
Marilia Cerqueira Leite Seelaender

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7181110/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Costly immunometabolic remodelling in disused muscle buildup through physical exercise. Acta Physiologica, 2022, 234, e13782.	1.8	5
2	Erratum to "Persistent symptoms and decreased health-related quality of life after symptomatic pediatric COVID-19: A prospective study in a Latin American tertiary hospital―[Clinics. 2021;76:e3511]. Clinics, 2022, 77, 100024.	0.6	0
3	Aging Aggravates Cachexia in Tumor-Bearing Mice. Cancers, 2022, 14, 90.	1.7	7
4	Function Over Mass: A Meta-Analysis on the Importance of Skeletal Muscle Quality in COVID-19 Patients. Frontiers in Nutrition, 2022, 9, 837719.	1.6	16
5	Editorial: Myokines, Adipokines, Cytokines in Muscle Pathophysiology, Volume II. Frontiers in Physiology, 2022, 13, .	1.3	1
6	Coronavirus Disease 2019 (COVID-19) and Nutritional Status: The Missing Link?. Advances in Nutrition, 2021, 12, 682-692.	2.9	66
7	Myokines in treatment-naÃ ⁻ ve patients with cancer-associated cachexia. Clinical Nutrition, 2021, 40, 2443-2455.	2.3	20
8	Sex dimorphism in inflammatory response to obesity in childhood. International Journal of Obesity, 2021, 45, 879-887.	1.6	8
9	Post-acute sequelae of SARS-CoV-2 infection (PASC): a protocol for a multidisciplinary prospective observational evaluation of a cohort of patients surviving hospitalisation in Sao Paulo, Brazil. BMJ Open, 2021, 11, e051706.	0.8	23
10	Activation of the Adipose Tissue NLRP3 Inflammasome Pathway in Cancer Cachexia. Frontiers in Immunology, 2021, 12, 729182.	2.2	4
11	Persistent symptoms and decreased health-related quality of life after symptomatic pediatric COVID-19: A prospective study in a Latin American tertiary hospital. Clinics, 2021, 76, e3511.	0.6	34
12	Omega-3 Fatty Acid Supplementation and Its Impact on Systemic Inflammation and Body Weight in Patients With Cancer Cachexia—A Systematic Review and Meta-Analysis. Frontiers in Nutrition, 2021, 8, 797513.	1.6	8
13	COVID-19 Outcome Relates With Circulating BDNF, According to Patient Adiposity and Age. Frontiers in Nutrition, 2021, 8, 784429.	1.6	26
14	High levels of modified ceramides are a defining feature of murine and human cancer cachexia. Journal of Cachexia, Sarcopenia and Muscle, 2020, 11, 1459-1475.	2.9	26
15	Editorial: Myokines, Adipokines, Cytokines in Muscle Pathophysiology. Frontiers in Physiology, 2020, 11, 592856.	1.3	10
16	Immediate effects of a real moderate interval-running training session on inflammatory profile. Cytokine, 2020, 133, 155150.	1.4	2
17	Plasma Lipid Profile and Systemic Inflammation in Patients With Cancer Cachexia. Frontiers in Nutrition, 2020, 7, 4.	1.6	33
18	The Relevance of Thimet Oligopeptidase in the Regulation of Energy Metabolism and Diet-Induced Obesity. Biomolecules, 2020, 10, 321.	1.8	13

#	Article	IF	CITATIONS
19	Displaced Myonuclei in Cancer Cachexia Suggest Altered Innervation. International Journal of Molecular Sciences, 2020, 21, 1092.	1.8	25
20	Win 55,212-2, atenolol and subdiaphragmatic vagotomy prevent acceleration of gastric emptying induced by cachexia via Yoshida-AH-130Âcells in rats. European Journal of Pharmacology, 2020, 877, 173087.	1.7	4
21	Tumor Microenvironment Autophagic Processes and Cachexia: The Missing Link?. Frontiers in Oncology, 2020, 10, 617109.	1.3	6
22	Sex-Dependent Dyslipidemia and Neuro-Humoral Alterations Leading to Further Cardiovascular Risk in Juvenile Obesity. Frontiers in Nutrition, 2020, 7, 613301.	1.6	1
23	Cancer cachexia induces morphological and inflammatory changes in the intestinal mucosa. Journal of Cachexia, Sarcopenia and Muscle, 2019, 10, 1116-1127.	2.9	36
24	Tumourâ€derived transforming growth factorâ€Î² signalling contributes to fibrosis in patients with cancer cachexia. Journal of Cachexia, Sarcopenia and Muscle, 2019, 10, 1045-1059.	2.9	38
25	Human Cachexia Induces Changes in Mitochondria, Autophagy and Apoptosis in the Skeletal Muscle. Cancers, 2019, 11, 1264.	1.7	77
26	A diet including xanthan gum triggers a pro-inflammatory response in Wistar rats inoculated with Walker 256 cells. PLoS ONE, 2019, 14, e0218567.	1.1	2
27	The Mechanical Stimulation of Myotubes Counteracts the Effects of Tumor-Derived Factors Through the Modulation of the Activin/Follistatin Ratio. Frontiers in Physiology, 2019, 10, 401.	1.3	23
28	Chia flour (Salvia hispanica L.) did not improve the deleterious aspects of hyperlipidic diet ingestion on glucose metabolism, but worsened glycaemia in mice. Food Research International, 2019, 121, 641-647.	2.9	8
29	Vitamin D, muscle recovery, sarcopenia, cachexia, and muscle atrophy. Nutrition, 2019, 60, 66-69.	1.1	75
30	Liver lipid metabolism disruption in cancer cachexia is aggravated by cla supplementation -induced inflammation. Clinical Nutrition, 2019, 38, 2219-2230.	2.3	20
31	Association between ANGPTL-4 and the proinflammatory process in cancer cachexia patients. Oncotarget, 2019, 10, 6444-6455.	0.8	4
32	Peritumoural adipose tissue proâ€inflammatory cytokines are associated with tumoural growth factors in cancer cachexia patients. Journal of Cachexia, Sarcopenia and Muscle, 2018, 9, 1101-1108.	2.9	23
33	Diet Supplemented with Chia Flour did not Modified the Inflammatory Process and Tumor Development in Wistar Rats Inoculated with Walker 256 Cells. Nutrition and Cancer, 2018, 70, 1007-1016.	0.9	2
34	Metformin Mitigates Fibrosis and Glucose Intolerance Induced by Doxorubicin in Subcutaneous Adipose Tissue. Frontiers in Pharmacology, 2018, 9, 452.	1.6	16
35	Genetic susceptibility to pre diabetes mellitus and related association with obesity and physical fitness components in Mexican-Mestizos. Primary Care Diabetes, 2018, 12, 416-424.	0.9	8
36	Physical exercise contributes to cisplatin-induced nephrotoxicity protection with decreased CD4+ T cells activation. Molecular Immunology, 2018, 101, 507-513.	1.0	14

#	Article	IF	CITATIONS
37	White adipose tissue IFN-Î ³ expression and signalling along the progression of rodent cancer cachexia. Cytokine, 2017, 89, 122-126.	1.4	13
38	Early suppression of adipocyte lipid turnover induces immunometabolic modulation in cancer cachexia syndrome. FASEB Journal, 2017, 31, 1976-1986.	0.2	22
39	Assessing pathophysiology of cancer anorexia. Current Opinion in Clinical Nutrition and Metabolic Care, 2017, 20, 340-345.	1.3	13
40	Dectin-1 Activation Exacerbates Obesity and Insulin Resistance in the Absence of MyD88. Cell Reports, 2017, 19, 2272-2288.	2.9	36
41	Genetic Obesity Risk and Attenuation Effect of Physical Fitness in Mexican-Mestizo Population: a Case-Control Study. Annals of Human Genetics, 2017, 81, 106-116.	0.3	14
42	Adipose tissue fibrosis in human cancer cachexia: the role of TGFβ pathway. BMC Cancer, 2017, 17, 190.	1.1	65
43	Human CD40 ligand deficiency dysregulates the macrophage transcriptome causing functional defects that are improved by exogenous IFN-1 ³ . Journal of Allergy and Clinical Immunology, 2017, 139, 900-912.e7.	1.5	27
44	Lipases and lipid droplet-associated protein expression in subcutaneous white adipose tissue of cachectic patients with cancer. Lipids in Health and Disease, 2017, 16, 159.	1.2	27
45	Role of Exosomal MicroRNAs and myomiRs in the Development of Cancer Cachexia-Associated Muscle Wasting. Frontiers in Nutrition, 2017, 4, 69.	1.6	42
46	Abstract 451: Germ free mice accelerate cachexia-associated cancer. , 2017, , .		0
47	Fish Oil Supplementation and Cancer Cachexia. , 2016, , 283-289.		1
48	Thyroid hormone reduces inflammatory cytokines improving glycaemia control in alloxanâ€induced diabetic wistar rats. Acta Physiologica, 2016, 217, 130-140.	1.8	27
49	FRI0029â€Human CD40l Deficiency Dysregulates The Macrophage Transcriptome Causing Functional Defects That Are Improved by Exogenous IFN-Gamma. Annals of the Rheumatic Diseases, 2016, 75, 436.1-436.	0.5	0
50	Cachexia-associated adipose tissue morphological rearrangement in gastrointestinal cancer patients. Journal of Cachexia, Sarcopenia and Muscle, 2016, 7, 37-47.	2.9	89
51	Pequi (Caryocar brasiliense Camb.) almond oil attenuates carbon tetrachloride-induced acute hepatic injury in rats: Antioxidant and anti-inflammatory effects. Food and Chemical Toxicology, 2016, 97, 205-216.	1.8	69
52	Exploratory studies of the potential anti-cancer effects of creatine. Amino Acids, 2016, 48, 1993-2001.	1.2	27
53	White adipose tissue cells and the progression of cachexia: inflammatory pathways. Journal of Cachexia, Sarcopenia and Muscle, 2016, 7, 193-203.	2.9	44
54	The therapeutic potential of exercise to treat cachexia. Current Opinion in Supportive and Palliative Care, 2015, 9, 317-324.	0.5	41

#	Article	IF	CITATIONS
55	NF-κBp65 and Expression of Its Pro-Inflammatory Target Genes Are Upregulated in the Subcutaneous Adipose Tissue of Cachectic Cancer Patients. Nutrients, 2015, 7, 4465-4479.	1.7	33
56	Systemic Inflammation in Cachexia – Is Tumor Cytokine Expression Profile the Culprit?. Frontiers in Immunology, 2015, 6, 629.	2.2	70
57	Pioglitazone Treatment Increases Survival and Prevents Body Weight Loss in Tumor–Bearing Animals: Possible Anti-Cachectic Effect. PLoS ONE, 2015, 10, e0122660.	1.1	29
58	Cancer Cachexia and MicroRNAs. Mediators of Inflammation, 2015, 2015, 1-5.	1.4	23
59	Inflammation in the Disease: Mechanism and Therapies 2014. Mediators of Inflammation, 2015, 2015, 1-2.	1.4	7
60	Inflammation in Cachexia. Mediators of Inflammation, 2015, 2015, 1-2.	1.4	22
61	Decaffeinated green tea extract rich in epigallocatechin-3-gallate prevents fatty liver disease by increased activities of mitochondrial respiratory chain complexes in diet-induced obesity mice. Journal of Nutritional Biochemistry, 2015, 26, 1348-1356.	1.9	72
62	Decaffeinated green tea extract rich in epigallocatechin-3-gallate improves insulin resistance and metabolic profiles in normolipidic diet—but not high-fat diet-fed mice. Journal of Nutritional Biochemistry, 2015, 26, 893-902.	1.9	28
63	Neurolysin Knockout Mice Generation and Initial Phenotype Characterization. Journal of Biological Chemistry, 2014, 289, 15426-15440.	1.6	41
64	Adipose tissue inflammation and cancer cachexia: the role of steroid hormones. Hormone Molecular Biology and Clinical Investigation, 2014, 17, 5-12.	0.3	10
65	Exercise training as treatment in cancer cachexia. Applied Physiology, Nutrition and Metabolism, 2014, 39, 679-686.	0.9	64
66	Simple Management of High Assurance Data in Long-Lived Interdisciplinary Healthcare Research: A Proposal. Lecture Notes in Computer Science, 2014, , 526-544.	1.0	6
67	Long-Term Aerobic Exercise Protects against Cisplatin-Induced Nephrotoxicity by Modulating the Expression of IL-6 and HO-1. PLoS ONE, 2014, 9, e108543.	1.1	35
68	Resistance exercise modulates lipid plasma profile and cytokine content in the adipose tissue of tumour-bearing rats. Cytokine, 2013, 61, 426-432.	1.4	63
69	Adipose tissue-derived factors as potential biomarkers in cachectic cancer patients. Cytokine, 2013, 61, 532-539.	1.4	89
70	Cessation of physical exercise changes metabolism and modifies the adipocyte cellularity of the periepididymal white adipose tissue in rats. Journal of Applied Physiology, 2013, 115, 394-402.	1.2	21
71	211. Cytokine, 2013, 63, 293.	1.4	0
72	Inflammation in Disease: Mechanism and Therapies. Mediators of Inflammation, 2013, 2013, 1-1.	1.4	0

#	Article	IF	CITATIONS
73	Exercise Training Decreases Adipose Tissue Inflammation in Cachectic Rats. Hormone and Metabolic Research, 2012, 44, 91-98.	0.7	43
74	Exercise Intensity Modulation of Hepatic Lipid Metabolism. Journal of Nutrition and Metabolism, 2012, 2012, 1-8.	0.7	34
75	Heterogeneous time-dependent response of adipose tissue during the development of cancer cachexia. Journal of Endocrinology, 2012, 215, 363-373.	1.2	61
76	Inflammation in cancer cachexia: To resolve or not to resolve (is that the question?). Clinical Nutrition, 2012, 31, 562-566.	2.3	38
77	Both adiponectin and interleukin-10 inhibit LPS-induced activation of the NF-ήB pathway in 3T3-L1 adipocytes. Cytokine, 2012, 57, 98-106.	1.4	76
78	Adipose tissue inflammation and cancer cachexia: Possible role of nuclear transcription factors. Cytokine, 2012, 57, 9-16.	1.4	79
79	Long-term interdisciplinary therapy reduces endotoxin level and insulin resistance in obese adolescents. Nutrition Journal, 2012, 11, 74.	1.5	24
80	Renewed Avenues through Exercise Muscle Contractility and Inflammatory Status. Scientific World Journal, The, 2012, 2012, 1-7.	0.8	7
81	Neuroinflammation: A Contributing Factor to the Pathogenesis of Cancer Cachexia. Critical Reviews in Oncogenesis, 2012, 17, 247-252.	0.2	15
82	Effects of high-intensity intermittent training on carnitine palmitoyl transferase activity in the gastrocnemius muscle of rats. Brazilian Journal of Medical and Biological Research, 2012, 45, 777-783.	0.7	16
83	Dose and Latency Effects of Leucine Supplementation in Modulating Glucose Homeostasis: Opposite Effects in Healthy and Glucocorticoid-Induced Insulin-Resistance States. Nutrients, 2012, 4, 1851-1867.	1.7	21
84	Liposuction Induces a Compensatory Increase of Visceral Fat Which Is Effectively Counteracted by Physical Activity: A Randomized Trial. Journal of Clinical Endocrinology and Metabolism, 2012, 97, 2388-2395.	1.8	43
85	l-Carnitine induces recovery of liver lipid metabolism in cancer cachexia. Amino Acids, 2012, 42, 1783-1792.	1.2	25
86	Intake of trans fatty acids during gestation and lactation leads to hypothalamic inflammation via TLR4/NFκBp65 signaling in adult offspring. Journal of Nutritional Biochemistry, 2012, 23, 265-271.	1.9	59
87	Carnitine Administration Reduces Cytokine Levels, Improves Food Intake, and Ameliorates Body Composition in Tumor-Bearing Rats. Cancer Investigation, 2011, 29, 696-700.	0.6	25
88	Avaliação citométrica dos adipócitos localizados no tecido subcutâneo da parede anterior do abdome após infiltração percutânea de CO2. Revista Do Colegio Brasileiro De Cirurgioes, 2011, 38, 15-23.	0.3	7
89	Beyond anorexia -cachexia. Nutrition and modulation of cancer patients' metabolism: Supplementary, complementary or alternative anti-neoplastic therapy?. European Journal of Pharmacology, 2011, 668, S87-S90.	1.7	24
90	HMB supplementation: clinical and athletic performance-related effects and mechanisms of action. Amino Acids, 2011, 40, 1015-1025.	1.2	106

MARILIA CERQUEIRA LEITE

#	Article	lF	CITATIONS
91	<scp>l</scp> â€carnitine and cancer cachexia: Clinical and experimental aspects. Journal of Cachexia, Sarcopenia and Muscle, 2011, 2, 37-44.	2.9	52
92	Acute exhaustive exercise regulates IL-2, IL-4 and MyoD in skeletal muscle but not adipose tissue in rats. Lipids in Health and Disease, 2011, 10, 97.	1.2	11
93	Hypothalamic inflammation is reversed by endurance training in anorectic-cachectic rats. Nutrition and Metabolism, 2011, 8, 60.	1.3	33
94	Exhaustive exercise increases inflammatory response via toll like receptorâ€4 and NFâ€₽Bp65 pathway in rat adipose tissue. Journal of Cellular Physiology, 2011, 226, 1604-1607.	2.0	23
95	Oat Bran Reduces Serum Level Of Tumor Necrosis Factor - Alpha In Sedentary And Trained Rats. Medicine and Science in Sports and Exercise, 2010, 42, 518.	0.2	0
96	Treadmill Training Modulates Hepatic Ikb Gene Expression In Normal And Tumour-bearing Rats. Medicine and Science in Sports and Exercise, 2010, 42, 464.	0.2	0
97	Chronic low frequency/low volume resistance training reduces pro-inflammatory cytokine protein levels and TLR4 mRNA in rat skeletal muscle. European Journal of Applied Physiology, 2010, 109, 1095-1102.	1.2	29
98	Sedentary subjects have higher PAI-1 and lipoproteins levels than highly trained athletes. Diabetology and Metabolic Syndrome, 2010, 2, 7.	1.2	39
99	Experimental chronic lowâ€frequency resistance training produces skeletal muscle hypertrophy in the absence of muscle damage and metabolic stress markers. Cell Biochemistry and Function, 2010, 28, 232-238.	1.4	12
100	Low and moderate, rather than high intensity strength exercise induces benefit regarding plasma lipid profile. Diabetology and Metabolic Syndrome, 2010, 2, 31.	1.2	77
101	Is acute supramaximal exercise capable of modulating lipoprotein profile in healthy men?. European Journal of Clinical Investigation, 2010, 40, 759-765.	1.7	9
102	Effects of Dietary Restriction and Chronic Physical Exercise on Adipose Tissue Proinflammatory Cytokines Expression. Medicine and Science in Sports and Exercise, 2010, 42, 518.	0.2	1
103	Alterações na produção de IL-10 e TNF-α no músculo esquelético em ratos com insuficiência cardÃaca secundária ao infarto do miocárdio. Arquivos Brasileiros De Cardiologia, 2010, 94, 313-320.	0.3	9
104	Strain bidimensional na cardiopatia de Takotsubo. Arquivos Brasileiros De Cardiologia, 2010, 95, e35-e37.	0.3	7
105	Exercise Training Reduces PGE ₂ Levels and Induces Recovery from Steatosis in Tumor-bearing Rats. Hormone and Metabolic Research, 2010, 42, 944-949.	0.7	20
106	Conjugated Linoleic Acid: good or bad nutrient. Diabetology and Metabolic Syndrome, 2010, 2, 62.	1.2	12
107	Exercise training changes IL-10/TNF-α ratio in the skeletal muscle of post-MI rats. Cytokine, 2010, 49, 102-108.	1.4	107
108	Depot-specific modulation of adipokine levels in rat adipose tissue by diet-induced obesity: The effect of aerobic training and energy restriction. Cytokine, 2010, 52, 168-174.	1.4	38

#	Article	IF	CITATIONS
109	PS2-05 Heterogeneous response of cytokine levels of rat white adipose tissue in cachexia. Cytokine, 2010, 52, 51.	1.4	0
110	Inflammation and adipose tissue: effects of progressive load training in rats. Lipids in Health and Disease, 2010, 9, 109.	1.2	48
111	Endotoxin levels correlate positively with a sedentary lifestyle and negatively with highly trained subjects. Lipids in Health and Disease, 2010, 9, 82.	1.2	85
112	Caso 4: Mulher de 77 Anos com insuficiência cardÃaca, função sistólica normal do ventrÃculo esquerdo e sinais de cardiopatia restritiva. Arquivos Brasileiros De Cardiologia, 2010, 95, 27-34.	0.3	0
113	Efeito anti-inflamatório do treinamento fÃsico na insuficiência cardÃaca: papel do TNF-α e da IL-10. Arquivos Brasileiros De Cardiologia, 2009, 93, 692-700.	0.3	10
114	Effects of Exercise Training on Hepatic Microsomal Triglyceride Transfer Protein Content in Rats. Hormone and Metabolic Research, 2009, 41, 287-293.	0.7	22
115	Regulation of inflammation in the adipose tissue in cancer cachexia: effect of exercise. Cell Biochemistry and Function, 2009, 27, 71-75.	1.4	68
116	Chronic exercise decreases cytokine production in healthy rat skeletal muscle. Cell Biochemistry and Function, 2009, 27, 458-461.	1.4	65
117	Chronic resistance training decreases MuRF-1 and Atrogin-1 gene expression but does not modify Akt, GSK-3Î ² and p70S6K levels in rats. European Journal of Applied Physiology, 2009, 106, 415-423.	1.2	43
118	Exhaustive exercise causes an anti-inflammatory effect in skeletal muscle and a pro-inflammatory effect in adipose tissue in rats. European Journal of Applied Physiology, 2009, 106, 697-704.	1.2	76
119	Acute high-intensity exercise with low energy expenditure reduced LDL-c and total cholesterol in men. European Journal of Applied Physiology, 2009, 107, 203-210.	1.2	28
120	Endurance training induces depot-specific changes in IL-10/TNF-α ratio in rat adipose tissue. Cytokine, 2009, 45, 80-85.	1.4	89
121	Hepatic denervation impairs the assembly and secretion of VLDLâ€₹AG. Cell Biochemistry and Function, 2008, 26, 557-565.	1.4	19
122	Effect of endurance training upon lipid metabolism in the liver of cachectic tumourâ€bearing rats. Cell Biochemistry and Function, 2008, 26, 701-708.	1.4	45
123	Neural control of the anorexia-cachexia syndrome. American Journal of Physiology - Endocrinology and Metabolism, 2008, 295, E1000-E1008.	1.8	105
124	Endurance Training Modulates Lymphocyte Function in Rats with Post-MI CHF. Medicine and Science in Sports and Exercise, 2008, 40, 549-556.	0.2	13
125	Influência do treinamento fÃsico aeróbio no transporte mitocondrial de ácidos graxos de cadeia longa no músculo esquelético: papel do complexo carnitina palmitoil transferase. Revista Brasileira De Medicina Do Esporte, 2008, 14, 150-154.	0.1	5
126	Reduced Maximal Oxygen Consumption and Overproduction of Proinflammatory Cytokines in Athletes. NeuroImmunoModulation, 2007, 14, 304-309.	0.9	2

#	Article	IF	CITATIONS
127	Endurance training restores peritoneal macrophage function in post-MI congestive heart failure rats. Journal of Applied Physiology, 2007, 102, 2033-2039.	1.2	31
128	36 Stimulatory and Inhibitory Effects of TNF-Î \pm on Melatonin Synthesis in the Pineal Gland. Cytokine, 2007, 39, 10.	1.4	0
129	β-Hydoxy-β-methylbutyrate supplementation affects Walker 256 tumor-bearing rats in a time-dependent manner. Clinical Nutrition, 2007, 26, 117-122.	2.3	28
130	Changes in the pro-inflammatory cytokine production and peritoneal macrophage function in rats with chronic heart failure. Cytokine, 2006, 34, 284-290.	1.4	32
131	1110. Medicine and Science in Sports and Exercise, 2006, 38, S123.	0.2	0
132	Lipid metabolism in trained rats: Effect of guarana (Mart.) supplementation. Clinical Nutrition, 2005, 24, 1019-1028.	2.3	39
133	Cancer cachexia modifies the zonal distribution of lipid metabolism-related proteins in rat liver. Cell and Tissue Research, 2005, 321, 419-427.	1.5	18
134	Adipose tissue in Walker 256 tumour-induced cachexia: possible association between decreased leptin concentration and mononuclear cell infiltration. Cell and Tissue Research, 2004, 318, 503-514.	1.5	52
135	Liver denervation affects hepatocyte mitochondrial fatty acid transport capacity. Cell Biochemistry and Function, 2004, 22, 9-17.	1.4	32
136	Exercise Restores Immune Cell Function in Energy-Restricted Rats. Medicine and Science in Sports and Exercise, 2004, 36, 2059-2064.	0.2	24
137	Rat Myocellular and Perimysial Intramuscular Triacylglycerol: A Histological Approach. Medicine and Science in Sports and Exercise, 2004, 36, 60-67.	0.2	19
138	Heterogeneous response of adipose tissue to cancer cachexia. Brazilian Journal of Medical and Biological Research, 2001, 34, 1161-1167.	0.7	22
139	Effect of a moderate intensity exercise training protocol on the metabolism of macrophages and lymphocytes of tumour-bearing rats. Cell Biochemistry and Function, 2000, 18, 249-258.	1.4	64
140	The effect of adrenaline and Walker-256 tumour-induced cachexia upon Kupffer cell metabolism. , 1999, 17, 151-156.		14
141	The effect of Walker-256 tumour development upon Kupffer cell metabolism. , 1998, 16, 195-202.		4
142	Decreased secretion of very-low-density lipoprotein triacylglycerol and apolipoprotein B is associated with decreased intracellular triacylglycerol lipolysis in hepatocytes derived from rats fed orotic acid or n–3 fatty acids. Biochemical Journal, 1997, 325, 711-719.	1.7	35