
Antonio Marcilla

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7183034/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. Journal of Extracellular Vesicles, 2018, 7, 1535750.	5.5	6,961
2	Biological properties of extracellular vesicles and their physiological functions. Journal of Extracellular Vesicles, 2015, 4, 27066.	5.5	3,973
3	Vesiclepedia: A Compendium for Extracellular Vesicles with Continuous Community Annotation. PLoS Biology, 2012, 10, e1001450.	2.6	1,064
4	Applying extracellular vesicles based therapeutics in clinical trials – an ISEV position paper. Journal of Extracellular Vesicles, 2015, 4, 30087.	5.5	1,020
5	Evidence-Based Clinical Use of Nanoscale Extracellular Vesicles in Nanomedicine. ACS Nano, 2016, 10, 3886-3899.	7.3	397
6	EVpedia: a community web portal for extracellular vesicles research. Bioinformatics, 2015, 31, 933-939.	1.8	317
7	Extracellular Vesicles from Parasitic Helminths Contain Specific Excretory/Secretory Proteins and Are Internalized in Intestinal Host Cells. PLoS ONE, 2012, 7, e45974.	1.1	300
8	Extracellular vesicles in parasitic diseases. Journal of Extracellular Vesicles, 2014, 3, 25040.	5.5	205
9	Hsa-miR-30d, secreted by the human endometrium, is taken up by the pre-implantation embryo and might modify its transcriptome. Development (Cambridge), 2015, 142, 3210-3221.	1.2	205
10	The Extracellular Vesicles of the Helminth Pathogen, Fasciola hepatica: Biogenesis Pathways and Cargo Molecules Involved in Parasite Pathogenesis*. Molecular and Cellular Proteomics, 2015, 14, 3258-3273.	2.5	194
11	The ITS-2 of the Nuclear rDNA as a Molecular Marker for Populations, Species, and Phylogenetic Relationships in Triatominae (Hemiptera: Reduviidae), Vectors of Chagas Disease. Molecular Phylogenetics and Evolution, 2001, 18, 136-142.	1.2	160
12	Exosome levels in human body fluids: A tumor marker by themselves?. European Journal of Pharmaceutical Sciences, 2017, 96, 93-98.	1.9	148
13	A PCR-RFLP assay for the distinction between Fasciola hepatica and Fasciola gigantica. Molecular and Cellular Probes, 2002, 16, 327-333.	0.9	133
14	Identification of enolase as a plasminogen-binding protein in excretory-secretory products of Fasciola hepatica. FEBS Letters, 2004, 563, 203-206.	1.3	128
15	Origin and phylogeography of the Chagas disease main vector Triatoma infestans based on nuclear rDNA sequences and genome size. Infection, Genetics and Evolution, 2006, 6, 46-62.	1.0	116
16	Identification of the Major Tyrosine Kinase Substrate in Signaling Complexes Formed after Engagement of Fcγ Receptors. Journal of Biological Chemistry, 1995, 270, 9115-9120.	1.6	110
17	Exploration of extracellular vesicles from <i>Ascaris suum</i> provides evidence of parasite–host cross talk. Journal of Extracellular Vesicles, 2019, 8, 1578116.	5.5	103
18	Surface analysis of Dicrocoelium dendriticum. The molecular characterization of exosomes reveals the presence of miRNAs. Journal of Proteomics, 2014, 105, 232-241.	1.2	99

ANTONIO MARCILLA

#	Article	IF	CITATIONS
19	High risk of bacterobilia in advanced experimental chronic fasciolosis. Acta Tropica, 2006, 100, 17-23.	0.9	77
20	The future of Extracellular Vesicles as Theranostics – an ISEV meeting report. Journal of Extracellular Vesicles, 2020, 9, 1809766.	5.5	77
21	Extracellular vesicles in food: Experimental evidence of their secretion in grape fruits. European Journal of Pharmaceutical Sciences, 2017, 98, 40-50.	1.9	74
22	Nuclear rDNA ITS-2 sequences reveal polyphyly of Panstrongylus species (Hemiptera: Reduviidae:) Tj ETQq0 0 C) rgBT_/Ove	rlock 10 Tf 50 73
23	The Role of Extracellular Vesicles in Modulating the Host Immune Response during Parasitic Infections. Frontiers in Immunology, 2014, 5, 433.	2.2	73
24	The protein and microRNA cargo of extracellular vesicles from parasitic helminths – current status and research priorities. International Journal for Parasitology, 2020, 50, 635-645.	1.3	73
25	Microvesicles released from Giardia intestinalis disturb host-pathogen response in vitro. European Journal of Cell Biology, 2017, 96, 131-142.	1.6	72
26	Cestode parasites release extracellular vesicles with microRNAs and immunodiagnostic protein cargo. International Journal for Parasitology, 2017, 47, 675-686.	1.3	69
27	The revised microRNA complement of Fasciola hepatica reveals a plethora of overlooked microRNAs and evidence for enrichment of immuno-regulatory microRNAs in extracellular vesicles. International Journal for Parasitology, 2015, 45, 697-702.	1.3	64
28	Candida albicans mycelial wall structure: supramolecular complexes released by Zymolyase, chitinase and ?-mercaptoethanol. Archives of Microbiology, 1991, 155, 312-9.	1.0	60
29	On the presence and immunoregulatory functions of extracellular micro <scp>RNA</scp> s in the trematode <i>Fasciola hepatica</i> . Parasite Immunology, 2017, 39, e12399.	0.7	59
30	Plasma-derived extracellular vesicles from Plasmodium vivax patients signal spleen fibroblasts via NF-kB facilitating parasite cytoadherence. Nature Communications, 2020, 11, 2761.	5.8	56
31	Leucine Aminopeptidase Is an Immunodominant Antigen of <i>Fasciola hepatica</i> Excretory and Secretory Products in Human Infections. Vaccine Journal, 2008, 15, 95-100.	3.2	55
32	ldentification of antigenic proteins from <i>Echinostoma caproni </i> (Trematoda) recognized by mouse immunoglobulins M, A and G using an immunoproteomic approach. Parasite Immunology, 2008, 30, 271-279.	0.7	53
33	Subcutaneous injection of exosomes reduces symptom severity and mortality induced by Echinostoma caproni infection in BALB/c mice. International Journal for Parasitology, 2016, 46, 799-808.	1.3	50
34	Extracellular Vesicles From the Helminth Fasciola hepatica Prevent DSS-Induced Acute Ulcerative Colitis in a T-Lymphocyte Independent Mode. Frontiers in Microbiology, 2018, 9, 1036.	1.5	48
35	Identification of proteins in excretory/secretory extracts ofEchinostoma friedi (Trematoda) from chronic and acute infections. Proteomics, 2006, 6, 2835-2843.	1.3	46
36	Excretory/secretory proteome of the adult stage of Echinostoma caproni. Parasitology Research, 2010, 107, 691-697.	0.6	46

#	Article	IF	CITATIONS
37	DEVELOPMENT AND PATHOLOGY OF ECHINOSTOMA CAPRONI IN EXPERIMENTALLY INFECTED MICE. Journal of Parasitology, 2007, 93, 854-859.	0.3	45
38	Echinostoma caproni: Intestinal pathology in the golden hamster, a highly compatible host, and the Wistar rat, a less compatible host. Experimental Parasitology, 2006, 112, 164-171.	0.5	42
39	Echinostoma caproni: Identification of enolase in excretory/secretory products, molecular cloning, and functional expression. Experimental Parasitology, 2007, 117, 57-64.	0.5	41
40	Highlights of the São Paulo ISEV workshop on extracellular vesicles in crossâ€kingdom communication. Journal of Extracellular Vesicles, 2017, 6, 1407213.	5.5	38
41	Triatomine vectors of Trypanosoma cruzi: a molecular perspective based on nuclear ribosomal DNA markers. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2002, 96, S159-S164.	0.7	37
42	Proteomics of foodborne trematodes. Journal of Proteomics, 2011, 74, 1485-1503.	1.2	37
43	Echinostoma caproni (Trematoda): Differential in vivo cytokine responses in high and low compatible hosts. Experimental Parasitology, 2011, 127, 387-397.	0.5	36
44	Monoclonal antibody 3H8: a useful tool in the diagnosis of candidiasis. Microbiology (United) Tj ETQq0 0 0 rgBT	/Oyerlock	10 Tf 50 462
45	Critical steps in fungal cell wall synthesis: Strategies for their inhibition. , 1993, 60, 337-345.		34

46	Wall formation by Candida albicans yeast cells: synthesis, secretion and incorporation of two types of mannoproteins. Journal of General Microbiology, 1993, 139, 2985-2993.	2.3	34
47	Echinostoma caproni: Kinetics of IgM, IgA and IgG subclasses in the serum and intestine of experimentally infected rats and mice. Experimental Parasitology, 2007, 116, 390-398.	0.5	31
48	Proteomic analysis of <i>Strongyloides stercoralis</i> L3 larvae. Parasitology, 2010, 137, 1577-1583.	0.7	30
49	The Transcriptome Analysis of Strongyloides stercoralis L3i Larvae Reveals Targets for Intervention in a Neglected Disease. PLoS Neglected Tropical Diseases, 2012, 6, e1513.	1.3	29
50	Th17 responses in Echinostoma caproni infections in hosts of high and low compatibility. Experimental Parasitology, 2011, 129, 307-311.	0.5	28
51	KINETICS OF ECHINOSTOMA CAPRONI (TREMATODA: ECHINOSTOMATIDAE) ANTIGENS IN FECES AND SERUM OF EXPERIMENTALLY INFECTED HAMSTERS AND RATS. Journal of Parasitology, 2004, 90, 752-758.	0.3	27
52	DEVELOPMENT OF AN ANTIBODY-BASED CAPTURE ENZYME-LINKED IMMUNOSORBENT ASSAY FOR DETECTING ECHINOSTOMA CAPRONI (TREMATODA) IN EXPERIMENTALLY INFECTED RATS: KINETICS OF COPROANTIGEN EXCRETION. Journal of Parasitology, 2003, 89, 1227-1231.	0.3	26
53	Kinetics of Antibodies and Antigens in Serum of Mice Experimentally Infected with Echinostoma caproni (Trematoda: Echinostomatidae). Journal of Parasitology, 2005, 91, 978-980.	0.3	25
54	Transcytosis of Bacillus subtilis extracellular vesicles through an in vitro intestinal epithelial cell model. Scientific Reports, 2020, 10, 3120.	1.6	24

ANTONIO MARCILLA

#	Article	IF	CITATIONS
55	Incorporation of specific wall proteins during yeast and mycelial protoplast regeneration in Candida albicans. Archives of Microbiology, 1994, 161, 145-151.	1.0	21
56	Specific Immunohistochemical Identification of <i>Candida albicans</i> in Paraffin-embedded Tissue With a New Monoclonal Antibody (1B12). American Journal of Clinical Pathology, 1995, 103, 130-135.	0.4	21
57	Prevalence and risk factors related to intestinal parasites among children in Department of Rio San Juan, Nicaragua. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2014, 108, 774-782.	0.7	21
58	Diversity of extracellular vesicles from different developmental stages of Fasciola hepatica. International Journal for Parasitology, 2020, 50, 663-669.	1.3	20
59	Molecular cloning and characterization of <i>Echinostoma caproni</i> heat shock protein-70 and differential expression in the parasite derived from low- and high-compatible hosts. Parasitology, 2008, 135, 1469-1477.	0.7	19
60	The transcriptome of Echinostoma caproni adults: Further characterization of the secretome and identification of new potential drug targets. Journal of Proteomics, 2013, 89, 202-214.	1.2	19
61	Overview of the interaction of helminth extracellular vesicles with the host and their potential functions and biological applications. Molecular Immunology, 2021, 134, 228-235.	1.0	19
62	Extracellular non-coding RNA signatures of the metacestode stage of Echinococcus multilocularis. PLoS Neglected Tropical Diseases, 2020, 14, e0008890.	1.3	16
63	Screening trematodes for novel intervention targets: a proteomic and immunological comparison of Schistosoma haematobium, Schistosoma bovis and Echinostoma caproni. Parasitology, 2011, 138, 1607-1619.	0.7	12
64	Protective immunity against Echinostoma caproni in rats is induced by Syphacia muris infection. International Journal for Parasitology, 2013, 43, 453-463.	1.3	12
65	A Candida albicans 37 kDa polypeptide with homology to the laminin receptor is a component of the translational machinery. Microbiology (United Kingdom), 1998, 144, 839-847.	0.7	12
66	Incorporation of specific wall proteins during yeast and mycelial protoplast regeneration in. Archives of Microbiology, 1994, 161, 145.	1.0	12
67	Echinostoma caproni: Differential tegumental responses to growth in compatible and less compatible hosts. Experimental Parasitology, 2010, 125, 304-309.	0.5	11
68	Proteomic analysis of the pinworm Syphacia muris (Nematoda: Oxyuridae), a parasite of laboratory rats. Parasitology International, 2012, 61, 561-564.	0.6	9
69	Proteomic Analysis of Extracellular Vesicles From Fasciola hepatica Hatching Eggs and Juveniles in Culture. Frontiers in Cellular and Infection Microbiology, 2022, 12, .	1.8	9
70	Isolation and characterization of urine microvesicles from prostate cancer patients: different approaches, different visions. BMC Urology, 2021, 21, 137.	0.6	8
71	Specific tyrosine phosphorylation in response to bile in Fasciola hepatica and Echinostoma friedi. Experimental Parasitology, 2004, 106, 56-58.	0.5	7
72	First ultrastructural data on the human tapeworm Taenia asiatica eggs by scanning and transmission electron microscopy (SEM, TEM). Parasitology Research, 2016, 115, 3649-3655.	0.6	7

#	Article	IF	CITATIONS
73	Reprint of "EXOSOME LEVELS IN HUMAN BODY FLUIDS: A TUMOR MARKER BY THEMSELVES?― European Journal of Pharmaceutical Sciences, 2017, 98, 64-69.	1.9	7
74	Trichuris trichiura egg extract proteome reveals potential diagnostic targets and immunomodulators. PLoS Neglected Tropical Diseases, 2021, 15, e0009221.	1.3	7
75	Molecular Profile Study of Extracellular Vesicles for the Identification of Useful Small "Hit―in Cancer Diagnosis. Applied Sciences (Switzerland), 2021, 11, 10787.	1.3	6
76	Echinostomes: genomics and proteomics. , 2009, , 207-228.		5
77	Morphological and molecular characterization of Paragonimus caliensis Little, 1968 (Trematoda:) Tj ETQq1 1 0.7	84314 rgB	T <u>/</u> Overlock
78	Pathogens and extracellular vesicles: New paths and challenges to understanding and treating diseases. Editorial opinion. Molecular Immunology, 2021, 139, 155-156.	1.0	5
79	Zygocotyle lunata: Proteomic analysis of the adult stage. Experimental Parasitology, 2011, 128, 133-137.	0.5	4
80	Preparation of Anti-protein and Anti-mannan Antisera against Fungal Cell Wall by Affinity Chromatography. Experimental Mycology, 1994, 18, 159-167.	1.8	2
81	Isolation and Analysis of Fasciola hepatica Extracellular Vesicles. Methods in Molecular Biology, 2020, 2137, 37-50.	0.4	2
82	Cloning and characterization of the phenylalanyl-tRNA synthetase β subunit gene fromCandida albicans. FEMS Microbiology Letters, 1998, 161, 179-185.	0.7	1
83	Analysis of the Tegument of <i>Zygocotyle lunata</i> (Trematoda: Paramphistomidae) Adults by Scanning Electron Microscopy. Journal of Parasitology, 2012, 98, 1287-1290.	0.3	1
84	Cellular immune responses in Echinostoma caproni experimentally infected mice. Parasitology Research, 2012, 110, 1033-1036.	0.6	1
85	First Symposium of "Grupo Español de Investigación en VesÃculas Extracelulares (GEIVEX)â€; Segovia, 8–9ÂNovember 2012. Journal of Extracellular Vesicles, 2013, 2, 20256.	5.5	1
86	Numerical analysis of whole-cell and cell wall proteins' profiles of human oral cavity Candida isolates. African Journal of Microbiology Research, 2012, 6, .	0.4	0