
## Qiang Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7181602/publications.pdf Version: 2024-02-01



OLANG WANG

| #  | Article                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | High Fat Diet Induced Developmental Defects in the Mouse: Oocyte Meiotic Aneuploidy and Fetal<br>Growth Retardation/Brain Defects. PLoS ONE, 2012, 7, e49217.                                                                | 1.1 | 286       |
| 2  | Evaluation of oocyte quality: morphological, cellular and molecular predictors. Reproduction,<br>Fertility and Development, 2007, 19, 1.                                                                                     | 0.1 | 237       |
| 3  | Maternal Diabetes Causes Mitochondrial Dysfunction and Meiotic Defects in Murine Oocytes.<br>Molecular Endocrinology, 2009, 23, 1603-1612.                                                                                   | 3.7 | 182       |
| 4  | Metabolic control of oocyte development: linking maternal nutrition and reproductive outcomes.<br>Cellular and Molecular Life Sciences, 2015, 72, 251-271.                                                                   | 2.4 | 138       |
| 5  | Melatonin protects against maternal obesityâ€associated oxidativeÂstress and meiotic defects in oocytes<br>via the <scp>SIRT</scp> 3â€ <scp>SOD</scp> 2â€dependent pathway. Journal of Pineal Research, 2017, 63,<br>e12431. | 3.4 | 134       |
| 6  | Embryonic defects induced by maternal obesity in mice derive from Stella insufficiency in oocytes.<br>Nature Genetics, 2018, 50, 432-442.                                                                                    | 9.4 | 112       |
| 7  | Sirt2 functions in spindle organization and chromosome alignment in mouse oocyte meiosis. FASEB<br>Journal, 2014, 28, 1435-1445.                                                                                             | 0.2 | 96        |
| 8  | Mitochondrial Dysfunction and Apoptosis in Cumulus Cells of Type I Diabetic Mice. PLoS ONE, 2010, 5, e15901.                                                                                                                 | 1.1 | 96        |
| 9  | Both diet and gene mutation induced obesity affect oocyte quality in mice. Scientific Reports, 2016, 6, 18858.                                                                                                               | 1.6 | 90        |
| 10 | Sirt3 prevents maternal obesity-associated oxidative stress and meiotic defects in mouse oocytes. Cell<br>Cycle, 2015, 14, 2959-2968.                                                                                        | 1.3 | 80        |
| 11 | Adverse effects of obesity and/or high-fat diet on oocyte quality and metabolism are not reversible with resumption of regular diet in mice. Reproduction, Fertility and Development, 2015, 27, 716.                         | 0.1 | 74        |
| 12 | Characterization of Metabolic Patterns in Mouse Oocytes during Meiotic Maturation. Molecular Cell,<br>2020, 80, 525-540.e9.                                                                                                  | 4.5 | 74        |
| 13 | Maternal diabetes and oocyte quality. Mitochondrion, 2010, 10, 403-410.                                                                                                                                                      | 1.6 | 67        |
| 14 | Sirt3-dependent deacetylation of SOD2 plays a protective role against oxidative stress in oocytes from diabetic mice. Cell Cycle, 2017, 16, 1302-1308.                                                                       | 1.3 | 58        |
| 15 | NMNAT2â€mediated NAD <sup>+</sup> generation is essential for quality control of aged oocytes. Aging<br>Cell, 2019, 18, e12955.                                                                                              | 3.0 | 58        |
| 16 | <scp>SIRT</scp> 4 is essential for metabolic control and meiotic structure during mouse oocyte maturation. Aging Cell, 2018, 17, e12789.                                                                                     | 3.0 | 52        |
| 17 | Sirt6 depletion causes spindle defects and chromosome misalignment during meiosis of mouse oocyte.<br>Scientific Reports, 2015, 5, 15366.                                                                                    | 1.6 | 43        |
| 18 | Mitofusin1 in oocyte is essential for female fertility. Redox Biology, 2019, 21, 101110.                                                                                                                                     | 3.9 | 42        |

QIANG WANG

| #  | Article                                                                                                                                                                              | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Loss of TIGAR Induces Oxidative Stress and Meiotic Defects in Oocytes from Obese Mice. Molecular and Cellular Proteomics, 2018, 17, 1354-1364.                                       | 2.5 | 38        |
| 20 | Sirt2â€BubR1 acetylation pathway mediates the effects of advanced maternal age on oocyte quality.<br>Aging Cell, 2018, 17, e12698.                                                   | 3.0 | 37        |
| 21 | Live Imaging Reveals the Link Between Decreased Glucose Uptake in Ovarian Cumulus Cells and Impaired<br>Oocyte Quality in Female Diabetic Mice. Endocrinology, 2012, 153, 1984-1989. | 1.4 | 36        |
| 22 | Differing roles of pyruvate dehydrogenase kinases during mouse oocyte maturation. Journal of Cell<br>Science, 2015, 128, 2319-2329.                                                  | 1.2 | 31        |
| 23 | Rab5a is required for spindle length control and kinetochoreâ€microtubule attachment during meiosis<br>in oocytes. FASEB Journal, 2014, 28, 4026-4035.                               | 0.2 | 30        |
| 24 | SIRT6 participates in the quality control of aged oocytes via modulating telomere function. Aging, 2019, 11, 1965-1976.                                                              | 1.4 | 27        |
| 25 | Melatonin ameliorates the advanced maternal age-associated meiotic defects in oocytes through the SIRT2-dependent H4K16 deacetylation pathway. Aging, 2020, 12, 1610-1623.           | 1.4 | 26        |
| 26 | NAMPT reductionâ€induced NAD <sup>+</sup> insufficiency contributes to the compromised oocyte quality from obese mice. Aging Cell, 2021, 20, e13496.                                 | 3.0 | 20        |
| 27 | Differential roles of Stella in the modulation of DNA methylation during oocyte and zygotic development. Cell Discovery, 2019, 5, 9.                                                 | 3.1 | 19        |
| 28 | Histone methyltransferase SETD2 is required for meiotic maturation in mouse oocyte. Journal of<br>Cellular Physiology, 2019, 234, 661-668.                                           | 2.0 | 13        |
| 29 | Involvement of SIRT3â€GSK3β deacetylation pathway in the effects of maternal diabetes on oocyte meiosis.<br>Cell Proliferation, 2021, 54, e12940.                                    | 2.4 | 13        |
| 30 | Telomere Dysfunction in Oocytes and Embryos From Obese Mice. Frontiers in Cell and Developmental<br>Biology, 2021, 9, 617225.                                                        | 1.8 | 11        |
| 31 | Rab6a is a novel regulator of meiotic apparatus and maturational progression in mouse oocytes.<br>Scientific Reports, 2016, 6, 22209.                                                | 1.6 | 8         |
| 32 | Oocyte metabolites are heritable factors that drive metabolic reprogramming of the progeny. Nature<br>Metabolism, 2021, 3, 1148-1149.                                                | 5.1 | 5         |
| 33 | Loss of PDK1 Induces Meiotic Defects in Oocytes From Diabetic Mice. Frontiers in Cell and Developmental Biology, 2021, 9, 793389.                                                    | 1.8 | 4         |
| 34 | Metabolic control of oocyte development. Biology of Reproduction, 2022, 107, 54-61.                                                                                                  | 1.2 | 3         |
| 35 | FKBP25 Regulates Meiotic Apparatus During Mouse Oocyte Maturation. Frontiers in Cell and Developmental Biology, 2021, 9, 625805.                                                     | 1.8 | 2         |
| 36 | HIF1 <i>α</i> is dispensable for oocyte development and female fertility in mice. PeerJ, 2022, 10, e13370.                                                                           | 0.9 | 2         |

| #  | Article                                                                                                                                   | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Increased mtDNA mutation frequency in oocytes causes epigenetic alterations and embryonic defects.<br>National Science Review, 2022, 9, . | 4.6 | 2         |