## Vicente Gotor-FernÃ;ndez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7180268/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                        | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Unmasking the Hidden Carbonyl Group Using Gold(I) Catalysts and Alcohol Dehydrogenases: Design of<br>a Thermodynamically-Driven Cascade toward Optically Active Halohydrins. ACS Catalysis, 2022, 12,<br>2552-2560.                            | 11.2 | 20        |
| 2  | Supported ionic liquid-like phases as efficient solid ionic solvents for the immobilisation of alcohol dehydrogenases towards the development of stereoselective bioreductions. Green Chemistry, 2021, 23, 5609-5617.                          | 9.0  | 9         |
| 3  | Transfer Hydrogenation of Flavanones and ortho â€Hydroxychalcones to 1,3â€Điarylpropanols Catalyzed<br>by CNN Pincer Ruthenium Complexes. ChemCatChem, 2021, 13, 2152-2157.                                                                    | 3.7  | 2         |
| 4  | Solvent role in the lipase-catalysed esterification of cinnamic acid and derivatives. Optimisation of the biotransformation conditions. Tetrahedron, 2021, 81, 131873.                                                                         | 1.9  | 9         |
| 5  | Alcohol Dehydrogenases and Nâ€Heterocyclic Carbene Gold(I) Catalysts: Design of a Chemoenzymatic<br>Cascade towards Optically Active β,βâ€Đisubstituted Allylic Alcohols. Angewandte Chemie - International<br>Edition, 2021, 60, 13945-13951. | 13.8 | 22        |
| 6  | Alcohol Dehydrogenases and Nâ€Heterocyclic Carbene Gold(I) Catalysts: Design of a Chemoenzymatic<br>Cascade towards Optically Active β,βâ€Đisubstituted Allylic Alcohols. Angewandte Chemie, 2021, 133,<br>14064-14070.                        | 2.0  | 7         |
| 7  | Markovnikov Wackerâ€Tsuji Oxidation of Allyl(hetero)arenes and Application in a Oneâ€Pot<br>Photoâ€Metalâ€Biocatalytic Approach to Enantioenriched Amines and Alcohols. Advanced Synthesis and<br>Catalysis, 2021, 363, 4096-4108.             | 4.3  | 16        |
| 8  | Chemoenzymatic Oxosulfonylationâ€Bioreduction Sequence for the Stereoselective Synthesis of<br>βâ€Hydroxy Sulfones. ChemSusChem, 2021, , .                                                                                                     | 6.8  | 7         |
| 9  | Chemoenzymatic Stereoselective Synthesis of trans-Flavan-4-ols via Lipase-Catalyzed Kinetic<br>Resolutions. Catalysts, 2021, 11, 1296.                                                                                                         | 3.5  | 1         |
| 10 | Sequential Two‣tep Stereoselective Amination of Allylic Alcohols through the Combination of Laccases and Amine Transaminases. ChemBioChem, 2020, 21, 200-211.                                                                                  | 2.6  | 17        |
| 11 | Laccaseâ€mediated Oxidations of Propargylic Alcohols. Application in the Deracemization of<br>1â€arylpropâ€2â€ynâ€1â€ols in Combination with Alcohol Dehydrogenases. ChemCatChem, 2020, 12, 520-527.                                           | 3.7  | 21        |
| 12 | One-pot two-step chemoenzymatic deracemization of allylic alcohols using laccases and alcohol dehydrogenases. Molecular Catalysis, 2020, 493, 111087.                                                                                          | 2.0  | 12        |
| 13 | Chemo―and Stereoselective Synthesis of Fluorinated Amino Alcohols through Oneâ€pot Reactions using Alcohol Dehydrogenases and Amine Transaminases. Advanced Synthesis and Catalysis, 2020, 362, 5398-5410.                                     | 4.3  | 7         |
| 14 | Asymmetric Synthesis of Primary and Secondary βâ€Fluoroâ€arylamines using Reductive Aminases from<br>Fungi. ChemCatChem, 2020, 12, 2421-2425.                                                                                                  | 3.7  | 27        |
| 15 | Stereoselective Bioreduction of $\hat{I}$ ±-diazo- $\hat{I}^2$ -keto Esters. Molecules, 2020, 25, 931.                                                                                                                                         | 3.8  | 2         |
| 16 | Stereoselective Bioreduction of Telluroâ€Acetophenones to Optically Active Hydroxy Tellurides.<br>European Journal of Organic Chemistry, 2020, 2020, 1129-1135.                                                                                | 2.4  | 4         |
| 17 | Temperature ontrolled Stereodivergent Synthesis of 2,2′â€Biflavanones Promoted by Samarium Diiodide.<br>Chemistry - A European Journal, 2019, 25, 13104-13108.                                                                                 | 3.3  | 8         |
| 18 | Efficient synthesis of α-alkyl-β-amino amides by transaminase-mediated dynamic kinetic resolutions.<br>Catalysis Science and Technology, 2019, 9, 4083-4090.                                                                                   | 4.1  | 12        |

| #  | Article                                                                                                                                                                                                                            | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Chemoenzymatic Synthesis of an Odanacatib Precursor through a Suzukiâ€Miyaura Cross oupling and<br>Bioreduction Sequence. ChemCatChem, 2019, 11, 5800-5807.                                                                        | 3.7  | 15        |
| 20 | Deep eutectic solvents for redox biocatalysis. Journal of Biotechnology, 2019, 293, 24-35.                                                                                                                                         | 3.8  | 120       |
| 21 | A designer natural deep eutectic solvent to recycle the cofactor in alcohol dehydrogenase-catalysed processes. Green Chemistry, 2019, 21, 2946-2951.                                                                               | 9.0  | 37        |
| 22 | Stereoselective Synthesis of 1â€Arylpropanâ€2â€amines from Allylbenzenes through a Wackerâ€Tsuji<br>Oxidationâ€Biotransamination Sequential Process. Advanced Synthesis and Catalysis, 2019, 361, 2582-2593.                       | 4.3  | 20        |
| 23 | Synthesis of αâ€Alkylâ€Î²â€Hydroxy Amides through Biocatalytic Dynamic Kinetic Resolution Employing Alcohol<br>Dehydrogenases. Advanced Synthesis and Catalysis, 2019, 361, 2706-2712.                                             | 4.3  | 15        |
| 24 | What to sacrifice? Fusions of cofactor regenerating enzymes with Baeyer-Villiger monooxygenases and alcohol dehydrogenases for self-sufficient redox biocatalysis. Tetrahedron, 2019, 75, 1832-1839.                               | 1.9  | 21        |
| 25 | Mild Chemoenzymatic Oxidation of Allylic <i>sec</i> -Alcohols. Application to Biocatalytic Stereoselective Redox Isomerizations. ACS Catalysis, 2018, 8, 2413-2419.                                                                | 11.2 | 21        |
| 26 | Synthesis of carbohydrate-derived (Z)-vinyl halides and silanes: Samarium-promoted stereoselective 1,2-elimination on sugar-derived α-halomethylcarbinol acetates. Tetrahedron, 2018, 74, 5475-5480.                               | 1.9  | 5         |
| 27 | Stereoselective biocatalysis: A mature technology for the asymmetric synthesis of pharmaceutical building blocks. Biocatalysis and Biotransformation, 2018, 36, 102-130.                                                           | 2.0  | 59        |
| 28 | Conversion of γ―and Î′â€Keto Esters into Optically Active Lactams. Transaminases in Cascade Processes.<br>Advanced Synthesis and Catalysis, 2018, 360, 686-695.                                                                    | 4.3  | 34        |
| 29 | Development of Biotransamination Reactions towards the 3,4-Dihydro-2H-1,5-benzoxathiepin-3-amine<br>Enantiomers. Catalysts, 2018, 8, 470.                                                                                          | 3.5  | 5         |
| 30 | Stereoselective Enzymatic Reduction of 1,4-Diaryl-1,4-Diones to the Corresponding Diols Employing<br>Alcohol Dehydrogenases. Catalysts, 2018, 8, 150.                                                                              | 3.5  | 8         |
| 31 | Biotransformations in Deep Eutectic Solvents. , 2018, , 137-171.                                                                                                                                                                   |      | 3         |
| 32 | Determination of volatile compounds in cider apple juices using a covalently bonded ionic liquid<br>coating as the stationary phase in gas chromatography. Analytical and Bioanalytical Chemistry, 2017,<br>409, 3033-3041.        | 3.7  | 6         |
| 33 | Novel chemoenzymatic oxidation of amines into oximes based on hydrolase-catalysed peracid formation. Organic and Biomolecular Chemistry, 2017, 15, 3196-3201.                                                                      | 2.8  | 13        |
| 34 | Asymmetric Biocatalytic Synthesis of Fluorinated Pyridines through Transesterification or<br>Transamination: Computational Insights into the Reactivity of Transaminases. Advanced Synthesis and<br>Catalysis, 2017, 359, 279-291. | 4.3  | 20        |
| 35 | Synthesis of nitrogenated lignin-derived compounds and reactivity with laccases. Study of their application in mild chemoenzymatic oxidative processes. RSC Advances, 2017, 7, 50459-50471.                                        | 3.6  | 10        |
| 36 | Stereoselective amination of racemic sec-alcohols through sequential application of laccases and transaminases. Green Chemistry, 2017, 19, 474-480.                                                                                | 9.0  | 66        |

| #  | Article                                                                                                                                                                                                                              | IF             | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------|
| 37 | Application of Deep Eutectic Solvents in Promiscuous Lipaseâ€Catalysed Aldol Reactions. European<br>Journal of Organic Chemistry, 2016, 2016, 1513-1519.                                                                             | 2.4            | 58        |
| 38 | Biocatalytic Transamination for the Asymmetric Synthesis of Pyridylalkylamines. Structural and Activity Features in the Reactivity of Transaminases. ACS Catalysis, 2016, 6, 4003-4009.                                              | 11.2           | 20        |
| 39 | Stereoselective Access to 1-[2-Bromo(het)aryloxy]propan-2-amines Using Transaminases and Lipases;<br>Development of a Chemoenzymatic Strategy Toward a Levofloxacin Precursor. Journal of Organic<br>Chemistry, 2016, 81, 9765-9774. | 3.2            | 13        |
| 40 | Butâ€2â€eneâ€1,4â€diamine and Butâ€2â€eneâ€1,4â€diol as Donors for Thermodynamically Favored Transamina<br>Alcohol Dehydrogenaseâ€Catalyzed Processes. Advanced Synthesis and Catalysis, 2016, 358, 1618-1624.                       | ase―and<br>4.3 | 49        |
| 41 | Baeyer–Villiger monooxygenase-catalyzed desymmetrizations of cyclobutanones. Application to the synthesis of valuable spirolactones. Tetrahedron, 2016, 72, 7268-7275.                                                               | 1.9            | 7         |
| 42 | Dynamic Reductive Kinetic Resolution of Benzyl Ketones using Alcohol Dehydrogenases and Anion<br>Exchange Resins. Advanced Synthesis and Catalysis, 2016, 358, 122-131.                                                              | 4.3            | 12        |
| 43 | Lipase-catalyzed dynamic kinetic resolution of dimethyl (1,3-dihydro-2H-isoindol-1-yl)phosphonate.<br>Tetrahedron, 2016, 72, 7311-7316.                                                                                              | 1.9            | 7         |
| 44 | Hydrolases in Organic Chemistry. Recent Achievements in the Synthesis of Pharmaceuticals. Current<br>Organic Chemistry, 2016, 20, 1186-1203.                                                                                         | 1.6            | 26        |
| 45 | Native Proteins in Organic Chemistry. Recent Achievements in the use of non Hydrolytic Enzymes for the Synthesis of Pharmaceuticals. Current Organic Chemistry, 2016, 20, 1204-1221.                                                 | 1.6            | 3         |
| 46 | Chemoenzymatic Deracemization of Secondary Alcohols by using a TEMPO–Iodine–Alcohol<br>Dehydrogenase System. ChemCatChem, 2015, 7, 4016-4020.                                                                                        | 3.7            | 26        |
| 47 | Recent Advances in Biocatalytic Promiscuity: Hydrolase atalyzed Reactions for Nonconventional<br>Transformations. Chemical Record, 2015, 15, 743-759.                                                                                | 5.8            | 83        |
| 48 | Performance of Recombinantâ€Wholeâ€Cellâ€Catalyzed Reductions in Deepâ€Eutecticâ€Solvent–Aqueousâ€N<br>Mixtures. ChemCatChem, 2015, 7, 2654-2659.                                                                                    | 1edia          | 53        |
| 49 | Enzymatic and chromatographic resolution procedures applied to the synthesis of the phosphoproline enantiomers. Tetrahedron: Asymmetry, 2015, 26, 1469-1477.                                                                         | 1.8            | 10        |
| 50 | Deracemisation of profenol core by combining laccase/TEMPO-mediated oxidation and alcohol<br>dehydrogenase-catalysed dynamic kinetic resolution. Catalysis Science and Technology, 2015, 5,<br>1443-1446.                            | 4.1            | 37        |
| 51 | Asymmetric synthesis of azolium-based 1,2,3,4-tetrahydronaphthalen-2-ols through lipase-catalyzed resolutions. Tetrahedron: Asymmetry, 2015, 26, 760-767.                                                                            | 1.8            | 4         |
| 52 | Chemoenzymatic Asymmetric Synthesis of 1,4-Benzoxazine Derivatives: Application in the Synthesis of a<br>Levofloxacin Precursor. Journal of Organic Chemistry, 2015, 80, 3815-3824.                                                  | 3.2            | 18        |
| 53 | Broadening the chemical scope of laccases: selective deprotection of N-benzyl groups. Green Chemistry, 2015, 17, 2794-2798.                                                                                                          | 9.0            | 14        |
| 54 | Lactonization reactions through hydrolase-catalyzed peracid formation. Use of lipases for<br>chemoenzymatic Baeyer–Villiger oxidations of cyclobutanones. Journal of Molecular Catalysis B:<br>Enzymatic, 2015, 114, 31-36.          | 1.8            | 17        |

| #  | Article                                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Regioselective Preparation of Thiamphenicol Esters Through Lipase-Catalyzed Processes. Journal of the Brazilian Chemical Society, 2014, , .                                                                                                        | 0.6 | 2         |
| 56 | Imidazolium-Based Ionic Liquids as Non-conventional Media for Alcohol Dehydrogenase-Catalysed Reactions. Topics in Catalysis, 2014, 57, 332-338.                                                                                                   | 2.8 | 9         |
| 57 | Structures of Alcohol Dehydrogenases from Ralstonia and Sphingobium spp. Reveal the Molecular<br>Basis for Their Recognition of †Bulky†"Bulky' Ketones. Topics in Catalysis, 2014, 57, 356-365.                                                    | 2.8 | 48        |
| 58 | Lipase-catalyzed desymmetrization of meso-1,2-diaryl-1,2-diaminoethanes. Tetrahedron: Asymmetry, 2014, 25, 381-386.                                                                                                                                | 1.8 | 6         |
| 59 | Transaminases Applied to the Synthesis of High Added-Value Enantiopure Amines. Organic Process<br>Research and Development, 2014, 18, 788-792.                                                                                                     | 2.7 | 78        |
| 60 | Chemoenzymatic epoxidation of alkenes based on peracid formation by a Rhizomucor miehei<br>lipase-catalyzed perhydrolysis reaction. Tetrahedron, 2014, 70, 1144-1148.                                                                              | 1.9 | 39        |
| 61 | Expanding the Scope of Alcohol Dehydrogenases towards Bulkier Substrates: Stereo―and<br>Enantiopreference for α,αâ€Dihalogenated Ketones. ChemCatChem, 2014, 6, 1066-1072.                                                                         | 3.7 | 19        |
| 62 | Gelatin Proteinâ€Mediated Direct Aldol Reaction. Helvetica Chimica Acta, 2014, 97, 574-580.                                                                                                                                                        | 1.6 | 6         |
| 63 | Cutting Short the Asymmetric Synthesis of the Ramatroban Precursor by Employing ωâ€Transaminases.<br>Advanced Synthesis and Catalysis, 2014, 356, 1937-1942.                                                                                       | 4.3 | 40        |
| 64 | Laccase/TEMPO-mediated system for the thermodynamically disfavored oxidation of 2,2-dihalo-1-phenylethanol derivatives. Green Chemistry, 2014, 16, 2448.                                                                                           | 9.0 | 48        |
| 65 | Asymmetric chemoenzymatic synthesis of N-acetyl-α-amino esters based on lipase-catalyzed kinetic<br>resolutions through interesterification reactions. Tetrahedron, 2014, 70, 2264-2271.                                                           | 1.9 | 11        |
| 66 | Laccase/2,2,6,6â€Tetramethylpiperidinoxyl Radical (TEMPO): An Efficient Catalytic System for Selective<br>Oxidations of Primary Hydroxy and Amino Groups in Aqueous and Biphasic Media. Advanced Synthesis<br>and Catalysis, 2014, 356, 2321-2329. | 4.3 | 42        |
| 67 | Enantioselective Preparation of δâ€Valerolactones with Horse Liver Alcohol Dehydrogenase.<br>ChemCatChem, 2014, 6, 977-980.                                                                                                                        | 3.7 | 15        |
| 68 | One-Pot Synthesis of Enantiopure 3,4-Dihydroisocoumarins through Dynamic Reductive Kinetic Resolution Processes. Organic Letters, 2013, 15, 3872-3875.                                                                                             | 4.6 | 38        |
| 69 | <i>Escherichiaâ€coli</i> /ADHâ€A: An Allâ€Inclusive Catalyst for the Selective Biooxidation and Deracemisation of Secondary Alcohols. ChemCatChem, 2013, 5, 3875-3881.                                                                             | 3.7 | 46        |
| 70 | Mimicking Nature: Synthetic Nicotinamide Cofactors for Câ•€ Bioreduction Using Enoate Reductases.<br>Organic Letters, 2013, 15, 180-183.                                                                                                           | 4.6 | 155       |
| 71 | Chiral Triazolium Salts and Ionic Liquids: From the Molecular Design Vectors to Their Physical<br>Properties through Specific Supramolecular Interactions. Chemistry - A European Journal, 2013, 19,<br>892-904.                                   | 3.3 | 11        |
| 72 | C–C Bond formation catalyzed by natural gelatin and collagen proteins. Beilstein Journal of Organic<br>Chemistry, 2013, 9, 1111-1118.                                                                                                              | 2.2 | 23        |

| #  | Article                                                                                                                                                                                                                | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Analysis of beer volatiles by polymeric imidazolium-solid phase microextraction coatings: Synthesis<br>and characterization of polymeric imidazolium ionic liquids. Journal of Chromatography A, 2013, 1305,<br>35-40. | 3.7  | 19        |
| 74 | Chemoenzymatic synthesis of optically active 2-(2′- or 4′-substituted-1H-imidazol-1-yl)cycloalkanols:<br>chiral additives for (l)-proline. Catalysis Science and Technology, 2013, 3, 2596.                            | 4.1  | 12        |
| 75 | Chemoenzymatic Asymmetric Synthesis of Serotonin Receptor Agonist ( <i>R</i> )â€Frovatriptan.<br>European Journal of Organic Chemistry, 2013, 2013, 4057-4064.                                                         | 2.4  | 9         |
| 76 | Stereoselective Synthesis of 2,3-Disubstituted Indoline Diastereoisomers by Chemoenzymatic Processes. Journal of Organic Chemistry, 2012, 77, 8049-8055.                                                               | 3.2  | 35        |
| 77 | Asymmetric Chemoenzymatic Synthesis of Ramatroban Using Lipases and Oxidoreductases. Journal of<br>Organic Chemistry, 2012, 77, 4842-4848.                                                                             | 3.2  | 44        |
| 78 | From Diols to Lactones under Aerobic Conditions using a Laccase/TEMPO Catalytic System in Aqueous<br>Medium. Advanced Synthesis and Catalysis, 2012, 354, 3405-3408.                                                   | 4.3  | 72        |
| 79 | Enantiopure 3-methyl-3,4-dihydroisocoumarins and 3-methyl-1,2,3,4-tetrahydroisoquinolines via chemoenzymatic asymmetric transformations. Catalysis Science and Technology, 2012, 2, 1590.                              | 4.1  | 12        |
| 80 | Stereoselective Chemoenzymatic Synthesis of Enantiopure 2-(1 <i>H</i> -imidazol-yl)cycloalkanols under Continuous Flow Conditions. ACS Catalysis, 2012, 2, 1976-1983.                                                  | 11.2 | 28        |
| 81 | Polymeric imidazolium ionic liquids as valuable stationary phases in gas chromatography: Chemical synthesis and full characterization. Analytica Chimica Acta, 2012, 721, 173-181.                                     | 5.4  | 46        |
| 82 | Expanding the regioselective enzymatic repertoire: oxidative mono-cleavage of dialkenes catalyzed by<br>Trametes hirsuta. Chemical Communications, 2012, 48, 3303.                                                     | 4.1  | 26        |
| 83 | Highly Stereoselective Chemoenzymatic Synthesis of the 3H-Isobenzofuran Skeleton. Access to<br>Enantiopure 3-Methylphthalides. Organic Letters, 2012, 14, 1444-1447.                                                   | 4.6  | 38        |
| 84 | Dynamic Kinetic Resolution of 1,3-Dihydro-2H-isoindole-1-carboxylic Acid Methyl Ester: Asymmetric Transformations toward Isoindoline Carbamates. Organic Letters, 2012, 14, 1696-1699.                                 | 4.6  | 28        |
| 85 | Chemoenzymatic preparation of optically active 3-(1H-imidazol-1-yl)cyclohexanol-based ionic liquids:<br>application in organocatalysis and toxicity studies. RSC Advances, 2012, 2, 6455.                              | 3.6  | 13        |
| 86 | Characterization of hexacationic imidazolium ionic liquids as effective and highly stable gas chromatography stationary phases. Journal of Separation Science, 2012, 35, 273-279.                                      | 2.5  | 20        |
| 87 | Complementary Lipase-Mediated Desymmetrization Processes of 3-Aryl-1,5-Disubstituted Fragments.<br>Enantiopure Synthetic Valuable Carboxylic Acid Derivatives. Journal of Organic Chemistry, 2011, 76,<br>811-819.     | 3.2  | 17        |
| 88 | Asymmetric Chemoenzymatic Synthesis of Miconazole and Econazole Enantiomers. The Importance of Chirality in Their Biological Evaluation. Journal of Organic Chemistry, 2011, 76, 2115-2122.                            | 3.2  | 65        |
| 89 | Protein-Mediated Nitroaldol Addition in Aqueous Media. Catalytic Promiscuity or Unspecific Catalysis?. Organic Process Research and Development, 2011, 15, 236-240.                                                    | 2.7  | 52        |
| 90 | Hydrolases in the Stereoselective Synthesis of <i>N</i> -Heterocyclic Amines and Amino Acid Derivatives. Chemical Reviews, 2011, 111, 3998-4035.                                                                       | 47.7 | 126       |

| #   | Article                                                                                                                                                                                                                                                   | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Chemoenzymatic Asymmetric Synthesis of Optically Active Pentane-1,5-diamine Fragments by Means of Lipase-Catalyzed Desymmetrization Transformations. Journal of Organic Chemistry, 2011, 76, 5709-5718.                                                   | 3.2  | 16        |
| 92  | Straightforward preparation of biologically active 1-aryl- and 1-heteroarylpropan-2-amines in enantioenriched form. Organic and Biomolecular Chemistry, 2011, 9, 2274.                                                                                    | 2.8  | 33        |
| 93  | Enantiopure Triazolium Salts: Chemoenzymatic Synthesis and Applications in Organocatalysis.<br>ChemCatChem, 2011, 3, 1921-1928.                                                                                                                           | 3.7  | 20        |
| 94  | Evaluation of new ionic liquids as high stability selective stationary phases in gas chromatography.<br>Analytical and Bioanalytical Chemistry, 2011, 400, 1209-1216.                                                                                     | 3.7  | 25        |
| 95  | Use of Protease from <i>Bacillus licheniformis</i> as Promiscuous Catalyst for Organic Synthesis:<br>Applications in Cĩ£¿C and Cĩ£¿N Bond Formation Reactions. Advanced Synthesis and Catalysis, 2011, 353,<br>2345-2353.                                 | 4.3  | 50        |
| 96  | Chemoenzymatic Synthesis of Optically Active <i>cis</i> ―and<br><i>trans</i> â€2â€{1 <i>H</i> â€Imidazolâ€Iâ€yl)cycloalkanamines. European Journal of Organic Chemistry, 2011,<br>2011, 1057-1063.                                                        | 2.4  | 10        |
| 97  | Enzymatic regioselective production of chloramphenicol esters. Tetrahedron, 2011, 67, 2858-2862.                                                                                                                                                          | 1.9  | 17        |
| 98  | Bioreduction of prochiral ketones by growing cells of Lasiodiplodia theobromae: Discovery of a versatile biocatalyst for asymmetric synthesis. Journal of Molecular Catalysis B: Enzymatic, 2010, 65, 37-40.                                              | 1.8  | 12        |
| 99  | Synthesis of Optically Active Heterocyclic Compounds by Preparation of 1,3â€Dinitro Derivatives and Enzymatic Enantioselective Desymmetrization of Prochiral Diamines. European Journal of Organic Chemistry, 2010, 2010, 484-493.                        | 2.4  | 18        |
| 100 | Stereoselective Chemoenzymatic Preparation of βâ€Amino Esters: Molecular Modelling Considerations in<br>Lipaseâ€Mediated Processes and Application to the Synthesis of ( <i>S</i> )â€Dapoxetine. Advanced Synthesis<br>and Catalysis, 2010, 352, 395-406. | 4.3  | 22        |
| 101 | From Salts to Ionic Liquids by Systematic Structural Modifications: A Rational Approach Towards the Efficient Modular Synthesis of Enantiopure Imidazolium Salts. Chemistry - A European Journal, 2010, 16, 836-847.                                      | 3.3  | 49        |
| 102 | Optically active macrocyclic hexaazapyridinophanes decorated at the periphery: synthesis and applications in the NMR enantiodiscrimination of carboxylic acids. Tetrahedron, 2010, 66, 6070-6077.                                                         | 1.9  | 27        |
| 103 | Reduction processes biocatalyzed by Vigna unguiculata. Tetrahedron: Asymmetry, 2010, 21, 566-570.                                                                                                                                                         | 1.8  | 27        |
| 104 | Stereoselective synthesis of optically active cyclic $\hat{l}_{\pm}$ - and $\hat{l}^2$ -amino esters through lipase-catalyzed transesterification or interesterification processes. Tetrahedron: Asymmetry, 2010, 21, 2307-2313.                          | 1.8  | 11        |
| 105 | Candida tropicalis CE017: a new Brazilian enzymatic source for the bioreduction of aromatic prochiral ketones. Journal of the Brazilian Chemical Society, 2010, 21, 1509-1516.                                                                            | 0.6  | 15        |
| 106 | Hydrolases: catalytically promiscuous enzymes for non-conventional reactions in organic synthesis.<br>Chemical Society Reviews, 2010, 39, 4504.                                                                                                           | 38.1 | 267       |
| 107 | Straightforward Synthesis of Enantiopure 2,3-Dihydrobenzofurans by a Sequential Stereoselective<br>Biotransformation and Chemical Intramolecular Cyclization. Organic Letters, 2010, 12, 3498-3501.                                                       | 4.6  | 44        |
| 108 | Enantioselective acetylation of racemic alcohols by Manihot esculenta and Passiflora edulis preparations. Journal of Molecular Catalysis B: Enzymatic, 2009, 60, 157-162.                                                                                 | 1.8  | 13        |

| #   | Article                                                                                                                                                                                                                                 | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | Chemoenzymatic preparation of a biologically active naphthoquinone from Tabebuia impetiginosa<br>using lipases or alcohol dehydrogenases. Journal of Molecular Catalysis B: Enzymatic, 2009, 61,<br>279-283.                            | 1.8  | 7         |
| 110 | Influence of the Nucleophile on the <i>Candida antarctica</i> Lipase B atalysed Resolution of a Chiral Acyl Donor. ChemBioChem, 2009, 10, 1830-1838.                                                                                    | 2.6  | 24        |
| 111 | Computational Study of the Lipaseâ€Mediated Desymmetrisation of 2â€Substitutedâ€Propaneâ€1,3â€Diamines.<br>ChemBioChem, 2009, 10, 2875-2883.                                                                                            | 2.6  | 5         |
| 112 | Stereoselective Chemoenzymatic Synthesis of Enantiopure 1â€(Heteroaryl)ethanamines by<br>Lipaseâ€Catalysed Kinetic Resolutions. European Journal of Organic Chemistry, 2009, 2009, 2533-2538.                                           | 2.4  | 14        |
| 113 | A Ferromagnetic [Cu <sub>3</sub> (OH) <sub>2</sub> ] <sup>4+</sup> Cluster Formed inside a Tritopic<br>Nonaazapyridinophane: Crystal Structure and Solution Studies. Angewandte Chemie - International<br>Edition, 2009, 48, 6055-6058. | 13.8 | 56        |
| 114 | Development of a chemoenzymatic strategy for the synthesis of optically active and orthogonally protected polyamines. Tetrahedron, 2009, 65, 8393-8401.                                                                                 | 1.9  | 15        |
| 115 | Chemoenzymatic synthesis of optically active Mugetanol isomers: use of lipases and oxidoreductases in fragrance chemistry. Tetrahedron: Asymmetry, 2009, 20, 214-219.                                                                   | 1.8  | 12        |
| 116 | Lentinus strigellus: a new versatile stereoselective biocatalyst for the bioreduction of prochiral ketones. Tetrahedron: Asymmetry, 2009, 20, 1057-1061.                                                                                | 1.8  | 27        |
| 117 | Enzymatic Desymmetrization of Prochiral 2-Substituted-1,3-Diamines: Preparation of Valuable<br>Nitrogenated Compounds. Journal of Organic Chemistry, 2009, 74, 2571-2574.                                                               | 3.2  | 34        |
| 118 | Chemoenzymatic Synthesis of Rivastigmine Based on Lipase-Catalyzed Processes. Journal of Organic<br>Chemistry, 2009, 74, 5304-5310.                                                                                                     | 3.2  | 56        |
| 119 | Efficient synthesis of chiral homodimeric 4-(N,N-dimethylamino)pyridine carbamate derivatives.<br>Arkivoc, 2009, 2010, 114-123.                                                                                                         | 0.5  | 1         |
| 120 | Immobilized Manihot esculenta preparation as a novel biocatalyst in the enantioselective acetylation of racemic alcohols. Tetrahedron: Asymmetry, 2008, 19, 1419-1424.                                                                  | 1.8  | 20        |
| 121 | Efficient access to enantiomerically pure cyclic α-amino esters through a lipase-catalyzed kinetic resolution. Tetrahedron: Asymmetry, 2008, 19, 1714-1719.                                                                             | 1.8  | 22        |
| 122 | Bioreduction of aromatic aldehydes and ketones by fruits' barks of Passiflora edulis. Journal of<br>Molecular Catalysis B: Enzymatic, 2008, 54, 130-133.                                                                                | 1.8  | 37        |
| 123 | A Simple Helical Macrocyclic Polyazapyridinophane as a Stereoselective Receptor of Biologically<br>Important Dicarboxylates under Physiological Conditions. Journal of Organic Chemistry, 2008, 73,<br>374-382.                         | 3.2  | 30        |
| 124 | Efficient Synthesis of 2-Substituted 7-Azaindole Derivatives via Palladium-Catalyzed Coupling and C-N<br>Cyclization Using 18-Crown-6. Synthesis, 2007, 2007, 2149-2152.                                                                | 2.3  | 4         |
| 125 | First Desymmetrization of 1,3-Propanediamine Derivatives in Organic Solvent. Development of a New Route for the Preparation of Optically Active Amines. Organic Letters, 2007, 9, 4203-4206.                                            | 4.6  | 25        |
| 126 | Enzymatic Preparation of Novel Aminoalkylpyridines using Lipases in Organic Solvents. Advanced Synthesis and Catalysis, 2007, 349, 1481-1488.                                                                                           | 4.3  | 27        |

| #   | Article                                                                                                                                                                                                                | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 127 | Enzymatic resolution of hindered cyanohydrins, key precursors of muscarinic receptor antagonists.<br>Tetrahedron: Asymmetry, 2007, 18, 994-1002.                                                                       | 1.8  | 17        |
| 128 | Simple and straightforward synthesis of novel enantiopure ionic liquids via efficient enzymatic resolution of (±)-2-(1H-imidazol-1-yl)cyclohexanol. Tetrahedron Letters, 2007, 48, 5251-5254.                          | 1.4  | 27        |
| 129 | Lipases: Useful biocatalysts for the preparation of pharmaceuticals. Journal of Molecular Catalysis B:<br>Enzymatic, 2006, 40, 111-120.                                                                                | 1.8  | 311       |
| 130 | Kinetic resolution of 4-chloro-2-(1-hydroxyalkyl)pyridines using Pseudomonas cepacia lipase. Nature<br>Protocols, 2006, 1, 2061-2067.                                                                                  | 12.0 | 6         |
| 131 | Biocatalytic preparation of enantioenriched 3,4-dihydroxypiperidines and theoretical study of Candida antarctica lipase B enantioselectivity. Tetrahedron, 2006, 62, 3284-3291.                                        | 1.9  | 14        |
| 132 | Lipase-catalyzed resolution of chiral 1,3-amino alcohols: application in the asymmetric synthesis of<br>(S)-dapoxetine. Tetrahedron: Asymmetry, 2006, 17, 860-866.                                                     | 1.8  | 51        |
| 133 | Chemoenzymatic preparation of optically active secondary amines: a new efficient route to enantiomerically pure indolines. Tetrahedron: Asymmetry, 2006, 17, 2558-2564.                                                | 1.8  | 52        |
| 134 | Biocatalytic preparation of optically active 4-(N,N-dimethylamino)pyridines for application in chemical asymmetric catalysis. Tetrahedron: Asymmetry, 2006, 17, 1007-1016.                                             | 1.8  | 22        |
| 135 | Enantioselective Synthesis of 4-(Dimethylamino)pyridines through a Chemical Oxidation-Enzymatic<br>Reduction Sequence. Application in Asymmetric Catalysis. Advanced Synthesis and Catalysis, 2006, 348,<br>2626-2632. | 4.3  | 51        |
| 136 | Candida antarctica Lipase B: An Ideal Biocatalyst for the Preparation of Nitrogenated Organic<br>Compounds. Advanced Synthesis and Catalysis, 2006, 348, 797-812.                                                      | 4.3  | 341       |
| 137 | Enzymatic Aminolysis and Ammonolysis Processes in the Preparation of Chiral Nitrogenated Compounds. Current Organic Chemistry, 2006, 10, 1125-1143.                                                                    | 1.6  | 72        |
| 138 | Chemoenzymatic synthesis of chiral 4-(N,N-dimethylamino)pyridine derivatives. Tetrahedron:<br>Asymmetry, 2005, 16, 3427-3435.                                                                                          | 1.8  | 17        |
| 139 | Study of the Chemoselectivity in the Aminolysis Reaction of Methyl Acrylate Catalysed by Lipase B fromCandida antarctica. Advanced Synthesis and Catalysis, 2005, 347, 1007-1014.                                      | 4.3  | 51        |
| 140 | Directed Evolution of an Amine Oxidase for the Preparative Deracemisation of Cyclic Secondary<br>Amines. ChemBioChem, 2005, 6, 637-639.                                                                                | 2.6  | 121       |
| 141 | Chemoenzymatic synthesis and biological evaluation of C-3 carbamate analogues of 1α,25-dihydroxyvitamin D3. Bioorganic and Medicinal Chemistry, 2004, 12, 5443-5451.                                                   | 3.0  | 10        |
| 142 | Regioselective enzymatic syntheses of C-3 and C-5 carbonate A-ring stereoisomeric precursors of vitamin D. Tetrahedron: Asymmetry, 2004, 15, 2881-2887.                                                                | 1.8  | 8         |
| 143 | Synthesis of Monoacyl A-Ring Precursors of 1α,25-Dihydroxyvitamin D3through Selective Enzymatic<br>Hydrolysis. Journal of Organic Chemistry, 2002, 67, 1266-1270.                                                      | 3.2  | 8         |
| 144 | Clean-chemistry synthesis of biodegradable tertiary α-substituted carboxylic acids from the corresponding esters through enzymatic processes. Journal of Molecular Catalysis B: Enzymatic, 2002, 19-20, 143-147.       | 1.8  | 1         |

| #   | ARTICLE                                                                                                                                                                                                                                                                                                         | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Biocatalysis Applied to the Synthesis of Vitamin D Analogues. Current Organic Chemistry, 2002, 6, 453-469.                                                                                                                                                                                                      | 1.6 | 13        |
| 146 | CAL-B-Catalyzed Alkoxycarbonylation of A-Ring Stereoisomeric Synthons of 1α,25-Dihydroxyvitamin<br>D3and 1α,25-Dihydroxy-19-nor-previtamin D3: A Comparative Study. First Regioselective Chemoenzymatic<br>Synthesis of 19-nor-A-Ring Carbonates. Journal of Organic Chemistry, 2001, 66, 4227-4232.            | 3.2 | 17        |
| 147 | 1α,25-Dihydroxyvitamin D3A-Ring Precursors: Studies on Regioselective Enzymatic Alkoxycarbonylation<br>Reactions of Their Stereoisomers. Chemoenzymatic Synthesis of A-Ring Synthon Carbamate Derivatives,<br>Including Carbazates and Polyamino Carbamates. Journal of Organic Chemistry, 1999, 64, 7504-7510. | 3.2 | 25        |
| 148 | Aminolysis and Ammonolysis of Carboxylic Acid Derivatives. , 0, , 171-191.                                                                                                                                                                                                                                      |     | 5         |