
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7181325/publications.pdf Version: 2024-02-01

ΜΛΧ COSTA

#	Article	IF	CITATIONS
1	Toxicity and Carcinogenicity of Chromium Compounds in Humans. Critical Reviews in Toxicology, 2006, 36, 155-163.	1.9	703
2	Potential hazards of hexavalent chromate in our drinking water. Toxicology and Applied Pharmacology, 2003, 188, 1-5.	1.3	496
3	Mechanisms of Chromium Carcinogenicity and Toxicity. Critical Reviews in Toxicology, 1993, 23, 255-281.	1.9	477
4	Epigenetics in metal carcinogenesis: nickel, arsenic, chromium and cadmium. Metallomics, 2009, 1, 222.	1.0	344
5	Oxidative stress alters global histone modification and DNA methylation. Free Radical Biology and Medicine, 2015, 82, 22-28.	1.3	244
6	Oral Chromium Exposure and Toxicity. Current Environmental Health Reports, 2015, 2, 295-303.	3.2	242
7	Mechanisms of chromium-induced toxicity. Current Opinion in Toxicology, 2019, 14, 1-7.	2.6	236
8	Arsenite alters global histone H3 methylation. Carcinogenesis, 2008, 29, 1831-1836.	1.3	209
9	Carcinogenic metals and the epigenome: understanding the effect of nickel, arsenic, and chromium. Metallomics, 2012, 4, 619.	1.0	205
10	Metals and Mechanisms of Carcinogenesis. Annual Review of Pharmacology and Toxicology, 2019, 59, 537-554.	4.2	190
11	Nickel carcinogenesis: Epigenetics and hypoxia signaling. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2005, 592, 79-88.	0.4	183
12	Source apportionment and elemental composition of PM2.5 and PM10 in Jeddah City, Saudi Arabia. Atmospheric Pollution Research, 2012, 3, 331-340.	1.8	173
13	Effects of nickel, chromate, and arsenite on histone 3 lysine methylation. Toxicology and Applied Pharmacology, 2009, 236, 78-84.	1.3	171
14	The control of histone methylation and gene expression by oxidative stress, hypoxia, and metals. Free Radical Biology and Medicine, 2012, 53, 1041-1047.	1.3	138
15	Cr(III)-mediated crosslinks of glutathione or amino acids to the DNA phosphate backbone are mutagenic in human cells. Nucleic Acids Research, 1998, 26, 2024-2030.	6.5	136
16	Elucidating the mechanisms of nickel compound uptake: A review of particulate and nano-nickel endocytosis and toxicity. Toxicology and Applied Pharmacology, 2012, 260, 1-16.	1.3	129
17	Arsenic: A Global Environmental Challenge. Annual Review of Pharmacology and Toxicology, 2021, 61, 47-63.	4.2	127
18	Basic mechanics of DNA methylation and the unique landscape of the DNA methylome in metal-induced carcinogenesis. Critical Reviews in Toxicology, 2013, 43, 493-514.	1.9	121

MAX COSTA

#	Article	IF	CITATIONS
19	Molecular and epigenetic mechanisms of Cr(VI)-induced carcinogenesis. Toxicology and Applied Pharmacology, 2019, 377, 114636.	1.3	110
20	Global Levels of Histone Modifications in Peripheral Blood Mononuclear Cells of Subjects with Exposure to Nickel. Environmental Health Perspectives, 2012, 120, 198-203.	2.8	107
21	Oxidative Stress Under Ambient and Physiological Oxygen Tension in Tissue Culture. Current Pharmacology Reports, 2016, 2, 64-72.	1.5	100
22	Hypoxia and nickel inhibit histone demethylase JMJD1A and repress Spry2 expression in human bronchial epithelial BEAS-2B cells. Carcinogenesis, 2010, 31, 2136-2144.	1.3	90
23	Review of arsenic toxicity, speciation and polyadenylation of canonical histones. Toxicology and Applied Pharmacology, 2019, 375, 1-4.	1.3	84
24	Metals and molecular carcinogenesis. Carcinogenesis, 2020, 41, 1161-1172.	1.3	84
25	DNA-PROTEIN CROSS-LINKS PRODUCED BY VARIOUS CHEMICALS IN CULTURED HUMAN LYMPHOMA CELLS. Journal of Toxicology and Environmental Health - Part A: Current Issues, 1997, 50, 433-449.	1.1	83
26	Mutagenic responses of nickel oxides and nickel sulfides in Chinese hamster V79 cell lines at the xanthine-guanidine phosphoribosyl transferase locus. Mutation Research - Genetic Toxicology Testing and Biomonitoring of Environmental Or Occupational Exposure, 1993, 300, 63-72.	1.2	82
27	Gene expression changes in human lung cells exposed to arsenic, chromium, nickel or vanadium indicate the first steps in cancer. Metallomics, 2012, 4, 784.	1.0	79
28	Polycyclic aromatic hydrocarbons (PAHs) in indoor dust samples from Cities of Jeddah and Kuwait: Levels, sources and non-dietary human exposure. Science of the Total Environment, 2016, 573, 1607-1614.	3.9	77
29	Iron- and 2-oxoglutarate-dependent Dioxygenases: an emerging group of molecular targets for nickel toxicity and carcinogenicity. BioMetals, 2009, 22, 191-196.	1.8	68
30	PI3K/Akt/mTOR Signaling Pathway and the Biphasic Effect of Arsenic in Carcinogenesis. Molecular Pharmacology, 2018, 94, 784-792.	1.0	62
31	Polycyclic aromatic hydrocarbons (PAHs) in the settled dust of automobile workshops, health and carcinogenic risk evaluation. Science of the Total Environment, 2017, 601-602, 478-484.	3.9	61
32	The effect of exposure to carcinogenic metals on histone tail modifications and gene expression in human subjects. Journal of Trace Elements in Medicine and Biology, 2012, 26, 174-178.	1.5	56
33	Characterization of DNA-protein complexes induced in intact cells by the carcinogen chromate. Molecular Carcinogenesis, 1988, 1, 125-133.	1.3	54
34	Molecular mechanisms of nickel carcinogenesis: gene silencing by nickel delivery to the nucleus and gene activation/inactivation by nickel-induced cell signaling. Journal of Environmental Monitoring, 2003, 5, 222-223.	2.1	54
35	Title is missing!. Molecular and Cellular Biochemistry, 2001, 222, 29-34.	1.4	50
36	Cadmium Induces Histone H3 Lysine Methylation by Inhibiting Histone Demethylase Activity. Toxicological Sciences, 2015, 145, 80-89.	1.4	50

MAX COSTA

#	Article	IF	CITATIONS
37	Mechanisms of c-Myc Degradation by Nickel Compounds and Hypoxia. PLoS ONE, 2009, 4, e8531.	1.1	48
38	Analysis of DNA-protein complexes induced by chemical carcinogens. Journal of Cellular Biochemistry, 1990, 44, 127-135.	1.2	47
39	Comparison of Gene Expression Profiles in Chromate Transformed BEAS-2B Cells. PLoS ONE, 2011, 6, e17982.	1.1	46
40	Differential role of hydrogen peroxide in UV-induced signal transduction. Molecular and Cellular Biochemistry, 2002, 234/235, 81-90.	1.4	45
41	Gene expression profiling and pathway analysis of human bronchial epithelial cells exposed to airborne particulate matter collected from Saudi Arabia. Toxicology and Applied Pharmacology, 2012, 265, 147-157.	1.3	44
42	Alterations of histone modifications by cobalt compounds. Carcinogenesis, 2009, 30, 1243-1251.	1.3	43
43	Tungsten-induced carcinogenesis in human bronchial epithelial cells. Toxicology and Applied Pharmacology, 2015, 288, 33-39.	1.3	43
44	Nickel and Epigenetic Gene Silencing. Genes, 2013, 4, 583-595.	1.0	42
45	Particulate Matter From Saudi Arabia Induces Genes Involved in Inflammation, Metabolic Syndrome and Atherosclerosis. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2014, 77, 751-766.	1.1	42
46	Rats Retain Chromium in Tissues Following Chronic Ingestion of Drinking Water Containing Hexavalent Chromium. Biological Trace Element Research, 2000, 74, 41-54.	1.9	41
47	A Potential New Mechanism of Arsenic Carcinogenesis: Depletion of Stem-Loop Binding Protein and Increase in Polyadenylated Canonical Histone H3.1 mRNA. Biological Trace Element Research, 2015, 166, 72-81.	1.9	41
48	Involvement of Erks activation in cadmium-induced AP-1 transactivation in vitro and in vivo. Molecular and Cellular Biochemistry, 2001, 222, 141-147.	1.4	39
49	The role of oxidative stress in nickel and chromate genotoxicity. Molecular and Cellular Biochemistry, 2002, 234/235, 265-275.	1.4	39
50	Arsenic Induces Polyadenylation of Canonical Histone mRNA by Down-regulating Stem-Loop-binding Protein Gene Expression. Journal of Biological Chemistry, 2014, 289, 31751-31764.	1.6	38
51	SATB1 and 2 in colorectal cancer. Carcinogenesis, 2015, 36, 186-191.	1.3	37
52	Gene expression and pathway analysis of human hepatocellular carcinoma cells treated with cadmium. Toxicology and Applied Pharmacology, 2015, 288, 399-408.	1.3	36
53	Hexavalent Chromium (Cr(VI)) Down-Regulates Acetylation of Histone H4 at Lysine 16 through Induction of Stressor Protein Nupr1. PLoS ONE, 2016, 11, e0157317.	1.1	36
54	Arsenic Methyltransferase and Methylation of Inorganic Arsenic. Biomolecules, 2020, 10, 1351.	1.8	35

MAX COSTA

#	Article	IF	CITATIONS
55	Molecular biology of nickel carcinogenesis. Molecular and Cellular Biochemistry, 2001, 222, 205-211.	1.4	34
56	Molecular Mechanisms of Nickel Carcinogenesis. Biological Chemistry, 2002, 383, 961-7.	1.2	32
57	Occupational exposure to Cr(VI): comparison between chromium levels in lymphocytes, erythrocytes, and urine. International Archives of Occupational and Environmental Health, 1996, 69, 39-44.	1.1	31
58	Association between Exposure to Ambient Air Particulates and Metabolic Syndrome Components in a Saudi Arabian Population. International Journal of Environmental Research and Public Health, 2018, 15, 27.	1.2	28
59	Toxicogenomic effect of nickel and beyond. Archives of Toxicology, 2014, 88, 1645-1650.	1.9	27
60	Temporal variations of fine and coarse particulate matter sources in Jeddah, Saudi Arabia. Journal of the Air and Waste Management Association, 2018, 68, 123-138.	0.9	26
61	Gene Expression Profiles in Peripheral Blood Mononuclear Cells of Chinese Nickel Refinery Workers with High Exposures to Nickel and Control Subjects. Cancer Epidemiology Biomarkers and Prevention, 2013, 22, 261-269.	1.1	25
62	Evaluation of the Effects of Airborne Particulate Matter on Bone Marrow-Mesenchymal Stem Cells (BM-MSCs): Cellular, Molecular and Systems Biological Approaches. International Journal of Environmental Research and Public Health, 2017, 14, 440.	1.2	25
63	Role of miRâ€31 and SATB2 in arsenicâ€induced malignant BEASâ€2B cell transformation. Molecular Carcinogenesis, 2018, 57, 968-977.	1.3	25
64	Sex-specific patterns and deregulation of endocrine pathways in the gene expression profiles of Bangladeshi adults exposed to arsenic contaminated drinking water. Toxicology and Applied Pharmacology, 2015, 284, 330-338.	1.3	24
65	Molecular Mechanisms of Malignant Transformation by Low Dose Cadmium in Normal Human Bronchial Epithelial Cells. PLoS ONE, 2016, 11, e0155002.	1.1	24
66	A comprehensive review of metal-induced cellular transformation studies. Toxicology and Applied Pharmacology, 2017, 331, 33-40.	1.3	24
67	10th NTES Conference: Nickel and arsenic compounds alter the epigenome of peripheral blood mononuclear cells. Journal of Trace Elements in Medicine and Biology, 2015, 31, 209-213.	1.5	20
68	Deregulation of SATB2 in carcinogenesis with emphasis on miRNA-mediated control. Carcinogenesis, 2019, 40, 393-402.	1.3	20
69	Polyadenylation of Histone H3.1 mRNA Promotes Cell Transformation by Displacing H3.3 from Gene Regulatory Elements. IScience, 2020, 23, 101518.	1.9	20
70	Association between sleeping hours and cardiometabolic risk factors for metabolic syndrome in a Saudi Arabian population. BMJ Open, 2015, 5, e008590.	0.8	18
71	Structure and function of histone acetyltransferase MOF. AIMS Biophysics, 2015, 2, 555-569.	0.3	18
72	Tungsten or Wolfram: Friend or Foe?. Current Medicinal Chemistry, 2018, 25, 65-74.	1.2	18

#	Article	IF	CITATIONS
73	Sex-Specific Associations between One-Carbon Metabolism Indices and Posttranslational Histone Modifications in Arsenic-Exposed Bangladeshi Adults. Cancer Epidemiology Biomarkers and Prevention, 2017, 26, 261-269.	1.1	17
74	In Vivo Exposures to Particulate Matter Collected from Saudi Arabia or Nickel Chloride Display Similar Dysregulation of Metabolic Syndrome Genes. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2015, 78, 1421-1436.	1.1	16
75	Solar Simulated Ultraviolet Radiation Induces Global Histone Hypoacetylation in Human Keratinocytes. PLoS ONE, 2016, 11, e0150175.	1.1	16
76	Transcription factors and stress response gene alterations in human keratinocytes following Solar Simulated Ultra Violet Radiation. Scientific Reports, 2017, 7, 13622.	1.6	16
77	PBMC gene expression profiles of female Bangladeshi adults chronically exposed to arsenic-contaminated drinking water. Environmental Pollution, 2020, 259, 113672.	3.7	15
78	The role of oxidative stress in nickel and chromate genotoxicity. Molecular and Cellular Biochemistry, 2002, 234-235, 265-75.	1.4	15
79	Nuclear protein 1 imparts oncogenic potential and chemotherapeutic resistance in cancer. Cancer Letters, 2020, 494, 132-141.	3.2	14
80	Downregulation of hedgehog-interacting protein (HHIP) contributes to hexavalent chromium-induced malignant transformation of human bronchial epithelial cells. Carcinogenesis, 2021, 42, 136-147.	1.3	14
81	Nickel and cadmium-induced SLBP depletion: A potential pathway to metal mediated cellular transformation. PLoS ONE, 2017, 12, e0173624.	1.1	14
82	Development and utilization of a new simple assay for DNA-protein crosslinks as a biomarker of exposure to welding fumes. International Archives of Occupational and Environmental Health, 1993, 65, S87-S89.	1.1	12
83	DNA and RNA strand scission by copper, zinc and manganese superoxide dismutases. BioMetals, 1996, 9, 327-35.	1.8	12
84	c-Myc mediates a hypoxia-induced decrease in acetylated histone H4. Biochimie, 2009, 91, 1307-1310.	1.3	11
85	SATB2 expression increased anchorage-independent growth and cell migration in human bronchial epithelial cells. Toxicology and Applied Pharmacology, 2016, 293, 30-36.	1.3	11
86	Cellular shear stiffness reflects progression of arsenic-induced transformation during G1. Carcinogenesis, 2018, 39, 109-117.	1.3	11
87	Solar-simulated ultraviolet radiation induces histone 3 methylation changes in the gene promoters of matrix metalloproteinases 1 and 3 in primary human dermal fibroblasts. Experimental Dermatology, 2015, 24, 384-385.	1.4	10
88	Malignant human cell transformation of Marcellus Shale gas drilling flow back water. Toxicology and Applied Pharmacology, 2015, 288, 121-130.	1.3	10
89	Serum Taurine and Stroke Risk in Women: A Prospective, Nested Case-Control Study. PLoS ONE, 2016, 11, e0149348.	1.1	10
90	Sodium metavanadate exhibits carcinogenic tendencies in vitro in immortalized human bronchial epithelial cells. Metallomics, 2013, 5, 1357.	1.0	9

#	Article	IF	CITATIONS
91	Nuclear Factor κB1/RelA Mediates Inflammation in Human Lung Epithelial Cells at Atmospheric Oxygen Levels. Journal of Cellular Physiology, 2016, 231, 1611-1620.	2.0	9
92	Oncogenic and tumor suppressive roles of special AT-rich sequence-binding protein. Journal of Carcinogenesis, 2018, 17, 2.	2.5	8
93	Mutagenesis Assays in Mammalian Cells. Current Protocols in Toxicology / Editorial Board, Mahin D Maines (editor-in-chief) [et Al], 1999, 1, Unit3.3.	1.1	7
94	Tungsten exposure causes a selective loss of histone demethylase protein. Molecular Carcinogenesis, 2017, 56, 1778-1788.	1.3	7
95	Wrong place, wrong time: Runt-related transcription factor 2/SATB2 pathway in bone development and carcinogenesis. Journal of Carcinogenesis, 2021, 20, 2.	2.5	7
96	Induction of NUPR1 and AP‑1 contributes to the carcinogenic potential of nickel. Oncology Reports, 2021, 45, .	1.2	7
97	p62 functions as a signal hub in metal carcinogenesis. Seminars in Cancer Biology, 2021, 76, 267-278.	4.3	7
98	Molecular mechanisms of nickel carcinogenesis. Toxicological and Environmental Chemistry, 1995, 49, 145-148.	0.6	6
99	Assays for Detecting Chromosomal Aberrations. Current Protocols in Toxicology / Editorial Board, Mahin D Maines (editor-in-chief) [et Al], 2000, 3, 3.7.1.	1.1	6
100	Studies on the mechanism of nickelâ€induced heterochromatin damage; effect on specific DNAâ€protein interactions. Toxicological and Environmental Chemistry, 1989, 22, 167-179.	0.6	5
101	Molecular biology of nickel carcinogenesis. Fresenius' Journal of Analytical Chemistry, 1998, 361, 381-385.	1.5	5
102	Transactivation of RARE and GRE in the cellular response to arsenic. Molecular and Cellular Biochemistry, 2001, 222, 119-125.	1.4	4
103	Liprin-α4 Is Required for Nickel Induced Receptor Protein Tyrosine Phosphatase-Leukocyte Antigen Related Receptor F (RPTP-LAR) Activity. PLoS ONE, 2011, 6, e22764.	1.1	4
104	Plasma Anti-Glycan Antibody Profiles Associated with Nickel level in Urine. Journal of Proteomics and Bioinformatics, 2013, 06, 302-312.	0.4	4
105	Response to Comments by Post and Stern on Article "Toxicity and Carcinogenicity of Chromium Compounds in Humans― Critical Reviews in Toxicology, 2006, 36, 779-779.	1.9	3
106	RUNX2/miR‑31/SATB2 pathway in nickel‑induced BEAS‑2B cell transformation. Oncology Reports, 2021, 46	õ, 1.2	2
107	Occupational exposure to Cr(VI): comparison between chromium levels in lymphocytes, erythrocytes, and urine. International Archives of Occupational and Environmental Health, 1996, 69, 39-44.	1.1	2
108	Peroxidase deficiency of nickel-transformed hamster cells correlates with their increased resistance to cytotoxicity of peroxides. BioMetals, 1996, 9, 151-6.	1.8	1

#	Article	IF	CITATIONS
109	Introduction to the Theme "Old and New Toxicology: Interfaces with Pharmacology― Annual Review of Pharmacology and Toxicology, 2021, 61, 1-7.	4.2	1
110	Longitudinal impact on rat cardiac tissue transcriptomic profiles due to acute intratracheal inhalation exposures to isoflurane. PLoS ONE, 2021, 16, e0257241.	1.1	1
111	Epigenomics: Pioneering a New Frontier in Cancer Research. Journal of Pharmacogenomics & Pharmacoproteomics, 2012, 03, .	0.2	1
112	Longitudinal Impact of WTC Dust Inhalation on Rat Cardiac Tissue Transcriptomic Profiles. International Journal of Environmental Research and Public Health, 2022, 19, 919.	1.2	1
113	Assays for DNA Damage. Current Protocols in Toxicology / Editorial Board, Mahin D Maines (editor-in-chief) [et Al], 1999, 2, Unit3.5.	1.1	Ο
114	Cell Transformation Assays. Current Protocols in Toxicology / Editorial Board, Mahin D Maines (editor-in-chief) [et Al], 1999, 1, Unit3.4.	1.1	0
115	Detecting Epigenetic Changes: DNA Methylation. Current Protocols in Toxicology / Editorial Board, Mahin D Maines (editor-in-chief) [et Al], 2000, 3, Unit3.6.	1.1	Ο
116	Chromatin Memory in the Development of Human Cancers. Gene Technology, 2014, 3, 114.	0.5	0