 12838-12842.	1.6	14
28	Fast Exfoliation and Functionalisation of Twoâ€Dimensional Crystalline Carbon Nitride by Framework Charging. Angewandte Chemie - International Edition, 2018, 57, 12656-12660.	7.2	35
29	Tuning the Double Layer of Graphene Oxide through Phosphorus Doping for Enhanced Supercapacitance. ACS Energy Letters, 2017, 2, 1144-1149.	8.8	28
30	MoS ₂ /WS ₂ Heterojunction for Photoelectrochemical Water Oxidation. ACS Catalysis, 2017, 7, 4990-4998.	5.5	189
31	A facile way to produce epoxy nanocomposites having excellent thermal conductivity with low contents of reduced graphene oxide. Journal of Materials Science, 2017, 52, 7323-7344.	1.7	63
32	Role of Charge Traps in the Performance of Atomically Thin Transistors. Advanced Materials, 2017, 29, 1605598.	11.1	46
33	High-Mobility and High-Optical Quality Atomically Thin WS 2. Scientific Reports, 2017, 7, 14911.	1.6	77
34	Free surfaces recast superconductivity in few-monolayer MgB2: Combined first-principles and ARPES demonstration. Scientific Reports, 2017, 7, 14458.	1.6	27
35	Room-temperature growth of colloidal Bi2Te3 nanosheets. Chemical Communications, 2017, 53, 8026-8029.	2.2	10
36	Valenceâ€band electronic structure evolution of graphene oxide upon thermal annealing for opticelectronics. Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 2380-2386	0.8	13

CECILIA MATTEVI

#	Article	IF	CITATIONS
37	In situ thermally reduced graphene oxide/epoxy composites: thermal and mechanical properties. Applied Nanoscience (Switzerland), 2016, 6, 1015-1022.	1.6	75
38	Graphitic Carbon Nitride-Graphene Hybrid Nanostructure as a Catalyst Support for Polymer Electrolyte Membrane Fuel Cells. ECS Transactions, 2016, 75, 885-897.	0.3	8
39	Graphitic Carbon Nitride as a Catalyst Support in Fuel Cells and Electrolyzers. Electrochimica Acta, 2016, 222, 44-57.	2.6	97
40	From bulk crystals to atomically thin layers of group VI-transition metal dichalcogenides vapour phase synthesis. Applied Materials Today, 2016, 3, 11-22.	2.3	70
41	Mesoscale design of multifunctional 3D graphene networks. Materials Today, 2016, 19, 428-436.	8.3	60
42	Amorphous Molybdenum Sulfide on Graphene–Carbon Nanotube Hybrids as Highly Active Hydrogen Evolution Reaction Catalysts. ACS Applied Materials & Interfaces, 2016, 8, 5961-5971.	4.0	121
43	Graphene-Carbon Nanotube Hybrids as Robust Catalyst Supports in Proton Exchange Membrane Fuel Cells. Journal of the Electrochemical Society, 2016, 163, F255-F263.	1.3	40
44	Direct Ink Writing of micrometric SiOC ceramic structures using a preceramic polymer. Journal of the European Ceramic Society, 2016, 36, 1589-1594.	2.8	104
45	Understanding Mechanical Response of Elastomeric Graphene Networks. Scientific Reports, 2015, 5, 13712.	1.6	64
46	UV-Enhanced Sacrificial Layer Stabilised Graphene Oxide Hollow Fibre Membranes for Nanofiltration. Scientific Reports, 2015, 5, 15799.	1.6	53
47	Graphene oxide membranes on ceramic hollow fibers – Microstructural stability and nanofiltration performance. Journal of Membrane Science, 2015, 484, 87-94.	4.1	156
48	TiO2/graphene nanocomposites from the direct reduction of graphene oxide by metal evaporation. Carbon, 2014, 68, 319-329.	5.4	30
49	Mesoscale assembly of chemically modified graphene into complex cellular networks. Nature Communications, 2014, 5, 4328.	5.8	250
50	Spatially resolved electrical characterisation of graphene layers by an evanescent field microwave microscope. Physica E: Low-Dimensional Systems and Nanostructures, 2014, 56, 431-434.	1.3	8
51	Epitaxial Graphene Growth and Shape Dynamics on Copper: Phase-Field Modeling and Experiments. Nano Letters, 2013, 13, 5692-5697.	4.5	142
52	Influence of Cu substrate topography on the growth morphology of chemical vapour deposited graphene. Carbon, 2013, 65, 7-12.	5.4	14
53	Optoelectronic properties of graphene thin films deposited by a Langmuir–Blodgett assembly. Nanoscale, 2013, 5, 12365.	2.8	44
54	Probing the dielectric response of graphene via dual-band plasmonic nanoresonators. Physical Chemistry Chemical Physics, 2013, 15, 5395.	1.3	10

CECILIA ΜΑΤΤΕVΙ

#	Article	IF	CITATIONS
55	Modeling of the self-limited growth in catalytic chemical vapor deposition of graphene. New Journal of Physics, 2013, 15, 053012.	1.2	40
56	Low-voltage graphene transistors based on self-assembled monolayer nanodielectrics. Materials Research Society Symposia Proceedings, 2012, 1451, 179-184.	0.1	0
57	Plasma-Assisted Reduction of Graphene Oxide at Low Temperature and Atmospheric Pressure for Flexible Conductor Applications. Journal of Physical Chemistry Letters, 2012, 3, 772-777.	2.1	122
58	Solution-processable organic dielectrics for graphene electronics. Nanotechnology, 2012, 23, 344017.	1.3	33
59	Activation Energy Paths for Graphene Nucleation and Growth on Cu. ACS Nano, 2012, 6, 3614-3623.	7.3	370
60	Microwave surface impedance measurements on reduced graphene oxide. Nanotechnology, 2012, 23, 285706.	1.3	13
61	A review of chemical vapour deposition of graphene on copper. Journal of Materials Chemistry, 2011, 21, 3324-3334.	6.7	1,239
62	The Role of Oxygen during Thermal Reduction of Graphene Oxide Studied by Infrared Absorption Spectroscopy. Journal of Physical Chemistry C, 2011, 115, 19761-19781.	1.5	776
63	Partially oxidized graphene as a precursor to graphene. Journal of Materials Chemistry, 2011, 21, 11217.	6.7	76
64	Blue Photoluminescence from Chemically Derived Graphene Oxide. Advanced Materials, 2010, 22, 505-509.	11.1	1,824
65	Structural evolution during the reduction of chemically derived graphene oxide. Nature Chemistry, 2010, 2, 581-587.	6.6	1,573
66	Unusual infrared-absorption mechanism in thermally reduced graphene oxide. Nature Materials, 2010, 9, 840-845.	13.3	724
67	Highly Uniform 300 mm Wafer-Scale Deposition of Single and Multilayered Chemically Derived Graphene Thin Films. ACS Nano, 2010, 4, 524-528.	7.3	209
68	The Role of Intercalated Water in Multilayered Graphene Oxide. ACS Nano, 2010, 4, 5861-5868.	7.3	359
69	Plasma restructuring of catalysts for chemical vapor deposition of carbon nanotubes. Journal of Applied Physics, 2009, 105, 064304.	1.1	22
70	Evolution of Electrical, Chemical, and Structural Properties of Transparent and Conducting Chemically Derived Graphene Thin Films. Advanced Functional Materials, 2009, 19, 2577-2583.	7.8	1,603
71	Atomic and Electronic Structure of Graphene-Oxide. Nano Letters, 2009, 9, 1058-1063.	4.5	1,043
72	Insulator to Semimetal Transition in Graphene Oxide. Journal of Physical Chemistry C, 2009, 113, 15768-15771.	1.5	577

5

CECILIA ΜΑΤΤΕVΙ

#	Article	IF	CITATIONS
73	Large area deposition of graphene thin films by Langmuir-Blodgett assembly and their optoelectronic properties. , 2009, , .		1
74	Surface-bound chemical vapour deposition of carbon nanotubes: In situ study of catalyst activation. Physica E: Low-Dimensional Systems and Nanostructures, 2008, 40, 2238-2242.	1.3	16
75	In-situ X-ray Photoelectron Spectroscopy Study of Catalystâ	1.5	240
76	Controlling the Catalyst During Carbon Nanotube Growth. Journal of Nanoscience and Nanotechnology, 2008, 8, 6105-6111.	0.9	12
77	In situ Observations of Catalyst Dynamics during Surface-Bound Carbon Nanotube Nucleation. Nano Letters, 2007, 7, 602-608.	4.5	662
78	Effect of substrate surface defects on the morphology of Fe film deposited on graphite. Surface Science, 2007, 601, 188-192.	0.8	38
79	Determination of lattice parameter and of N lattice location in InxGa1â^'xNyAs1â^'y/GaAs and GaNyAs1â^'y/GaAs epilavers. Journal of Applied Physics, 2004, 95, 48-56.	1.1	28