
Valeriy A Alferov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7181684/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Biosensor Based Microorganisms Immobilized in Layer-by-Layer Films for the Determination of Biochemical Oxygen Demand. Applied Biochemistry and Microbiology, 2021, 57, 133-141.	0.9	7
2	Registration of BOD using Paracoccus yeei bacteria isolated from activated sludge. 3 Biotech, 2020, 10, 207.	2.2	12
3	Biohybrid of methylotrophic yeast and organically modified silica gels from sol–gel chemistry of tetraethoxysilane and dimethyldiethoxysilane. Journal of Sol-Gel Science and Technology, 2019, 92, 359-366.	2.4	5
4	Effect of polyethylene glycol additives on structure, stability, and biocatalytic activity of ormosil sol–gel encapsulated yeast cells. Journal of Sol-Gel Science and Technology, 2018, 88, 1-5.	2.4	11
5	Yeast Debaryomyces hansenii within ORMOSIL Shells as a Heterogeneous Biocatalyst. Applied Biochemistry and Microbiology, 2018, 54, 736-742.	0.9	9
6	Biofuel Cell Based on Bacteria of the Genus Gluconobacter as a Sensor for Express Analysis of Biochemical Oxygen Demand. Applied Biochemistry and Microbiology, 2018, 54, 689-694.	0.9	17
7	Competition between redox mediator and oxygen in the microbial fuel cell. Applied Biochemistry and Microbiology, 2017, 53, 267-272.	0.9	1
8	A novel Bod-mediator biosensor based on Ferrocene and Debaryomyces hansenii yeast cells. Applied Biochemistry and Microbiology, 2017, 53, 381-387.	0.9	3
9	Silica sol-gel encapsulated methylotrophic yeast as filling of biofilters for the removal of methanol from industrial wastewater. Enzyme and Microbial Technology, 2016, 92, 94-98.	3.2	21
10	Biosensors based on modified screen-printed enzyme electrodes for monitoring of fermentation processes. Russian Journal of Applied Chemistry, 2015, 88, 463-472.	0.5	18
11	Yeast-based self-organized hybrid bio-silica sol–gels for the design of biosensors. Biosensors and Bioelectronics, 2015, 67, 321-326.	10.1	44
12	Synthesis of organosilicon sol-gel matrices and preparation of heterogeneous biocatalysts based on them. Russian Journal of Applied Chemistry, 2014, 87, 761-766.	0.5	8
13	Bioanode for a microbial fuel cell based on Gluconobacter oxydans immobilized into a polymer matrix. Applied Biochemistry and Microbiology, 2014, 50, 637-643.	0.9	17
14	BOD biosensor based on the yeast Debaryomyces hansenii immobilized in poly(vinyl alcohol) modified by N-vinylpyrrolidone. Enzyme and Microbial Technology, 2013, 53, 257-262.	3.2	37
15	Receptor elements for biosensors in two ways of methylotrophic yeast immobilization. Applied Biochemistry and Microbiology, 2012, 48, 519-524.	0.9	3
16	Interaction of Ferrocene Mediators with Gluconobacter oxydans Immobilized Whole Cells and Membrane Fractions in Oxidation of Ethanol. Electroanalysis, 2012, 24, 924-930.	2.9	13
17	Microbial biosensors for detection of biological oxygen demand (a Review). Applied Biochemistry and Microbiology, 2011, 47, 1-11.	0.9	49
18	An alcohol oxidase-based electrochemical sensor for the rapid determination of lower alcohols. Journal of Analytical Chemistry, 2011, 66, 1205-1211.	0.9	8

VALERIY A ALFEROV

#	Article	IF	CITATIONS
19	Efficiency of bioelectrocatalytic oxidation of ethanol by whole cells and membrane fractions of Gluconobacter Oxydans bacteria in the presence of mediators of ferrocene series. Russian Journal of Electrochemistry, 2010, 46, 1408-1413.	0.9	3
20	Transformation of low-molecular linear caprolactam oligomers by the caprolactam-degrading bacterium Pseudomonas putida BS394(pBS268). Microbiology, 2010, 79, 321-326.	1.2	1
21	Bioelectrocatalytic Oxidation of Glucose by Immobilized BacteriaGluconobacter oxydans. Evaluation of Water-Insoluble Mediator Efficiency. Electroanalysis, 2006, 18, 2023-2029.	2.9	22
22	Quantitative Aspects of the Competition of Substitution and Addition Pathways in Polyisobutylene Chlorination. Russian Journal of Applied Chemistry, 2004, 77, 441-444.	0.5	0
23	Quantitative Aspects of Competition of Substitution and Addition Pathways in Chlorination of Synthetic Rubbers. Russian Journal of Applied Chemistry, 2003, 76, 1974-1977.	0.5	0