Daniel Reta

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7181640/publications.pdf

Version: 2024-02-01

43 papers 3,416 citations

304602 22 h-index 276775 41 g-index

44 all docs 44 docs citations

44 times ranked 2551 citing authors

#	Article	IF	CITATIONS
1	Molecular magnetic hysteresis at 60 kelvin in dysprosocenium. Nature, 2017, 548, 439-442.	13.7	1,450
2	Ultrahard magnetism from mixed-valence dilanthanide complexes with metal-metal bonding. Science, 2022, 375, 198-202.	6.0	246
3	Uncertainty estimates for magnetic relaxation times and magnetic relaxation parameters. Physical Chemistry Chemical Physics, 2019, 21, 23567-23575.	1.3	200
4	Field- and temperature-dependent quantum tunnelling of the magnetisation in a large barrier single-molecule magnet. Nature Communications, 2018, 9, 3134.	5 . 8	170
5	Bis-Monophospholyl Dysprosium Cation Showing Magnetic Hysteresis at 48 K. Journal of the American Chemical Society, 2019, 141, 19935-19940.	6.6	123
6	Synthesis and Electronic Structures of Heavy Lanthanide Metallocenium Cations. Journal of the American Chemical Society, 2017, 139, 18714-18724.	6.6	111
7	Ab Initio Prediction of High-Temperature Magnetic Relaxation Rates in Single-Molecule Magnets. Journal of the American Chemical Society, 2021, 143, 5943-5950.	6.6	110
8	A Study of Magnetic Relaxation in Dysprosium(III) Singleâ€Molecule Magnets. Chemistry - A European Journal, 2020, 26, 5893-5902.	1.7	108
9	Enhancing Magnetic Hysteresis in Single-Molecule Magnets by Ligand Functionalization. CheM, 2020, 6, 1777-1793.	5 . 8	103
10	Understanding magnetic relaxation in single-ion magnets with high blocking temperature. Physical Review B, 2020, 101, .	1.1	94
11	Studies of hysteresis and quantum tunnelling of the magnetisation in dysprosium(<scp>iii</scp>) single molecule magnets. Dalton Transactions, 2019, 48, 8541-8545.	1.6	71
12	Opening Magnetic Hysteresis by Axial Ferromagnetic Coupling: From Monoâ€Decker to Doubleâ€Decker Metallacrown. Angewandte Chemie - International Edition, 2021, 60, 5299-5306.	7.2	62
13	Exchange Coupling Inversion in a High-Spin Organic Triradical Molecule. Nano Letters, 2016, 16, 2066-2071.	4.5	60
14	The Triplet–Singlet Gap in the <i>m</i> -Xylylene Radical: A Not So Simple One. Journal of Chemical Theory and Computation, 2014, 10, 335-345.	2.3	56
15	Redox-Induced Gating of the Exchange Interactions in a Single Organic Diradical. ACS Nano, 2017, 11, 5879-5883.	7.3	50
16	Discovery of the <i>K</i> ₄ Structure Formed by a Triangular π Radical Anion. Journal of the American Chemical Society, 2015, 137, 7612-7615.	6.6	37
17	A Cost-Effective Semi-Ab Initio Approach to Model Relaxation in Rare-Earth Single-Molecule Magnets. Journal of Physical Chemistry Letters, 2021, 12, 8826-8832.	2.1	35
18	The performance of density functional theory for the description of ground and excited state properties of inorganic and organometallic uranium compounds. Journal of Organometallic Chemistry, 2018, 857, 58-74.	0.8	30

#	Article	IF	CITATIONS
19	Terbocenium: completing a heavy lanthanide metallocenium cation family with an alternative anion abstraction strategy. Chemical Communications, 2018, 54, 9182-9185.	2.2	30
20	Light Lanthanide Metallocenium Cations Exhibiting Weak Equatorial Anion Interactions. Chemistry - A European Journal, 2019, 25, 7749-7758.	1.7	29
21	A double-dysprosocenium single-molecule magnet bound together with neutral ligands. Chemical Communications, 2020, 56, 5677-5680.	2.2	26
22	Slow magnetic relaxation in a {EuCu ₅ } metallacrown. Dalton Transactions, 2019, 48, 1686-1692.	1.6	24
23	Microwave assisted synthesis in coordination chemistry. Polyhedron, 2013, 52, 781-787.	1.0	17
24	Design of multi-functional 2D open-shell organic networks with mechanically controllable properties. Chemical Science, 2017, 8, 1027-1039.	3.7	16
25	Identifying atomic sites in N-doped pristine and defective graphene from ab initio core level binding energies. Carbon, 2014, 76, 155-164.	5.4	14
26	Spin Adapted versus Broken Symmetry Approaches in the Description of Magnetic Coupling in Heterodinuclear Complexes. Journal of Chemical Theory and Computation, 2015, 11, 1006-1019.	2.3	14
27	Magnetic Coupling Constants in Three Electrons Three Centers Problems from Effective Hamiltonian Theory and Validation of Broken Symmetry-Based Approaches. Journal of Chemical Theory and Computation, 2016, 12, 3228-3235.	2.3	14
28	Handling Magnetic Coupling in Trinuclear Cu(II) Complexes. Journal of Chemical Theory and Computation, 2015, 11, 3650-3660.	2.3	13
29	Studies of the Temperature Dependence of the Structure and Magnetism of a Hexagonal-Bipyramidal Dysprosium(III) Single-Molecule Magnet. Inorganic Chemistry, 2022, 61, 227-235.	1.9	13
30	Theoretical and computational investigation of meta-phenylene as ferromagnetic coupler in nitronyl nitroxide diradicals. Theoretical Chemistry Accounts, 2014, 133, 1.	0.5	12
31	Post-B3LYP Functionals Do Not Improve the Description of Magnetic Coupling in Cu(II) Dinuclear Complexes. Journal of Physical Chemistry A, 2018, 122, 3423-3432.	1.1	12
32	Helical Folding-Induced Stabilization of Ferromagnetic Polyradicals Based on Triarylmethyl Radical Derivatives. Journal of the American Chemical Society, 2016, 138, 5271-5275.	6.6	11
33	Characterization of a Robust Co ^{II} Fluorescent Complex Deposited Intact On HOPG. Chemistry - A European Journal, 2014, 20, 10439-10445.	1.7	9
34	Opening Magnetic Hysteresis by Axial Ferromagnetic Coupling: From Monoâ€Decker to Doubleâ€Decker Metallacrown. Angewandte Chemie, 2021, 133, 5359-5366.	1.6	8
35	Triplet–singlet gap in structurally flexible organic diradicals. Theoretical Chemistry Accounts, 2015, 134, 1.	0.5	7
36	Calix[n]arene-based polyradicals: enhancing ferromagnetism by avoiding edge effects. Physical Chemistry Chemical Physics, 2017, 19, 24264-24270.	1.3	6

3

DANIEL RETA

#	Article	IF	CITATION
37	Strangely attractive: Collaboration and feedback in the field of molecular magnetism. International Journal of Quantum Chemistry, 2020, 120, e26248.	1.0	6
38	Unparalleled selectivity and electronic structure of heterometallic [LnLn'Ln] molecules as 3-qubit quantum gates. Chemical Science, 0, , .	3.7	6
39	Reversible uptake of sulfur-containing gases by single crystals of a Cr8 metallacrown. Dalton Transactions, 2019, 48, 13184-13189.	1.6	3
40	Extraction of "hidden―relaxation times from AC susceptibility data. Chemistry Squared, 0, 4, 3.	0.0	3
41	Eight coordinated mononuclear dysprosium complexes of heptadentate aminophenol ligands: the influence of the phenol substituents and the ancillary donors on the magnetic relaxation. Dalton Transactions, 2021, 50, 15878-15887.	1.6	3
42	New nanostructured materials: Nanostructuration of a fluorescent magnet based on acridine yellow. Polyhedron, 2013, 66, 136-141.	1.0	2
43	Nanoparticles of Ni(II) and Co(II) metallo-organic molecular materials. Journal of Nanoparticle Research, 2014, 16, 1.	0.8	2