
Ina C Meier

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/718056/publications.pdf Version: 2024-02-01

INA C MEIED

#	Article	IF	CITATIONS
1	The fungal collaboration gradient dominates the root economics space in plants. Science Advances, 2020, 6, .	10.3	377
2	Root traits as drivers of plant and ecosystem functioning: current understanding, pitfalls and future research needs. New Phytologist, 2021, 232, 1123-1158.	7.3	277
3	Roots and fungi accelerate carbon and nitrogen cycling in forests exposed to elevated CO ₂ . Ecology Letters, 2012, 15, 1042-1049.	6.4	251
4	Root exudates increase N availability by stimulating microbial turnover of fast-cycling N pools. Soil Biology and Biochemistry, 2017, 106, 119-128.	8.8	222
5	A starting guide to root ecology: strengthening ecological concepts and standardising root classification, sampling, processing and trait measurements. New Phytologist, 2021, 232, 973-1122.	7.3	216
6	Belowground drought response of European beech: fine root biomass and carbon partitioning in 14 mature stands across a precipitation gradient. Global Change Biology, 2008, 14, 2081-2095.	9.5	187
7	Surplus Carbon Drives Allocation and Plant–Soil Interactions. Trends in Ecology and Evolution, 2020, 35, 1110-1118.	8.7	171
8	An integrated framework of plant form and function: the belowground perspective. New Phytologist, 2021, 232, 42-59.	7.3	153
9	Genotypic variation and phenotypic plasticity in the drought response of fine roots of European beech. Tree Physiology, 2008, 28, 297-309.	3.1	134
10	Leaf Size and Leaf Area Index in Fagus sylvatica Forests: Competing Effects of Precipitation, Temperature, and Nitrogen Availability. Ecosystems, 2008, 11, 655-669.	3.4	133
11	Root Exudates Induce Soil Macroaggregation Facilitated by Fungi in Subsoil. Frontiers in Environmental Science, 2018, 6, .	3.3	128
12	On the niche breadth ofFagus sylvatica: soil nutrient status in 50 Central European beech stands on a broad range of bedrock types. Annals of Forest Science, 2006, 63, 355-368.	2.0	126
13	Variation of soil and biomass carbon pools in beech forests across a precipitation gradient. Global Change Biology, 2010, 16, 1035-1045.	9.5	101
14	Root Branching Is a Leading Root Trait of the Plant Economics Spectrum in Temperate Trees. Frontiers in Plant Science, 2017, 8, 315.	3.6	90
15	Global root traits (GRooT) database. Global Ecology and Biogeography, 2021, 30, 25-37.	5.8	90
16	The rhizosphere and hyphosphere differ in their impacts on carbon and nitrogen cycling in forests exposed to elevated <scp>CO</scp> ₂ . New Phytologist, 2015, 205, 1164-1174.	7.3	84
17	The mycorrhizal type governs root exudation and nitrogen uptake of temperate tree species. Tree Physiology, 2018, 38, 83-95.	3.1	84
18	Root exudation of mature beech forests across a nutrient availability gradient: the role of root morphology and fungal activity. New Phytologist, 2020, 226, 583-594.	7.3	84

INA C MEIER

#	Article	IF	CITATIONS
19	Root exudation patterns in a beech forest: Dependence on soil depth, root morphology, and environment. Soil Biology and Biochemistry, 2017, 107, 188-197.	8.8	83
20	The handbook for standardized field and laboratory measurements in terrestrial climate change experiments and observational studies (ClimEx). Methods in Ecology and Evolution, 2020, 11, 22-37.	5.2	68
21	Ectomycorrhizal fungal diversity increases phosphorus uptake efficiency of European beech. New Phytologist, 2018, 220, 1200-1210.	7.3	66
22	Root traits explain plant species distributions along climatic gradients yet challenge the nature of ecological trade-offs. Nature Ecology and Evolution, 2021, 5, 1123-1134.	7.8	62
23	Fungal communities influence root exudation rates in pine seedlings. FEMS Microbiology Ecology, 2013, 83, 585-595.	2.7	60
24	Recent Climate Warming-Related Growth Decline Impairs European Beech in the Center of Its Distribution Range. Ecosystems, 2017, 20, 1494-1511.	3.4	55
25	The ecology of Central European tree species: Trait spectra, functional trade-offs, and ecological classification of adult trees. Perspectives in Plant Ecology, Evolution and Systematics, 2018, 33, 89-103.	2.7	52
26	Does reduced precipitation trigger physiological and morphological drought adaptations in European beech (<i>Fagus sylvatica</i> L.)? Comparing provenances across a precipitation gradient. Tree Physiology, 2015, 35, 949-963.	3.1	51
27	Growing Research Networks on Mycorrhizae for Mutual Benefits. Trends in Plant Science, 2018, 23, 975-984.	8.8	51
28	Nutrient return with leaf litter fall in Fagus sylvatica forests across a soil fertility gradient. Plant Ecology, 2005, 177, 99-112.	1.6	45
29	Intra-specific variations in expression of stress-related genes in beech progenies are stronger than drought-induced responses. Tree Physiology, 2014, 34, 1348-1361.	3.1	40
30	Increased root oxygen uptake in pea plants responding to non-self neighbors. Planta, 2013, 238, 577-586.	3.2	34
31	The Deep Root System of Fagus sylvatica on Sandy Soil: Structure and Variation Across a Precipitation Gradient. Ecosystems, 2018, 21, 280-296.	3.4	27
32	Belowground Biodiversity Relates Positively to Ecosystem Services of European Forests. Frontiers in Forests and Global Change, 2019, 2, .	2.3	24
33	Nutrient dynamics along a precipitation gradient in European beech forests. Biogeochemistry, 2014, 120, 51-69.	3.5	23
34	The effect of drought and season on root life span in temperate arbuscular mycorrhizal and ectomycorrhizal tree species. Journal of Ecology, 2019, 107, 2226-2239.	4.0	23
35	Relationship between species diversity, biomass and light transmittance in temperate semiâ€natural grasslands: is productivity enhanced by complementary light capture?. Journal of Vegetation Science, 2016, 27, 144-155.	2.2	18
36	Species-specific effects of temperate trees on greenhouse gas exchange of forest soil are diminished by drought. Soil Biology and Biochemistry, 2016, 95, 122-134.	8.8	13

INA C MEIER

#	Article	IF	CITATIONS
37	The Phosphorus Economy of Mediterranean Oak Saplings Under Global Change. Frontiers in Plant Science, 2019, 10, 405.	3.6	8
38	Editorial: Woody Plants and Forest Ecosystems in a Complex World—Ecological Interactions and Physiological Functioning Above and Below Ground. Frontiers in Plant Science, 2020, 11, 173.	3.6	7
39	Representing root physiological traits in the root economic space framework. New Phytologist, 2022, 234, 773-775.	7.3	7
40	Rhizosphere †Trade' Is an Unnecessary Analogy: Response to Noë. Trends in Ecology and Evolution, 2021, 36, 176-177.	8.7	4
41	An Intact Soil Core Bioassay for Cultivating Forest Ectomycorrhizal Fungal Communities. , 2017, , 173-190.		1
42	Drought Deteriorates the N Stoichiometry of Biomass Production in European Beech Saplings Under Global Change. Frontiers in Forests and Global Change, 2021, 4, .	2.3	1