
Eleni K Douni

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7183246/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Proteomic Identification of the SLC25A46 Interactome in Transgenic Mice Expressing SLC25A46-FLAG. Journal of Proteome Research, 2022, 21, 375-394.	1.8	4
2	Dexamethasone Administration in Mice Leads to Less Body Weight Gain over Time, Lower Serum Glucose, and Higher Insulin Levels Independently of NRF2. Antioxidants, 2022, 11, 4.	2.2	9
3	The effect of foaming process with supercritical <scp>CO₂</scp> on the morphology and properties of <scp>3D</scp> porous polylactic acid scaffolds. Polymer Engineering and Science, 2022, 62, 2459-2475.	1.5	2
4	Perspective of the GEMSTONE Consortium on Current and Future Approaches to Functional Validation for Skeletal Genetic Disease Using Cellular, Molecular and Animal-Modeling Techniques. Frontiers in Endocrinology, 2021, 12, 731217.	1.5	12
5	Discovery of Small-Molecule Inhibitors of Receptor Activator of Nuclear Factor-κB Ligand with a Superior Therapeutic Index. Journal of Medicinal Chemistry, 2020, 63, 12043-12059.	2.9	6
6	Reporting Guidelines, Review of Methodological Standards, and Challenges Toward Harmonization in Bone Marrow Adiposity Research. Report of the Methodologies Working Group of the International Bone Marrow Adiposity Society. Frontiers in Endocrinology, 2020, 11, 65.	1.5	53
7	RANKL-Induced Increase in Cathepsin K Levels Restricts Cortical Expansion in a Periostin-Dependent Fashion: A Potential New Mechanism of Bone Fragility. Journal of Bone and Mineral Research, 2020, 36, 1636-1645.	3.1	8
8	Transgenic Mice Carrying GLUD2 as a Tool for Studying the Expressional and the Functional Adaptation of this Positive Selected Gene in Human Brain Evolution. Neurochemical Research, 2019, 44, 154-169.	1.6	7
9	Mapping Interactome Networks of DNAJC11, a Novel Mitochondrial Protein Causing Neuromuscular Pathology in Mice. Journal of Proteome Research, 2019, 18, 3896-3912.	1.8	6
10	Irisin: good or bad for the bone? A new path forward after the reported discovery of irisin receptor?. Metabolism: Clinical and Experimental, 2019, 93, 100-102.	1.5	11
11	New Insights for RANKL as a Proinflammatory Modulator in Modeled Inflammatory Arthritis. Frontiers in Immunology, 2019, 10, 97.	2.2	34
12	RANKL inhibition improves muscle strength and insulin sensitivity and restores bone mass. Journal of Clinical Investigation, 2019, 129, 3214-3223.	3.9	182
13	Molecular Interaction of BMAT with Bone. Current Molecular Biology Reports, 2018, 4, 34-40.	0.8	1
14	In Silico Discovery of Plant-Origin Natural Product Inhibitors of Tumor Necrosis Factor (TNF) and Receptor Activator of NF-κB Ligand (RANKL). Frontiers in Pharmacology, 2018, 9, 800.	1.6	17
15	Current Status and Future Prospects of Small–molecule Protein–protein Interaction (PPI) Inhibitors of Tumor Necrosis Factor (TNF) and Receptor Activator of NF-κB Ligand (RANKL). Current Topics in Medicinal Chemistry, 2018, 18, 661-673.	1.0	13
16	Novel insights into SLC25A46-related pathologies in a genetic mouse model. PLoS Genetics, 2017, 13, e1006656.	1.5	35
17	Cheminformatics-aided discovery of small-molecule Protein-Protein Interaction (PPI) dual inhibitors of Tumor Necrosis Factor (TNF) and Receptor Activator of NF-κB Ligand (RANKL). PLoS Computational Biology, 2017, 13, e1005372.	1.5	49
18	Simultaneous inhibition of JAK and SYK kinases ameliorates chronic and destructive arthritis in mice. Arthritis Research and Therapy, 2015, 17, 356.	1.6	21

Eleni K Douni

#	Article	IF	CITATIONS
19	Synthesis and biological evaluation of potential small moleculeinhibitors of tumor necrosis factor. MedChemComm, 2015, 6, 1196-1209.	3.5	12
20	The unbearable lightness of bone marrow homeostasis. Cytokine and Growth Factor Reviews, 2015, 26, 347-359.	3.2	26
21	A Splicing Mutation in the Novel Mitochondrial Protein DNAJC11 Causes Motor Neuron Pathology Associated with Cristae Disorganization, and Lymphoid Abnormalities in Mice. PLoS ONE, 2014, 9, e104237.	1.1	42
22	Novel Genetic Models of Osteoporosis by Overexpression of Human RANKL in Transgenic Mice. Journal of Bone and Mineral Research, 2014, 29, 1158-1169.	3.1	61
23	Rationally Designed Less Toxic SPDâ€304 Analogs and Preliminary Evaluation of Their TNF Inhibitory Effects. Archiv Der Pharmazie, 2014, 347, 798-805.	2.1	26
24	2,2′-Dihydroxybenzophenones and their carbonyl N-analogues as inhibitor scaffolds for MDR-involved human glutathione transferase isoenzyme A1-1. Bioorganic and Medicinal Chemistry, 2014, 22, 3957-3970.	1.4	20
25	Designer Xanthone: An Inhibitor Scaffold for MDR-Involved Human Glutathione Transferase Isoenzyme A1-1. Journal of Biomolecular Screening, 2013, 18, 1092-1102.	2.6	8
26	A statistical approach for optimization of RANKL overexpression in Escherichia coli: Purification and characterization of the protein. Protein Expression and Purification, 2013, 90, 9-19.	0.6	30
27	Solvent Selection for Insoluble Ligands, a Challenge for Biological Assay Development: A TNF-α/SPD304 Study. ACS Medicinal Chemistry Letters, 2013, 4, 137-141.	1.3	28
28	FELASA guidelines for the refinement of methods for genotyping genetically-modified rodents. Laboratory Animals, 2013, 47, 134-145.	0.5	32
29	A RANKL G278R mutation causing osteopetrosis identifies a functional amino acid essential for trimer assembly in RANKL and TNF. Human Molecular Genetics, 2012, 21, 784-798.	1.4	55
30	Suppressive effect of secretory phospholipase A2 inhibitory peptide on interleukin-1β-induced matrix metalloproteinase production in rheumatoid synovial fibroblasts, and its antiarthritic activity in hTNFtg mice. Arthritis Research and Therapy, 2009, 11, R138.	1.6	16
31	Functional Genetic and Genomic Analysis of Modeled Arthritis. Advances in Experimental Medicine and Biology, 2007, 602, 33-42.	0.8	1
32	Transmembrane TNF protects mutant mice against intracellular bacterial infections, chronic inflammation and autoimmunity. European Journal of Immunology, 2006, 36, 2768-2780.	1.6	116
33	Genetic Engineering in the Mouse: Tuning TNF/TNFR Expression. , 2004, 98, 137-170.		7
34	Effect of phospholipase A2 inhibitory peptide on inflammatory arthritis in a TNF transgenic mouse model: a time-course ultrastructural study. Arthritis Research, 2004, 6, R282.	2.0	35
35	Attenuation of inflammatory polyarthritis in TNF transgenic mice by diacerein: comparative analysis with dexamethasone, methotrexate and anti-TNF protocols. Arthritis Research, 2004, 6, R65.	2.0	56
36	Exclusive tumor necrosis factor (TNF) signaling by the p75TNF receptor triggers inflammatory ischemia in the CNS of transgenic mice. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 709-714.	3.3	94

Eleni K Douni

#	Article	IF	CITATIONS
37	Tumor necrosis factor-receptor 2 is up-regulated on lamina propria T cells in Crohn's disease and promotes experimental colitis in vivo. European Journal of Immunology, 2002, 32, 3142-3151.	1.6	75
38	The Role of TNF/TNFR in Organ-Specific and Systemic Autoimmunity: Implications for the Design of Optimized 'Anti-TNF� Therapies. , 2001, 5, 30-50.		35
39	On the role of tumor necrosis factor and receptors in models of multiorgan failure, rheumatoid arthritis, multiple sclerosis and inflammatory bowel disease. Immunological Reviews, 1999, 169, 175-194.	2.8	244
40	A Critical Role of the p75 Tumor Necrosis Factor Receptor (p75TNF-R) in Organ Inflammation Independent of  TNF, Lymphotoxin α, or the p55TNF-R. Journal of Experimental Medicine, 1998, 188, 1343-1352.	4.2	121
41	In vivo evidence for a functional role of both tumor necrosis factor (TNF) receptors and transmembrane TNF in experimental hepatitis. European Journal of Immunology, 1997, 27, 2870-2875.	1.6	177
42	The Role of Tumour Necrosis Factor in Lymphoid Tissue Formation and Function. , 1997, , 11-17.		0
43	Tumour necrosis factors in immune regulation: Everything that's interesting is … New!. Cytokine and Growth Factor Reviews, 1996, 7, 223-229.	3.2	50
44	Dissection of the pathologies induced by transmembrane and wild-type tumor necrosis factor in transgenic mice. Journal of Leukocyte Biology, 1996, 59, 518-525.	1.5	41
45	The transmembrane form of tumor necrosis factor is the prime activating ligand of the 80 kDa tumor necrosis factor receptor. Cell, 1995, 83, 793-802.	13.5	1,225