
Sang-Hoon Park

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7180300/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Oxidation Stability of Colloidal Two-Dimensional Titanium Carbides (MXenes). Chemistry of Materials, 2017, 29, 4848-4856.	3.2	1,120
2	Transparent, Flexible, and Conductive 2D Titanium Carbide (MXene) Films with High Volumetric Capacitance. Advanced Materials, 2017, 29, 1702678.	11.1	756
3	Additive-free MXene inks and direct printing of micro-supercapacitors. Nature Communications, 2019, 10, 1795.	5.8	649
4	Stamping of Flexible, Coplanar Microâ€ s upercapacitors Using MXene Inks. Advanced Functional Materials, 2018, 28, 1705506.	7.8	427
5	A Commercial Conducting Polymer as Both Binder and Conductive Additive for Silicon Nanoparticle-Based Lithium-Ion Battery Negative Electrodes. ACS Nano, 2016, 10, 3702-3713.	7.3	394
6	High areal capacity battery electrodes enabled by segregated nanotube networks. Nature Energy, 2019, 4, 560-567.	19.8	281
7	High capacity silicon anodes enabled by MXene viscous aqueous ink. Nature Communications, 2019, 10, 849.	5.8	253
8	Highly flexible and transparent solid-state supercapacitors based on RuO2/PEDOT:PSS conductive ultrathin films. Nano Energy, 2016, 28, 495-505.	8.2	247
9	Quantifying the factors limiting rateÂperformance in battery electrodes. Nature Communications, 2019, 10, 1933.	5.8	185
10	Solid-state microwave irradiation synthesis of high quality graphenenanosheets under hydrogen containing atmosphere. Journal of Materials Chemistry, 2011, 21, 680-686.	6.7	138
11	Liquid exfoliation of interlayer spacing-tunable 2D vanadium oxide nanosheets: High capacity and rate handling Li-ion battery cathodes. Nano Energy, 2017, 39, 151-161.	8.2	123
12	Spray-Assisted Deep-Frying Process for the In Situ Spherical Assembly of Graphene for Energy-Storage Devices. Chemistry of Materials, 2015, 27, 457-465.	3.2	92
13	Enabling Flexible Heterostructures for Liâ€lon Battery Anodes Based on Nanotube and Liquidâ€Phase Exfoliated 2D Gallium Chalcogenide Nanosheet Colloidal Solutions. Small, 2017, 13, 1701677.	5.2	71
14	In situ chemical synthesis of ruthenium oxide/reduced graphene oxide nanocomposites for electrochemical capacitor applications. Nanoscale, 2013, 5, 6804.	2.8	69
15	Morphology-controlled graphene nanosheets as anode material for lithium-ion batteries. Electrochimica Acta, 2014, 132, 172-179.	2.6	55
16	Self-assembly of Si entrapped graphene architecture for high-performance Li-ion batteries. Electrochemistry Communications, 2013, 34, 117-120.	2.3	48
17	In Situ Synthesis of Three-Dimensional Self-Assembled Metal Oxide–Reduced Graphene Oxide Architecture. Chemistry of Materials, 2014, 26, 4838-4843.	3.2	47
18	Microwave-polyol synthesis of nanocrystalline ruthenium oxide nanoparticles on carbon nanotubes for electrochemical capacitors. Electrochimica Acta, 2010, 55, 8056-8061.	2.6	45

SANG-HOON PARK

#	Article	IF	CITATIONS
19	Quantifying the Tradeâ€Off between Absolute Capacity and Rate Performance in Battery Electrodes. Advanced Energy Materials, 2019, 9, 1901359.	10.2	43
20	Liquid Exfoliated SnP ₃ Nanosheets for Very High Areal Capacity Lithiumâ€lon Batteries. Advanced Energy Materials, 2021, 11, 2002364.	10.2	40
21	Extra lithium-ion storage capacity enabled by liquid-phase exfoliated indium selenide nanosheets conductive network. Energy and Environmental Science, 2020, 13, 2124-2133.	15.6	35
22	Three-dimensional graphene-based spheres and crumpled balls: micro- and nano-structures, synthesis strategies, properties and applications. RSC Advances, 2016, 6, 50941-50967.	1.7	33
23	Spine-like Nanostructured Carbon Interconnected by Graphene for High-performance Supercapacitors. Scientific Reports, 2014, 4, 6118.	1.6	28
24	TiO ₂ -Based Nanomaterials for the Production of Hydrogen and the Development of Lithium-Ion Batteries. Journal of Physical Chemistry B, 2018, 122, 972-983.	1.2	28
25	High-coulombic-efficiency Si-based hybrid microspheres synthesized by the combination of graphene and IL-derived carbon. Journal of Materials Chemistry A, 2015, 3, 20935-20943.	5.2	26
26	Nanosheet-assembled 3D nanoflowers of ruthenium oxide with superior rate performance for supercapacitor applications. RSC Advances, 2014, 4, 16115-16120.	1.7	23
27	Template-Free Synthesis of Ruthenium Oxide Nanotubes for High-Performance Electrochemical Capacitors. ACS Applied Materials & Interfaces, 2015, 7, 16686-16693.	4.0	22
28	Co3O4-reduced graphene oxide nanocomposite synthesized by microwave-assisted hydrothermal process for Li-ion batteries. Electronic Materials Letters, 2015, 11, 282-287.	1.0	20
29	Lithium Titanate/Carbon Nanotubes Composites Processed by Ultrasound Irradiation as Anodes for Lithium Ion Batteries. Scientific Reports, 2017, 7, 7614.	1.6	17
30	Morphology control of three-dimensional carbon nanotube macrostructures fabricated using ice-templating method. Journal of Porous Materials, 2013, 20, 1289-1297.	1.3	16
31	One-step preparation of reduced graphene oxide/carbon nanotube hybrid thin film by electrostatic spray deposition for supercapacitor applications. Metals and Materials International, 2014, 20, 975-981.	1.8	16
32	Using chronoamperometry to rapidly measure and quantitatively analyse rate-performance in battery electrodes. Journal of Power Sources, 2020, 468, 228220.	4.0	16
33	Highly dispersible surface-unzipped multi-walled carbon nanotubes as binder-free electrodes for supercapacitor applications. Current Applied Physics, 2015, 15, S21-S26.	1.1	15
34	Phase Transition Method To Form Group 6A Nanoparticles on Carbonaceous Templates. ACS Nano, 2014, 8, 2279-2289.	7.3	12
35	EELS probing of lithium based 2-D battery compounds processed by liquid phase exfoliation. Nano Energy, 2016, 30, 18-26.	8.2	8

 $36 \qquad \text{Microelectronics: Stamping of Flexible, Coplanar Microâ} \in \mathbf{\widehat{s}} upercapacitors Using MXene Inks (Adv. Funct.) Tj ETQq0.00 rgBT <math>\frac{1}{7.8}$ verlock 1

SANG-HOON PARK

#	Article	IF	CITATIONS
37	0D-1D Hybrid Silicon Nanocomposite as Lithium-Ion Batteries Anodes. Nanomaterials, 2020, 10, 515.	1.9	8
38	Reversible Capacity Enhancement of Zinc-Manganese Mixed Oxide through Nanoscale Electrochemical Wiring with Carbon Nanotubes. Journal of the Electrochemical Society, 2015, 162, A1990-A1996.	1.3	3
39	Bulk metal-derived metal oxide nanoparticles on oxidized carbon surface. Journal of Alloys and Compounds, 2018, 752, 198-205.	2.8	1
40	Synthesis and Advanced Characterisation of Layered Platelets by Self-assembly of Long-chain Amines. Microscopy and Microanalysis, 2018, 24, 1566-1567.	0.2	0