
Isabel SÃ;nchez-Alonso

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7182681/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	New applications of fibres in foods: Addition to fishery products. Trends in Food Science and Technology, 2005, 16, 458-465.	15.1	160
2	Estimation of freezing storage time and quality changes in hake (Merluccius merluccius, L.) by low field NMR. Food Chemistry, 2012, 135, 1626-1634.	8.2	135
3	Effect of grape antioxidant dietary fibre on the prevention of lipid oxidation in minced fish: Evaluation by different methodologies. Food Chemistry, 2007, 101, 372-378.	8.2	133
4	Low field nuclear magnetic resonance (LF-NMR) relaxometry in hake (Merluccius merluccius, L.) muscle after different freezing and storage conditions. Food Chemistry, 2014, 153, 250-257.	8.2	126
5	Protein and water structural changes in fish surimi during gelation as revealed by isotopic H/D exchange and Raman spectroscopy. Food Chemistry, 2008, 106, 56-64.	8.2	125
6	Antioxidant protection of white grape pomace on restructured fish products during frozen storage. LWT - Food Science and Technology, 2008, 41, 42-50.	5.2	82
7	Hydroxytyrosol Prevents Oxidative Deterioration in Foodstuffs Rich in Fish Lipids. Journal of Agricultural and Food Chemistry, 2008, 56, 3334-3340.	5.2	72
8	Wheat fiber as a functional ingredient in restructured fish products. Food Chemistry, 2007, 100, 1037-1043.	8.2	66
9	First Processing Steps and the Quality of Wild and Farmed Fish. Journal of Food Science, 2011, 76, R1-5.	3.1	56
10	Vibrational spectroscopic analysis of hake (Merluccius merluccius L.) lipids during frozen storage. Food Chemistry, 2012, 132, 160-167.	8.2	51
11	Technological effect of red grape antioxidant dietary fibre added to minced fish muscle. International Journal of Food Science and Technology, 2008, 43, 1009-1018.	2.7	48
12	Method for producing a functional protein concentrate from giant squid (Dosidicus gigas) muscle. Food Chemistry, 2007, 100, 48-54.	8.2	46
13	Technological implications of addition of wheat dietary fibre to giant squid (Dosidicus gigas) surimi gels. Journal of Food Engineering, 2007, 81, 404-411.	5.2	43
14	Estimation of frozen storage time or temperature by kinetic modeling of the Kramer shear resistance and water holding capacity (WHC) of hake (Merluccius merluccius, L.) muscle. Journal of Food Engineering, 2014, 120, 37-43.	5.2	36
15	Effect of wheat fibre in frozen stored fish muscular gels. European Food Research and Technology, 2006, 223, 571-576.	3.3	32
16	New Alternatives in Seafood Restructured Products. Critical Reviews in Food Science and Nutrition, 2016, 56, 237-248.	10.3	32
17	Physical Study of Minced Fish Muscle with a White-Grape By-Product Added as an Ingredient. Journal of Food Science, 2007, 72, E94-E101.	3.1	31
18	Inhibition of Hemoglobin-Mediated Oxidation of Regular and Lipid-Fortified Washed Cod Mince by a White Grape Dietary Fiber. Journal of Agricultural and Food Chemistry, 2007, 55, 5299-5305.	5.2	30

1

#	Article	IF	CITATIONS
19	Low-Field Nuclear Magnetic Resonance of Proton (1H LF NMR) Relaxometry for Monitoring the Time and Temperature History of Frozen Hake (Merluccius merluccius L.) Muscle. Food and Bioprocess Technology, 2015, 8, 2137-2145.	4.7	30
20	Testing caffeic acid as a natural antioxidant in functional fish-fibre restructured products. LWT - Food Science and Technology, 2011, 44, 1149-1155.	5.2	25
21	Pathogenic potential of Anisakis L3 after freezing in domestic freezers. Food Control, 2018, 84, 61-69.	5.5	24
22	LF 1H NMR T2 relaxation rate as affected by water addition, NaCl and pH in fresh, frozen and cooked minced hake. Food Chemistry, 2019, 277, 229-237.	8.2	17
23	Monitoring the Time and Temperature History of Frozen Hake (Merluccius merluccius, L.) Muscle by FTIR Spectroscopy of the Lipid Fraction. Food and Bioprocess Technology, 2015, 8, 112-119.	4.7	11
24	Anisakis simplex products impair intestinal epithelial barrier function and occludin and zonula occludens-1 localisation in differentiated Caco-2 cells. PLoS Neglected Tropical Diseases, 2020, 14, e0008462.	3.0	11
25	Protein Signatures to Trace Seafood Contamination and Processing. Foods, 2020, 9, 1751.	4.3	8
26	Freezing kinetic parameters influence allergenic and infective potential of Anisakis simplex L3 present in fish muscle. Food Control, 2020, 118, 107373.	5.5	8
27	Immunoreactive Proteins in the Esophageal Gland Cells of Anisakis Simplex Sensu Stricto Detected by MALDI-TOF/TOF Analysis. Genes, 2020, 11, 683.	2.4	8
28	Respiratory analysis as a tool to detect physiological changes in Anisakis larvae subjected to stress. Parasitology Research, 2019, 118, 1127-1135.	1.6	5
29	Developing functional seafood products. , 2008, , 331-362.		4
30	Metagenomics Analysis Reveals an Extraordinary Inner Bacterial Diversity in Anisakids (Nematoda:) Tj ETQq0 0 0	rgBT/Ove	erloçk 10 Tf 50
31	Thermal patterns of heat treated Anisakis L3-infected fishery products allow separation into low, intermediate and high risk groups of potential use in risk management. Food Control, 2021, 124, 107837.	5.5	3
32	Calculation of full process freezing time in minced fish muscle. MethodsX, 2021, 8, 101292.	1.6	3
33	Fibre-enriched seafood. , 2013, , 348-368.		2
34	Quantitative Proteomics Comparison of Total Expressed Proteomes of Anisakis simplex Sensu Stricto, A. pegreffii, and Their Hybrid Genotype. Genes, 2020, 11, 913.	2.4	2
35	The artificial digestion method underestimates the viability of Anisakis simplex (s.l.) L3 present in processed fish products. Food and Waterborne Parasitology, 2021, 23, e00121.	2.7	2

Anisakis simplex (s.l.) resistance to the action of gastric enzymes depends upon previous treatments applied to infected fish mince and affects antigen release. Journal of the Science of Food and Agriculture, 2021, 101, 3908-3916.	3.5
--	-----

#	Article	IF	CITATIONS
37	Instrumental Texture. , 2010, , 229-241.		1
38	Estimation of Quality in Frozen Fish by Low Field NMR. , 2017, , 1-16.		1
39	Evaluation of the effects of weak oscillating magnetic fields applied during freezing on systems of different complexity. International Journal of Food Engineering, 2020, 16, .	1.5	1
40	Estimation of Quality in Frozen Fish by Low Field NMR. , 2018, , 1901-1916.		0