Naoko Nakagawa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7181469/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Work relation for determining the mixing free energy of small-scale mixtures. Physical Review Research, 2022, 4, .	3.6	1
2	Effective Langevin equations leading to large deviation function of time-averaged velocity for a nonequilibrium Rayleigh piston. Physical Review E, 2021, 103, 022125.	2.1	0
3	Stochastic order parameter dynamics for phase coexistence in heat conduction. Physical Review E, 2021, 103, 062129.	2.1	6
4	Multiplicative Langevin equation to reproduce long-time properties of nonequilibrium Brownian motion. Journal of Statistical Mechanics: Theory and Experiment, 2020, 2020, 013201.	2.3	1
5	Global Thermodynamics for Heat Conduction Systems. Journal of Statistical Physics, 2019, 177, 825-888.	1.2	9
6	Unattainability of Carnot efficiency in thermal motors: Coarse graining and entropy production of Feynman-Smoluchowski ratchets. Physical Review E, 2018, 98, 022102.	2.1	4
7	Liquid-Gas Transitions in Steady Heat Conduction. Physical Review Letters, 2017, 119, 260602.	7.8	17
8	Numerical determination of entropy associated with excess heat in steady-state thermodynamics. Physical Review E, 2016, 94, 022115.	2.1	6
9	Exact Equalities and Thermodynamic Relations for Nonequilibrium Steady States. Journal of Statistical Physics, 2015, 159, 1237-1285.	1.2	20
10	Characterization of the low-temperature properties of a simplified protein model. Physical Review E, 2014, 89, 012705.	2.1	1
11	Universal expression for adiabatic pumping in terms of nonequilibrium steady states. Physical Review E, 2014, 90, 022108.	2.1	6
12	Work relations for time-dependent states. Physical Review E, 2013, 87, 022109.	2.1	3
13	Work relation and the second law of thermodynamics in nonequilibrium steady states. Physical Review E, 2012, 85, 051115.	2.1	16
14	Entropy and Nonlinear Nonequilibrium Thermodynamic Relation for Heat Conducting Steady States. Journal of Statistical Physics, 2011, 142, 127-153.	1.2	40
15	Stationary Distribution and Thermodynamic Relation in Nonequilibrium Steady States. Progress of Theoretical Physics Supplement, 2010, 184, 329-338.	0.1	6
16	Critical examination of the inherent-structure-landscape analysis of two-state folding proteins. Physical Review E, 2009, 80, 061907.	2.1	1
17	Representation of Nonequilibrium Steady States in Large Mechanical Systems. Journal of Statistical Physics, 2009, 134, 401-423.	1.2	47
18	Steady-State Thermodynamics for Heat Conduction: Microscopic Derivation. Physical Review Letters, 2008, 100, 230602	7.8	85

ΝΑΟΚΟ ΝΑΚΑGAWA

#	Article	IF	CITATIONS
19	Expression for the Stationary Distribution in Nonequilibrium Steady States. Physical Review Letters, 2008, 100, 030601.	7.8	75
20	Conformational Temperature Characterizing the Folding of a Protein. Physical Review Letters, 2007, 98, 128104.	7.8	7
21	Dynamically regulated energy barriers with violation of symmetry for reaction path. Physica A: Statistical Mechanics and Its Applications, 2006, 361, 216-232.	2.6	5
22	A heat pump at a molecular scale controlled by a mechanical force. Europhysics Letters, 2006, 75, 22-28.	2.0	34
23	The inherent structure landscape of a protein. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 5279-5284.	7.1	40
24	Dynamical Regulation of Transition States Resulting from Heat Flow. Progress of Theoretical Physics Supplement, 2006, 161, 290-293.	0.1	1
25	Modeling protein thermodynamics and fluctuations at the mesoscale. Physical Review E, 2006, 74, 041916.	2.1	9
26	Hidden heat transfer in equilibrium states implies directed motion in nonequilibrium states. Physical Review E, 2006, 73, 065107.	2.1	13
27	Oriented Process Induced by Dynamically Regulated Energy Barriers. Journal of the Physical Society of Japan, 2005, 74, 1653-1656.	1.6	6
28	Autonomous energy transducer: proposition, example, basic characteristics. Physica A: Statistical Mechanics and Its Applications, 2004, 338, 511-536.	2.6	3
29	Proposition of autonomous energy transducer and its working mechanism. , 2004, , .		0
30	Energy conversion by autonomous regulation of chaos: Dynamical mechanism of loose coupling. Chaos, 2003, 13, 1032-1040.	2.5	4
31	Dynamical mechanism for the conversion of energy at a molecular scale. Physical Review E, 2003, 67, 040901.	2.1	7
32	Relaxation, the Boltzmann-Jeans conjecture, and chaos. Physical Review E, 2001, 64, 055205.	2.1	13
33	Creep Motion in a Granular Pile Exhibiting Steady Surface Flow. Physical Review Letters, 2001, 86, 1757-1760.	7.8	254
34	Energy Storage in a Hamiltonian System in Partial Contact with a Heat Bath. Journal of the Physical Society of Japan, 2000, 69, 1255-1258.	1.6	12
35	Long-Term Relaxation of a Composite System in Partial Contact with a Heat Bath. Journal of the Physical Society of Japan, 2000, 69, 3214-3222.	1.6	2
36	Confined chaotic behavior in collective motion for populations of globally coupled chaotic elements. Physical Review E, 1999, 59, 1675-1682.	2.1	7

#	Article	IF	CITATIONS
37	Collective motion occurs inevitably in a class of populations of globally coupled chaotic elements. Physical Review E, 1998, 57, 1570-1575.	2.1	22
38	Anomalous lyapunov spectrum in globally coupled oscillators. Physica D: Nonlinear Phenomena, 1995, 80, 307-316.	2.8	56
39	From collective oscillations to collective chaos in a globally coupled oscillator system. Physica D: Nonlinear Phenomena, 1994, 75, 74-80.	2.8	103