List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7182235/publications.pdf Version: 2024-02-01

	126858	206029
3,238	33	48
citations	h-index	g-index
132	132	3244
docs citations	times ranked	citing authors
	3,238 citations 132 docs citations	3,238 33 citations h-index 132 132 docs citations 132 times ranked

#	Article	IF	CITATIONS
1	Discovery of Neuroprotective Agents Based on a 5-(4-Pyridinyl)-1,2,4-triazole Scaffold. ACS Chemical Neuroscience, 2022, 13, 581-586.	1.7	9
2	Synthesis and biological evaluation of sulfonamideâ€based compounds as inhibitors of carbonic anhydrase from <i>Vibrio cholerae</i> . Archiv Der Pharmazie, 2022, 355, .	2.1	3
3	In Silico Identification of Potential Druggable Binding Sites on CIN85 SH3 Domain. International Journal of Molecular Sciences, 2021, 22, 534.	1.8	4
4	Exploring Molecular Contacts of MUC1 at CIN85 Binding Interface to Address Future Drug Design Efforts. International Journal of Molecular Sciences, 2021, 22, 2208.	1.8	1
5	In Silico Strategy for Targeting the mTOR Kinase at Rapamycin Binding Site by Small Molecules. Molecules, 2021, 26, 1103.	1.7	9
6	Evaluation of 4â€(4â€Fluorobenzyl)piperazinâ€1â€yl]â€Based Compounds as Competitive Tyrosinase Inhibitors Endowed with Antimelanogenic Effects. ChemMedChem, 2021, 16, 3083-3093.	1.6	9
7	Design, synthesis and biochemical evaluation of novel carbonic anhydrase inhibitors triggered by structural knowledge on hCA VII. Bioorganic and Medicinal Chemistry, 2021, 44, 116279.	1.4	2
8	4‣ulfamoylphenylalkylamides as Inhibitors of Carbonic Anhydrases Expressed in <i>Vibrio cholerae</i> . ChemMedChem, 2021, 16, 3787-3794.	1.6	5
9	Exploration of the 2,3-dihydroisoindole pharmacophore for inhibition of the influenza virus PA endonuclease. Bioorganic Chemistry, 2021, 116, 105388.	2.0	3
10	Functional Analysis of Human and Feline Coronavirus Cross-Reactive Antibodies Directed Against the SARS-CoV-2 Fusion Peptide. Frontiers in Immunology, 2021, 12, 790415.	2.2	7
11	A Combination of Pharmacophore and Dockingâ€based Virtual Screening to Discover new Tyrosinase Inhibitors. Molecular Informatics, 2020, 39, e1900054.	1.4	14
12	4â€Fluorobenzylpiperazineâ€Containing Derivatives as Efficient Inhibitors of Mushroom Tyrosinase. ChemMedChem, 2020, 15, 1757-1764.	1.6	15
13	In Silico-Guided Identification of New Potent Inhibitors of Carbonic Anhydrases Expressed in <i>Vibrio cholerae</i> . ACS Medicinal Chemistry Letters, 2020, 11, 2294-2299.	1.3	8
14	Rational design of small molecules able to inhibit α-synuclein amyloid aggregation for the treatment of Parkinson's disease. Journal of Enzyme Inhibition and Medicinal Chemistry, 2020, 35, 1727-1735.	2.5	20
15	Inhibition of HIV-1 RT activity by a new series of 3-(1,3,4-thiadiazol-2-yl)thiazolidin-4-one derivatives. Bioorganic and Medicinal Chemistry, 2020, 28, 115431.	1.4	10
16	N-benzyl 4,4-disubstituted piperidines as a potent class of influenza H1N1 virus inhibitors showing a novel mechanism of hemagglutinin fusion peptide interaction. European Journal of Medicinal Chemistry, 2020, 194, 112223.	2.6	11
17	Looking toward the Rim of the Active Site Cavity of Druggable Human Carbonic Anhydrase Isoforms. ACS Medicinal Chemistry Letters, 2020, 11, 1000-1005.	1.3	6
18	Synthesis, computational studies and assessment of <i>inÂvitro</i> inhibitory activity of umbelliferon-based compounds against tumour-associated carbonic anhydrase isoforms IX and XII. Journal of Enzyme Inhibition and Medicinal Chemistry, 2020, 35, 1442-1449.	2.5	6

#	Article	IF	CITATIONS
19	Reprogramming of the Antibacterial Drug Vancomycin Results in Potent Antiviral Agents Devoid of Antibacterial Activity. Pharmaceuticals, 2020, 13, 139.	1.7	17
20	Discovery of a new potent inhibitor of mushroom tyrosinase (Agaricus bisporus) containing 4-(4-hydroxyphenyl)piperazin-1-yl moiety. Bioorganic and Medicinal Chemistry, 2020, 28, 115497.	1.4	17
21	Hemagglutinin Cleavability, Acid Stability, and Temperature Dependence Optimize Influenza B Virus for Replication in Human Airways. Journal of Virology, 2019, 94, .	1.5	32
22	Seeking new approach for therapeutic treatment of cholera disease via inhibition of bacterial carbonic anhydrases: experimental and theoretical studies for sixteen benzenesulfonamide derivatives. Journal of Enzyme Inhibition and Medicinal Chemistry, 2019, 34, 1186-1192.	2.5	9
23	Exploiting the 1-(4-fluorobenzyl)piperazine fragment for the development of novel tyrosinase inhibitors as anti-melanogenic agents: Design, synthesis, structural insights and biological profile. European Journal of Medicinal Chemistry, 2019, 178, 380-389.	2.6	57
24	The link between the AMPK/SIRT1 axis and a flavonoidâ€rich extract of <scp><i>Citrus bergamia</i></scp> juice: A cellâ€free, in silico, and in vitro study. Phytotherapy Research, 2019, 33, 1805-1814.	2.8	28
25	4,4-Disubstituted N-benzylpiperidines: A Novel Class of Fusion Inhibitors of Influenza Virus H1N1 Targeting a New Binding Site in Hemagglutinin. Proceedings (mdpi), 2019, 22, .	0.2	0
26	Exploring structural properties of potent human carbonic anhydrase inhibitors bearing a 4-(cycloalkylamino-1-carbonyl)benzenesulfonamide moiety. European Journal of Medicinal Chemistry, 2019, 163, 443-452.	2.6	31
27	Targeting Tyrosinase: Development and Structural Insights of Novel Inhibitors Bearing Arylpiperidine and Arylpiperazine Fragments. Journal of Medicinal Chemistry, 2018, 61, 3908-3917.	2.9	25
28	Discovery of benzimidazoleâ€based <i>Leishmania mexicana</i> cysteine protease <scp>CPB</scp> 2.8î" <scp>CTE</scp> inhibitors as potential therapeutics for leishmaniasis. Chemical Biology and Drug Design, 2018, 92, 1585-1596.	1.5	22
29	Inhibitory effects and structural insights for a novel series of coumarin-based compounds that selectively target human CA IX and CA XII carbonic anhydrases. European Journal of Medicinal Chemistry, 2018, 143, 276-282.	2.6	58
30	Identification of influenza PA-Nter endonuclease inhibitors using pharmacophore- and docking-based virtual screening. Bioorganic and Medicinal Chemistry, 2018, 26, 4544-4550.	1.4	9
31	Structure-activity relationship studies of lipophilic teicoplanin pseudoaglycon derivatives as new anti-influenza virus agents. European Journal of Medicinal Chemistry, 2018, 157, 1017-1030.	2.6	17
32	Probing Molecular Interactions between Human Carbonic Anhydrases (hCAs) and a Novel Class of Benzenesulfonamides. Journal of Medicinal Chemistry, 2017, 60, 4316-4326.	2.9	40
33	Chlorogenic Compounds from Coffee Beans Exert Activity against Respiratory Viruses. Planta Medica, 2017, 83, 615-623.	0.7	19
34	Chemical exploration of 4-(4-fluorobenzyl)piperidine fragment for the development of new tyrosinase inhibitors. European Journal of Medicinal Chemistry, 2017, 125, 992-1001.	2.6	38
35	Searching for indole derivatives as potential mushroom tyrosinase inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry, 2016, 31, 1-6.	2.5	14
36	Inâ€Vivo Evaluation of Selective Carbonic Anhydrase Inhibitors as Potential Anticonvulsant Agents. ChemMedChem, 2016, 11, 1812-1818.	1.6	36

#	Article	IF	CITATIONS
37	Antiviral therapies on the horizon for influenza. Current Opinion in Pharmacology, 2016, 30, 106-115.	1.7	67
38	Computational and synthetic approaches for developing Lavendustin B derivatives as allosteric inhibitors of HIV-1 integrase. European Journal of Medicinal Chemistry, 2016, 123, 673-683.	2.6	10
39	Rational Design, Synthesis and Evaluation of Coumarin Derivatives as Proteinâ€protein Interaction Inhibitors. Molecular Informatics, 2016, 35, 460-473.	1.4	6
40	The Influenza Virus Polymerase Complex: An Update on Its Structure, Functions, and Significance for Antiviral Drug Design. Medicinal Research Reviews, 2016, 36, 1127-1173.	5.0	129
41	N-acylhydrazone inhibitors of influenza virus PA endonuclease with versatile metal binding modes. Scientific Reports, 2016, 6, 31500.	1.6	49
42	Structure-guided design of new indoles as negative allosteric modulators (NAMs) of N-methyl-d-aspartate receptor (NMDAR) containing GluN2B subunit. Bioorganic and Medicinal Chemistry, 2016, 24, 1513-1519.	1.4	9
43	Novel indole–flutimide heterocycles with activity against influenza PA endonuclease and hepatitis C virus. MedChemComm, 2016, 7, 447-456.	3.5	24
44	An Integrated Biological Approach to Guide the Development of Metal-Chelating Inhibitors of Influenza Virus PA Endonuclease. Molecular Pharmacology, 2015, 87, 323-337.	1.0	33
45	Virtual Screening and Biological Validation of Novel Influenza Virus PA Endonuclease Inhibitors. ACS Medicinal Chemistry Letters, 2015, 6, 866-871.	1.3	33
46	Carbonic anhydrase inhibitors: Design, synthesis and structural characterization of new heteroaryl-N-carbonylbenzenesulfonamides targeting druggable human carbonic anhydrase isoforms. European Journal of Medicinal Chemistry, 2015, 102, 223-232.	2.6	24
47	Optimization of rhodanine scaffold for the development of protein–protein interaction inhibitors. Bioorganic and Medicinal Chemistry, 2015, 23, 3208-3214.	1.4	4
48	Investigation of the salicylaldehyde thiosemicarbazone scaffold for inhibition of influenza virus PA endonuclease. Journal of Biological Inorganic Chemistry, 2015, 20, 1109-1121.	1.1	44
49	From NMDA receptor antagonists to discovery of selective σ2 receptor ligands. Bioorganic and Medicinal Chemistry, 2014, 22, 393-397.	1.4	8
50	Synthesis, modelling and biological characterization of 3-substituted-1H-indoles as ligands of GluN2B-containing N-methyl-d-aspartate receptors. Bioorganic and Medicinal Chemistry, 2014, 22, 1040-1048.	1.4	22
51	Structure-based screening for the discovery of new carbonic anhydrase VII inhibitors. European Journal of Medicinal Chemistry, 2014, 71, 105-111.	2.6	50
52	Targeting GluN2Bâ€Containing <i>N</i> â€Methylâ€ <scp>D</scp> â€aspartate Receptors: Design, Synthesis, and Binding Affinity Evaluation of Novel 3â€5ubstituted Indoles. Archiv Der Pharmazie, 2014, 347, 533-539.	2.1	8
53	Metal-Chelating 2-Hydroxyphenyl Amide Pharmacophore for Inhibition of Influenza Virus Endonuclease. Molecular Pharmaceutics, 2014, 11, 304-316.	2.3	38
54	Synthesis and biological evaluation of novel antiviral agents as protein–protein interaction inhibition and Medicinal Chemistry, 2014, 29, 237-242.	2.5	8

#	Article	IF	CITATIONS
55	A new potential approach to block HIV-1 replication via protein–protein interaction and strand-transfer inhibition. Bioorganic and Medicinal Chemistry, 2014, 22, 2269-2279.	1.4	17
56	Fragment hopping approach directed at design of HIV IN-LEDGF/p75 interaction inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry, 2013, 28, 1002-1009.	2.5	12
57	New scaffolds of natural origin as Integrase–LEDGF/p75 interaction inhibitors: Virtual screening and activity assays. European Journal of Medicinal Chemistry, 2013, 68, 405-411.	2.6	13
58	Mutational Analysis of the Binding Pockets of the Diketo Acid Inhibitor L-742,001 in the Influenza Virus PA Endonuclease. Journal of Virology, 2013, 87, 10524-10538.	1.5	67
59	Indole derivatives as dual-effective agents for the treatment of neurodegenerative diseases: Synthesis, biological evaluation, and molecular modeling studies. Bioorganic and Medicinal Chemistry, 2013, 21, 4575-4580.	1.4	15
60	Glutamatergic Neurotransmission As Molecular Target of New Anticonvulsants. Current Topics in Medicinal Chemistry, 2012, 12, 971-993.	1.0	13
61	Synthesis and Biological Characterization of 3-Substituted 1 <i>H</i> -Indoles as Ligands of GluN2B-Containing <i>N</i> -Methyl- <scp>d</scp> -aspartate Receptors. Part 2. Journal of Medicinal Chemistry, 2012, 55, 10532-10539.	2.9	9
62	Synthesis, Structure–Activity Relationship Studies, and X-ray Crystallographic Analysis of Arylsulfonamides as Potent Carbonic Anhydrase Inhibitors. Journal of Medicinal Chemistry, 2012, 55, 3891-3899.	2.9	24
63	New AMPA antagonists in epilepsy. Expert Opinion on Investigational Drugs, 2012, 21, 1371-1389.	1.9	52
64	Structural Basis for the Interaction Between Carbonic Anhydrase and 1,2,3,4-tetrahydroisoquinolin-2-ylsulfonamides. Journal of Medicinal Chemistry, 2011, 54, 2522-2526.	2.9	36
65	Synthesis and Biological Characterization of 3-Substituted-1 <i>H</i> -indoles as Ligands of GluN2B-Containing <i>N</i> -Methyl- <scp>d</scp> -aspartate Receptors. Journal of Medicinal Chemistry, 2011, 54, 8702-8706.	2.9	19
66	Microwave Assisted Organic Synthesis (MAOS) of Small Molecules as Potential HIV-1 Integrase Inhibitors. Molecules, 2011, 16, 6858-6870.	1.7	7
67	4-[1-(4-Fluorobenzyl)-4-hydroxy-1H-indol-3-yl]-2-hydroxy-4-oxobut-2-enoic acid as a prototype to develop dual inhibitors of HIV-1 integration process. Antiviral Research, 2011, 92, 102-107.	1.9	23
68	Synthesis and biological profile of new 1,2,3,4-tetrahydroisoquinolines as selective carbonic anhydrase inhibitors. Bioorganic and Medicinal Chemistry, 2011, 19, 7003-7007.	1.4	18
69	HIV-1 integrase strand-transfer inhibitors: Design, synthesis and molecular modeling investigation. European Journal of Medicinal Chemistry, 2011, 46, 756-764.	2.6	35
70	<i>N</i> â€substituted isoquinoline derivatives as potential AChE inhibitors. Journal of Heterocyclic Chemistry, 2010, 47, 54-62.	1.4	1
71	Synthesis and Structure-Active Relationship of 1-Aryl-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline Anticonvulsants. Chemical and Pharmaceutical Bulletin, 2010, 58, 1602-1605.	0.6	12
72	Identification of Potent and Selective Human Carbonic Anhydraseâ€VII (hCAâ€VII) Inhibitors. ChemMedChem, 2010, 5, 823-826.	1.6	25

#	Article	IF	CITATIONS
73	Small molecules targeting the interaction between HIV-1 integrase and LEDGF/p75 cofactor. Bioorganic and Medicinal Chemistry, 2010, 18, 7515-7521.	1.4	59
74	Identification of 3,4-Dihydroisoquinoline-2(1 <i>H</i>)-sulfonamides as Potent Carbonic Anhydrase Inhibitors: Synthesis, Biological Evaluation, and Enzymeâ^'Ligand X-ray Studies. Journal of Medicinal Chemistry, 2010, 53, 2401-2408.	2.9	53
75	Pharmacophoreâ€Based Discovery of Smallâ€Molecule Inhibitors of Protein–Protein Interactions between HIVâ€1 Integrase and Cellular Cofactor LEDGF/p75. ChemMedChem, 2009, 4, 1311-1316.	1.6	98
76	Combined Strategies for the Discovery of Ionotropic Glutamate Receptor Antagonists. ChemMedChem, 2009, 4, 917-922.	1.6	13
77	Synthesis of new pyridazine derivatives as potential antiâ€HIVâ€1 agents. Journal of Heterocyclic Chemistry, 2009, 46, 1420-1424.	1.4	9
78	Solution-phase parallel synthesis and evaluation of anticonvulsant activity of N-substituted-3,4-dihydroisoquinoline-2(1H)-carboxamides. European Journal of Medicinal Chemistry, 2009, 44, 1349-1354.	2.6	12
79	Development of 3-substituted-1H-indole derivatives as NR2B/NMDA receptor antagonists. Bioorganic and Medicinal Chemistry, 2009, 17, 1640-1647.	1.4	34
80	Synthesis and evaluation of pharmacological profile of 1-aryl-6,7-dimethoxy-3,4-dihydroisoquinoline-2(1H)-sulfonamides. Bioorganic and Medicinal Chemistry, 2009, 17, 3659-3664.	1.4	32
81	Computational Studies to Discover a New NR2B/NMDA Receptor Antagonist and Evaluation of Pharmacological Profile. ChemMedChem, 2008, 3, 1539-1548.	1.6	37
82	Synthesis and anticonvulsant evaluation of N-substituted isoquinoline AMPA receptor antagonists. Bioorganic and Medicinal Chemistry, 2008, 16, 2379-2384.	1.4	12
83	Improvement of water solubility of non-competitive AMPA receptor antagonists by complexation with β-cyclodextrin. Bioorganic and Medicinal Chemistry, 2008, 16, 8706-8712.	1.4	14
84	Enhancement of anti-absence effects of ethosuximide by low doses of a noncompetitive α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor antagonist in a genetic animal model of absence epilepsy. Epilepsy and Behavior, 2008, 13, 295-299.	0.9	20
85	Solution-Phase Parallel Synthesis of Novel 1,2,3,4-Tetrahydroisoquinolin-1-ones as Anticonvulsant Agents. Chemical and Pharmaceutical Bulletin, 2008, 56, 181-184.	0.6	12
86	Synthesis, resolution, stereochemistry, and molecular modeling of (R)- and (S)-2-acetyl-1-(4â€2-chlorophenyl)-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline AMPAR antagonists. Bioorganic and Medicinal Chemistry, 2007, 15, 5417-5423.	1.4	27
87	Novel Potent Anticonvulsant Agent Containing a Tetrahydroisoquinoline Skeleton. Journal of Medicinal Chemistry, 2006, 49, 5618-5622.	2.9	32
88	Effects of non-competitive AMPA receptor antagonists injected into some brain areas of WAG/Rij rats, an animal model of generalized absence epilepsy. Neuropharmacology, 2006, 51, 1058-1067.	2.0	33
89	Closing in on the AMPA receptor: Synthesis and evaluation of 2-acetyl-1-(4′-chlorophenyl)-6-methoxy-7-[11C]methoxy-1,2,3,4-tetrahydroisoquinoline as a potential PET tracer. Bioorganic and Medicinal Chemistry, 2006, 14, 4712-4717.	1.4	30
90	3D Pharmacophore Models for 1,2,3,4-Tetrahydroisoquinoline Derivatives Acting as Anticonvulsant Agents. Archiv Der Pharmazie, 2006, 339, 388-400.	2.1	18

#	Article	IF	CITATIONS
91	AMPA Receptor Antagonists as Potential Anticonvulsant Drugs. Current Topics in Medicinal Chemistry, 2005, 5, 31-42.	1.0	70
92	Comparative anticonvulsant activity of N-acetyl-1-aryl-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline derivatives in rodents. Pharmacology Biochemistry and Behavior, 2004, 77, 85-94.	1.3	41
93	Synthesis and anticonvulsant properties of tetrahydroisoquinoline derivatives. Il Farmaco, 2004, 59, 7-12.	0.9	25
94	QSAR Study of Anticonvulsant Negative Allosteric Modulators of the AMPA Receptor. Journal of Medicinal Chemistry, 2004, 47, 1860-1863.	2.9	19
95	Synthesis and Anticonvulsant Properties of Tetrahydroisoquinoline Derivatives ChemInform, 2004, 35, no.	0.1	0
96	New trends in the development of AMPA receptor antagonists. Expert Opinion on Therapeutic Patents, 2004, 14, 1199-1213.	2.4	11
97	Synthesis and anticonvulsant properties of 1,2,3,4-tetrahydroisoquinolin-1-ones. Arkivoc, 2004, 2004, 170-180.	0.3	12
98	Discovery of a Novel and Highly Potent Noncompetitive AMPA Receptor Antagonist. Journal of Medicinal Chemistry, 2003, 46, 197-200.	2.9	80
99	Synthesis and Evaluation of Pharmacological Properties of Novel Annelated 2,3-Benzodiazepine Derivatives. Journal of Medicinal Chemistry, 2003, 46, 3758-3761.	2.9	48
100	Pharmacophore Modeling as an Efficient Tool in the Discovery of Novel Noncompetitive AMPA Receptor Antagonists. Journal of Chemical Information and Computer Sciences, 2003, 43, 651-655.	2.8	39
101	Binding modes of noncompetitive AMPA antagonists: a computational approach. Il Farmaco, 2003, 58, 107-113.	0.9	12
102	Comparative anticonvulsant activity of some 2,3-benzodiazepine derivatives in rodents. Pharmacology Biochemistry and Behavior, 2003, 74, 595-602.	1.3	57
103	Synthesis and Pharmacological Properties of New 3-Ethoxycarbonyl-11H-[1,2,4]triazolo[4,5-c][2,3]benzodiazepines ChemInform, 2003, 34, no.	0.1	0
104	Pharmacophore Modeling as an Efficient Tool in the Discovery of Novel Noncompetitive AMPA Receptor Antagonists ChemInform, 2003, 34, no.	0.1	0
105	5-Phenyl-9H-1,3-dioxolo[4,5-h][2,3]benzodiazepin-8(7H)-one. Acta Crystallographica Section C: Crystal Structure Communications, 2003, 59, o117-o119.	0.4	2
106	Design and development of 2,3-benzodiazepine (CFM) noncompetitive AMPA receptor antagonists. Il Farmaco, 2002, 57, 129-134.	0.9	25
107	Synthesis and pharmacological properties of new 3-ethoxycarbonyl-11H-[1,2,4]triazolo[4,5-c][2,3]benzodiazepines. Il Farmaco, 2002, 57, 759-763.	0.9	21
108	4,5-Dihydro-7,8-dimethoxy-1-phenyl-3H-2,3-benzodiazepin-4-one. Acta Crystallographica Section C: Crystal Structure Communications, 2001, 57, 1225-1227.	0.4	6

#	Article	IF	CITATIONS
109	Solid-phase Friedel–Crafts acylation on polystyrene resins-synthesis of antiepiletic 1-aryl-3,5-dihydro-4 H -2,3-benzodiazepin-4-ones. Tetrahedron Letters, 2001, 42, 7683-7685.	0.7	32
110	Synthesis and anticonvulsant properties of 2,3,3a,4-tetrahydro-1H-pyrrolo[1,2-a]benzimidazol-1-one derivatives. Il Farmaco, 2001, 56, 821-826.	0.9	44
111	Synthesis and Evaluation of Pharmacological and Pharmacokinetic Properties of 11H-[1,2,4]Triazolo[4,5-c][2,3]benzodiazepin-3(2H)-ones. Journal of Medicinal Chemistry, 2000, 43, 4834-4839.	2.9	43
112	Synthesis and anticonvulsant activity of new 2,3-benzodiazepines as AMPA receptor antagonists. Il Farmaco, 1999, 54, 178-187.	0.9	27
113	Anticonvulsant Activity and Plasma Level of 2,3-Benzodiazepin-4-ones (CFMs) in Genetically Epilepsy-Prone Rats. Pharmacology Biochemistry and Behavior, 1999, 63, 621-627.	1.3	18
114	AMPA receptor antagonists. Expert Opinion on Therapeutic Patents, 1999, 9, 557-570.	2.4	44
115	Synthesis and Structural Features of 11H-Tetrazolo[1,5-c][2,3]benzodiazepines. Heterocycles, 1999, 51, 1303.	0.4	16
116	Relationship Between Anticonvulsant Activity and Plasma Level of Some 2,3-Benzodiazepines in Genetically Epilepsy-Prone Rats. Pharmacology Biochemistry and Behavior, 1998, 61, 215-220.	1.3	21
117	7,8-Methylenedioxy-4H-2,3-benzodiazepin-4-ones as novel AMPA receptor antagonists. Bioorganic and Medicinal Chemistry Letters, 1998, 8, 971-976.	1.0	39
118	High-performance liquid chromatographic determination of new 2,3-benzodiazepines. Biomedical Applications, 1998, 705, 149-153.	1.7	15
119	3,5-Dihydro-4H-2,3-benzodiazepine-4-thiones:Â A New Class of AMPA Receptor Antagonists. Journal of Medicinal Chemistry, 1998, 41, 3409-3416.	2.9	44
120	1-Aryl-3,5-dihydro-4H-2,3-benzodiazepin-4-ones:Â Novel AMPA Receptor Antagonists. Journal of Medicinal Chemistry, 1997, 40, 1258-1269.	2.9	88
121	1,4-Benzodiazepine derivatives as anticonvulsant agents in DBA/2 mice. General Pharmacology, 1996, 27, 935-941.	0.7	17
122	5H-[1,2,4]Oxadiazolo[5,4-d][1,5]benzothiazepines as anticonvulsant agents in DBA/2 mice. European Journal of Medicinal Chemistry, 1995, 30, 925-929.	2.6	92
123	GYKI 52466 and related 2,3-benzodiazepines as anticonvulsant agents in DBA/2 mice. European Journal of Pharmacology, 1995, 294, 411-422.	1.7	63
124	Annelated 1,5-Benzodiazepines. Part 1. Three, Four, and Five membered Rings. Heterocycles, 1993, 36, 601.	0.4	38
125	Thieno[3,4-b][1,4]diazepines: Synthesis and Stereochemistry. Heterocycles, 1992, 34, 1191.	0.4	6