
Beneesh P Babu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/71804/publications.pdf Version: 2024-02-01

RENEESH D RARII

#	Article	IF	CITATIONS
1	Recent advances in carbon–carbon bond-forming reactions involving homoenolates generated by NHC catalysis. Chemical Society Reviews, 2008, 37, 2691.	38.1	605
2	Carbon–Nitrogen Bondâ€Forming Reactions of Dialkyl Azodicarboxylate: A Promising Synthetic Strategy. Chemistry - an Asian Journal, 2008, 3, 810-820.	3.3	119
3	Stereoselective synthesis of spirocyclopentanones viaN-heterocyclic carbene-catalyzed reactions of enals and dienones. Chemical Communications, 2008, , 747-749.	4.1	88
4	Nucleophilic Heterocyclic Carbene Catalyzed Annulation of Enals to Chalcones in Methanol: A Stereoselective Synthesis of Highly Functionalized Cyclopentanes. Organic Letters, 2009, 11, 2507-2510.	4.6	84
5	Novel Nucleophilic Heterocyclic Carbene Mediated Stereoselective Conjugate Addition of Enals to Nitrostyrenes via Homoenolate. Organic Letters, 2009, 11, 5570-5573.	4.6	76
6	A Novel Multicomponent Reaction Involving Isocyanide, Dimethyl Acetylenedicarboxylate (DMAD), and Electrophilic Styrenes:  Facile Synthesis of Highly Substituted Cyclopentadienes. Organic Letters, 2004, 6, 767-769.	4.6	72
7	Progress in Electrochemical Trifluoromethylation Reactions. Advanced Synthesis and Catalysis, 2020, 362, 5219-5237.	4.3	72
8	Aerobic Oxidative Coupling of Arenes and Olefins through a Biomimetic Approach. Chemistry - A European Journal, 2013, 19, 4140-4145.	3.3	61
9	Reaction of Dimethoxycarbeneâ^'DMAD Zwitterion with 1,2-Diones and Anhydrides:Â A Novel Synthesis of Highly Substituted Dihydrofurans and Spirodihydrofurans. Journal of Organic Chemistry, 2006, 71, 2313-2319.	3.2	44
10	A novel pseudo four component reaction involving homoenolate for the synthesis of γ-aminobutyric acid (GABA) derivatives. Organic and Biomolecular Chemistry, 2010, 8, 761.	2.8	44
11	Biomimetic Aerobic Oxidation of Amino Alcohols to Lactams. Chemistry - A European Journal, 2012, 18, 11524-11527.	3.3	40
12	Synthesis of Furans – Recent Advances. Organic Preparations and Procedures International, 2019, 51, 409-442.	1.3	37
13	A Novel Three-Component Reaction of Triphenylphosphine, DMAD, and Electron-Deficient Styrenes: Facile Synthesis of Cyclopentenyl Phosphoranes. Synthesis, 2006, 2006, 1443-1446.	2.3	36
14	The multicomponent reaction of dimethoxycarbene, dimethyl butynedioate and electrophilic styrenes: an unprecedented synthesis of highly substituted cyclopentenone acetals. Tetrahedron Letters, 2005, 46, 201-203.	1.4	28
15	NHC-catalysed annulation of enals to tethered dienones: efficient synthesis of bicyclic dienes. Organic and Biomolecular Chemistry, 2010, 8, 4861.	2.8	28
16	Engaging the Pyridine-DMAD Zwitterion in a Novel Strategy for the Selective Synthesis of Highly Substituted Benzene and Cyclopentenedione Derivativesâ€. Organic Letters, 2005, 7, 4625-4628.	4.6	27
17	A novel multicomponent reaction involving isoquinoline, allenoate and cyanoacrylates. Tetrahedron Letters, 2009, 50, 3716-3718.	1.4	19
18	Functionalizable 1 <i>H</i> â€Indazoles by Palladium Catalyzed Azaâ€Nenitzescu Reaction: Pharmacophores to Donorâ€Acceptor Type Multiâ€Luminescent Fluorophores. Asian Journal of Organic Chemistry, 2018, 7, 2094-2104.	2.7	19

Beneesh P Babu

#	Article	IF	CITATIONS
19	Transitionâ€Metal atalyzed Syntheses of Indazoles. Asian Journal of Organic Chemistry, 2020, 9, 1410-1431.	2.7	13
20	Metalâ€Free Synthesis of Pyrazoles and Chromenopyrazoles from Hydrazones and Acetylenic Esters. ChemistrySelect, 2020, 5, 4822-4825.	1.5	11
21	A Facile Multicomponent Reaction Involving Isoquinoline, Dimethyl Allenedicarboxylate, and 2-Oxo-1H-indol-3-ylidenes. Synthesis, 2012, 44, 417-422.	2.3	8
22	Synthesis of hybrid polycycles containing fused hydroxy benzofuran and 1H-indazoles via a domino cyclization reaction. New Journal of Chemistry, 2019, 43, 10166-10175.	2.8	8
23	Metal free synthesis of 1â€azaspiro[4.4]nonaneâ€3â€one system via reactions of nitrones with 1,1â€disubstituted allenes. Journal of Heterocyclic Chemistry, 2019, 56, 3236-3243.	2.6	7
24	Synthesis of functionalized benzo[1,3]dioxin-4-ones from salicylic acid and acetylenic esters and their direct amidation. RSC Advances, 2021, 11, 24570-24574.	3.6	5
25	Nitrone cycloaddition to quinones: A novel strategy for the synthesis of benzisoxazolidenes. Journal of Heterocyclic Chemistry, 2010, 47, 396-399.	2.6	2
26	Poster Session I Abstracts. Medicinal Chemistry Research, 2006, 15, 95-190.	2.4	0