
Radu Dorin Andrei

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7181404/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Heterogeneous oligomerization of ethylene over highly active and stable Ni-AlSBA-15 mesoporous catalysts. Journal of Catalysis, 2015, 323, 76-84.	3.1	145
2	Ethylene to Propylene by One-Pot Catalytic Cascade Reactions. ACS Catalysis, 2015, 5, 2774-2777.	5.5	42
3	Ni-exchanged cationic clays as novel heterogeneous catalysts for selective ethylene oligomerization. Applied Clay Science, 2017, 146, 432-438.	2.6	28
4	Green synthesis of g-C 3 N 4 /CuONP/LDH composites and derived g-C 3 N 4 /MMO and their photocatalytic performance for phenol reduction from aqueous solutions. Applied Clay Science, 2017, 141, 1-12.	2.6	27
5	Nickel and molybdenum containing mesoporous catalysts for ethylene oligomerization and metathesis. New Journal of Chemistry, 2016, 40, 4146-4152.	1.4	26
6	Ethylene Oligomerization from Diluted Stream over Ni-Containing Heterogeneous Catalysts. Industrial & Engineering Chemistry Research, 2020, 59, 1746-1752.	1.8	20
7	One-step non-hydrolytic sol-gel synthesis of mesoporous SiO2-Al2O3-NiO catalysts for ethylene oligomerization. Microporous and Mesoporous Materials, 2021, 322, 111165.	2.2	20
8	Selective Production of Propylene and 1-Butene from Ethylene by Catalytic Cascade Reactions. ACS Catalysis, 2018, 8, 3636-3640.	5.5	19
9	Nitrogen Functionalization of CVD Grown Three-Dimensional Graphene Foam for Hydrogen Evolution Reactions in Alkaline Media. Materials, 2021, 14, 4952.	1.3	15
10	Revelation on the Complex Nature of Mesoporous Hierarchical FAU-Y Zeolites. Langmuir, 2018, 34, 11414-11423.	1.6	14
11	Ni-exchanged AlSBA-15 mesoporous materials as outstanding catalysts for ethylene oligomerization. European Physical Journal: Special Topics, 2015, 224, 1831-1841.	1.2	11
12	Hexagonal-shaped aminosilane magnetite nanoparticles: Preparation, characterization and hybrid film deposition. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 542, 21-30.	2.3	11
13	Selective sulfoxidation reactions with H2O2 catalyzed by Ti-containing SBA-15 materials. Journal of Porous Materials, 2019, 26, 533-539.	1.3	9
14	Carbon Nanofibers Production via the Electrospinning Process. Energies, 2020, 13, 3029.	1.6	7
15	Preparation of the Ni doped carbon nanofibers synthesized by electrospinning. Smart Energy and Sustainable Environment, 2020, 23, 5-12.	0.2	2
16	3-D graphene growth by chemical vapor deposition (CVD) for energy applications. Smart Energy and Sustainable Environment, 2020, 23, 13-20.	0.2	1