List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7180279/publications.pdf Version: 2024-02-01

HONC DINC

#	Article	IF	CITATIONS
1	Non-invasive intracranial pressure assessment using shear-wave elastography in neuro-critical care patients. Journal of Clinical Neuroscience, 2022, 99, 261-267.	1.5	3
2	Engineering defected 2D Pd/H-TiO2 nanosonosensitizers for hypoxia alleviation and enhanced sono-chemodynamic cancer nanotherapy. Journal of Nanobiotechnology, 2022, 20, 186.	9.1	28
3	Quantitative evaluation of liver fibrosis based on ultrasound radio frequency signals: An animal experimental study. Computer Methods and Programs in Biomedicine, 2021, 199, 105875.	4.7	7
4	Increased portal vein diameter is predictive of portal vein thrombosis development in patients with liver cirrhosis. Annals of Translational Medicine, 2021, 9, 289-289.	1.7	12
5	Imaging findings of fibrolamellar hepatocellular carcinomas on ultrasonography: A comparison with conventional hepatocellular carcinomas. Clinical Hemorheology and Microcirculation, 2021, 77, 49-60.	1.7	5
6	The total resection rate of glioma can be improved by the application of US-MRI fusion combined with contrast-enhanced ultrasound. Clinical Neurology and Neurosurgery, 2021, 208, 106892.	1.4	5
7	Savitzky-Golay Filter Based Quantitative Dynamic Contrast-Enhanced Ultrasound on Assessing Therapeutic Response in Mice with Hepatocellular Carcinoma. Journal of Signal Processing Systems, 2020, 92, 315-323.	2.1	3
8	Enhancement patterns of small hepatocellular carcinoma (≤00 mm) on contrast-enhanced ultrasound: Correlation with clinicopathologic characteristics. European Journal of Radiology, 2020, 132, 109341.	2.6	14
9	Prediction of cervical lymph node metastasis with contrast-enhanced ultrasound and association between presence of BRAF ^{V600E} and extrathyroidal extension in papillary thyroid carcinoma. Therapeutic Advances in Medical Oncology, 2020, 12, 175883592094236.	3.2	20
10	Characterization of Early Hepatocellular Carcinoma and Highâ€Grade Dysplastic Nodules on Contrastâ€Enhanced Ultrasound. Journal of Ultrasound in Medicine, 2020, 39, 1799-1808.	1.7	7
11	Transfer learning radiomics based on multimodal ultrasound imaging for staging liver fibrosis. European Radiology, 2020, 30, 2973-2983.	4.5	64
12	The role of a multidisciplinary team in the management of portal hypertension. BMC Gastroenterology, 2020, 20, 83.	2.0	3
13	Current ultrasound-related strategies for assessing liver fibrosis in chronic liver disease. Chinese Medical Journal, 2020, 133, 2762-2764.	2.3	0
14	Savitzky-Golay filter based contrast-enhanced ultrasound quantification in hepatic tumors: Methodology and its correlation with tumor angiogenesis. Clinical Hemorheology and Microcirculation, 2019, 73, 271-282.	1.7	3
15	Value of Perfusion Parameters for Differentiating Hepatocellular Carcinoma and Liver Metastasis With Hypervascularity and a Normal Hepatic Background on Contrastâ€Enhanced Ultrasound Imaging. Journal of Ultrasound in Medicine, 2019, 38, 2601-2608.	1.7	10
16	Assessment of blood flow in the hepatic tumors using non-contrast micro flow imaging: Initial experience. Clinical Hemorheology and Microcirculation, 2019, 73, 307-316.	1.7	18
17	Homogeneity Parameter in Contrast-Enhanced Ultrasound Imaging Improves the Classification of Abnormal Cervical Lymph Node after Thyroidectomy in Patients with Papillary Thyroid Carcinoma. BioMed Research International, 2019, 2019, 1-8.	1.9	7
18	Portal hypertension in hepatitis Bâ€related cirrhosis: Diagnostic accuracy of liver and spleen stiffness by 2â€Ð shearâ€wave elastography. Hepatology Research, 2019, 49, 540-549.	3.4	26

#	Article	IF	CITATIONS
19	Primary Application of Micro-Flow Imaging Technology in the Diagnosis of Hepatic Tumors. Ultrasound in Medicine and Biology, 2019, 45, 395-401.	1.5	17
20	Predicting cervical lymph node metastasis in patients with papillary thyroid cancer (PTC) - Why contrast-enhanced ultrasound (CEUS) was performed before thyroidectomy. Clinical Hemorheology and Microcirculation, 2019, 72, 61-73.	1.7	42
21	A Nude Mouse Model of Orthotopic Liver Transplantation of Human Hepatocellular Carcinoma HCCLM3 Cell Xenografts and the Use of Imaging to Evaluate Tumor Progression. Medical Science Monitor, 2019, 25, 8694-8703.	1.1	7
22	Longitudinal monitoring of liver stiffness by acoustic radiation force impulse imaging in patients with chronic hepatitisÂB receiving entecavir. Clinics and Research in Hepatology and Gastroenterology, 2018, 42, 227-236.	1.5	2
23	Nomogram for individualised prediction of liver failure risk after hepatectomy in patients with resectable hepatocellular carcinoma: the evidence from ultrasound data. European Radiology, 2018, 28, 877-885.	4.5	29
24	Application of contrast-enhanced ultrasound for evaluation of thyroid nodules. Ultrasonography, 2018, 37, 288-297.	2.3	37
25	Liver Stiffness Assessed by Shear Wave Elastography Predicts Postoperative Liver Failure in Patients with Hepatocellular Carcinoma. Journal of Gastrointestinal Surgery, 2017, 21, 1471-1479.	1.7	35
26	Two-dimensional Shear-Wave Elastography Performance in the Noninvasive Evaluation of Liver Fibrosis in Patients with Chronic Hepatitis B: Comparison with Serum Fibrosis Indexes. Radiology, 2017, 283, 873-882.	7.3	97
27	Liver failure after hepatectomy: A risk assessment using the pre-hepatectomy shear wave elastography technique. European Journal of Radiology, 2017, 86, 234-240.	2.6	18
28	Evaluation of Liver Metastases Using Contrast-Enhanced Ultrasound: Enhancement Patterns and Influencing Factors. Gut and Liver, 2016, 10, 283.	2.9	24
29	Predicting the maturity of haemodialysis arteriovenous fistulas with colour Doppler ultrasound: a single-centre study from China. Clinical Radiology, 2016, 71, 576-582.	1.1	22
30	Is Brachial Artery Blood Flow Measured by Sonography During Early Postoperative Periods Predictive of Arteriovenous Fistula Failure in Hemodialysis Patients?. Journal of Ultrasound in Medicine, 2016, 35, 1985-1992.	1.7	5
31	Xanthogranulomatous cholecystitis: contrast-enhanced ultrasound features and differential diagnosis from wall-thickening gallbladder carcinoma. Discovery Medicine, 2016, 21, 89-98.	0.5	8
32	Contrast-Enhanced Ultrasound in Combination with Color Doppler Ultrasound Can Improve the Diagnostic Performance ofÂFocal Nodular Hyperplasia and Hepatocellular Adenoma. Ultrasound in Medicine and Biology, 2015, 41, 944-951.	1.5	38
33	WFUMB Guidelines and Recommendations for Clinical Use of Ultrasound Elastography: Part 2: Breast. Ultrasound in Medicine and Biology, 2015, 41, 1148-1160.	1.5	368
34	A comparative study of contrast enhanced ultrasound and contrast enhanced magnetic resonance imaging for the detection and characterization of hepatic hemangiomas. BioScience Trends, 2015, 9, 104-110.	3.4	14
35	WFUMB Guidelines and Recommendations for Clinical Use of Ultrasound Elastography: Part 1: Basic Principles and Terminology. Ultrasound in Medicine and Biology, 2015, 41, 1126-1147.	1.5	718
36	WFUMB Guidelines and Recommendations for Clinical Use of Ultrasound Elastography: Part 3: Liver. Ultrasound in Medicine and Biology, 2015, 41, 1161-1179.	1.5	620

#	Article	IF	CITATIONS
37	Assessment of liver fibrosis: The relationship between point shear wave elastography and quantitative histological analysis. Journal of Gastroenterology and Hepatology (Australia), 2015, 30, 553-558.	2.8	24
38	Assessment of liver fibrosis with elastography point quantification technique in chronic hepatitis <scp>B</scp> virus patients: A comparison with liver pathological results. Journal of Gastroenterology and Hepatology (Australia), 2014, 29, 814-819.	2.8	53
39	Postoperative haemodynamic changes in transplanted liver: Long-term follow-up with ultrasonography. Journal of International Medical Research, 2014, 42, 849-856.	1.0	10
40	Contribution of Contrast–Enhanced Sonography in the Detection of Intrahepatic Cholangiocarcinoma. Journal of Ultrasound in Medicine, 2014, 33, 215-220.	1.7	10
41	Diagnostic Performances of Various Gray-Scale, Color Doppler, and Contrast-Enhanced Ultrasonography Findings in Predicting Malignant Thyroid Nodules. Thyroid, 2014, 24, 355-363.	4.5	82
42	Analysis of Apparent Integrated Backscatter Coefficient and Backscattered Spectral Centroid Shift in Calcaneus inAvivo for the Ultrasonic Evaluation of Osteoporosis. Ultrasound in Medicine and Biology, 2014, 40, 1307-1317.	1.5	42
43	Papillary breast lesions on contrast-enhanced ultrasound: morphological enhancement patterns and diagnostic strategy. European Radiology, 2014, 24, 3178-3190.	4.5	33
44	Value of washâ€in and washâ€out time in the diagnosis between hepatocellular carcinoma and other hepatic nodules with similar vascular pattern on contrastâ€enhanced ultrasound. Journal of Gastroenterology and Hepatology (Australia), 2014, 29, 576-580.	2.8	35
45	Differential Diagnosis of Gallbladder Wall Thickening: TheÂUsefulness of Contrast-Enhanced Ultrasound. Ultrasound in Medicine and Biology, 2014, 40, 2794-2804.	1.5	25
46	The analysis of enhancement pattern of hepatic inflammatory pseudotumor on contrast-enhanced ultrasound. Abdominal Imaging, 2014, 39, 168-174.	2.0	19
47	Guidelines and Good Clinical Practice Recommendations for Contrast Enhanced Ultrasound (CEUS) in the Liver – Update 2012. Ultrasound in Medicine and Biology, 2013, 39, 187-210.	1.5	652
48	Non-invasive Assessment of Liver Fibrosis in a Rat Model: Shear Wave Elasticity Imaging Versus Real-Time Elastography. Ultrasound in Medicine and Biology, 2013, 39, 1215-1222.	1.5	10
49	Contrast-enhanced ultrasound versus conventional ultrasound in the diagnosis of polypoid lesion of gallbladder: A multi-center study of dynamic microvascularization. Clinical Hemorheology and Microcirculation, 2013, 55, 359-374.	1.7	30
50	Contrast-Enhanced Ultrasound in the Diagnosis of Gallbladder Diseases: A Multi-Center Experience. PLoS ONE, 2012, 7, e48371.	2.5	55
51	Hepatic Angiomyolipoma: Contrast Patterns with SonoVue-enhanced Real-time Gray-scale Ultrasonography. Asian Pacific Journal of Cancer Prevention, 2012, 13, 493-497.	1.2	7
52	Antiangiogenic effects of pazopanib in xenograft hepatocellular carcinoma models: evaluation by quantitative contrast-enhanced ultrasonography. BMC Cancer, 2011, 11, 28.	2.6	26
53	Value of contrastâ€enhanced sonography in the diagnosis of peripheral intrahepatic cholangiocarcinoma. Journal of Clinical Ultrasound, 2011, 39, 447-453.	0.8	19
54	Intrahepatic Transit Time Predicts Liver Fibrosis in Patients with Chronic Hepatitis B: Quantitative Assessment with Contrast-Enhanced Ultrasonography. Ultrasound in Medicine and Biology, 2010, 36, 1066-1075.	1.5	25

#	Article	IF	CITATIONS
55	Imaging of Focal Liver Lesions. Journal of Ultrasound in Medicine, 2005, 24, 285-297.	1.7	104
56	Resistance index in differential diagnosis of liver lesions by color doppler ultrasonography. World Journal of Gastroenterology, 2004, 10, 965.	3.3	7
57	Detection of tumor parenchymal blood flow in hepatic tumors: value of second harmonic imaging with a galactose-based contrast agent. Hepatology Research, 2001, 21, 242-251.	3.4	21
58	Sonographic diagnosis of pancreatic islet cell tumor: Value of intermittent harmonic imaging. Journal of Clinical Ultrasound, 2001, 29, 411-416.	0.8	30
59	Contrast-Enhanced Subtraction Harmonic Sonography for Evaluating Treatment Response in Patients with Hepatocellular Carcinoma. American Journal of Roentgenology, 2001, 176, 661-666.	2.2	84