Kaj Fried

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7180098/publications.pdf

Version: 2024-02-01

29	2,354	19	28
papers	citations	h-index	g-index
32	32	32	3151 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Glial origin of mesenchymal stem cells in a tooth model system. Nature, 2014, 513, 551-554.	13.7	347
2	Spatiotemporal structure of cell fate decisions in murine neural crest. Science, 2019, 364, .	6.0	345
3	Multipotent peripheral glial cells generate neuroendocrine cells of the adrenal medulla. Science, 2017, 357, .	6.0	251
4	Parasympathetic neurons originate from nerve-associated peripheral glial progenitors. Science, 2014, 345, 82-87.	6.0	181
5	A radical switch in clonality reveals a stem cell niche in the epiphyseal growth plate. Nature, 2019, 567, 234-238.	13.7	153
6	Dental cell type atlas reveals stem and differentiated cell types in mouse and human teeth. Nature Communications, 2020, 11, 4816.	5.8	126
7	Structural basis of sympathetic-sensory coupling in rat and human dorsal root ganglia following peripheral nerve injury. Journal of Neurocytology, 1999, 28, 743-761.	1.6	115
8	NGF, BDNF, NT3, NT4 and GDNF in tooth development. European Journal of Oral Sciences, 1998, 106, 94-99.	0.7	90
9	Single-cell transcriptomics of human embryos identifies multiple sympathoblast lineages with potential implications for neuroblastoma origin. Nature Genetics, 2021, 53, 694-706.	9.4	90
10	Cellular expression of neurotrophin mRNAs during tooth development. Cell and Tissue Research, 1997, 290, 569-580.	1.5	79
11	Analysis of neural crest–derived clones reveals novel aspects of facial development. Science Advances, 2016, 2, e1600060.	4.7	68
12	Schwann Cell Precursors Generate the Majority of Chromaffin Cells in Zuckerkandl Organ and Some Sympathetic Neurons in Paraganglia. Frontiers in Molecular Neuroscience, 2019, 12, 6.	1.4	65
13	Sodium channel expression in NGF-overexpressing transgenic mice., 1999, 57, 39-47.		60
14	Schwann cell precursors contribute to skeletal formation during embryonic development in mice and zebrafish. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 15068-15073.	3.3	51
15	Oriented clonal cell dynamics enables accurate growth and shaping of vertebrate cartilage. ELife, 2017, 6, .	2.8	46
16	The Nervous System Orchestrates and Integrates Craniofacial Development: A Review. Frontiers in Physiology, 2016, 7, 49.	1.3	39
17	Growth of ascending spinal axons in CNS scar tissue. International Journal of Developmental Neuroscience, 1993, 11, 461-475.	0.7	38
18	Tooth pulp tissue promotes neurite outgrowth from rat trigeminal ganglia in vitro. Journal of Neurocytology, 1999, 28, 663-670.	1.6	30

#	Article	IF	Citations
19	Secondary ossification center induces and protects growth plate structure. ELife, 2020, 9, .	2.8	29
20	Signals from the brain and olfactory epithelium control shaping of the mammalian nasal capsule cartilage. ELife, $2018, 7, .$	2.8	28
21	Schwann cell precursors represent a neural crestâ€like state with biased multipotency. EMBO Journal, 2022, 41, .	3.5	28
22	Molecular differences between stromal cell populations from deciduous and permanent human teeth. Stem Cell Research and Therapy, 2015, 6, 59.	2.4	19
23	trkC-like Immunoreactivity in the Primate Descending Serotoninergic System. European Journal of Neuroscience, 1994, 6, 230-236.	1.2	18
24	G Protein-Gated Inwardly Rectifying Potassium Channel Subunits 1 and 2 are Down-Regulated in Rat Dorsal Root Ganglion Neurons and Spinal Cord after Peripheral Axotomy. Molecular Pain, 2015, 11, s12990-015-0044.	1.0	18
25	Surface flow for colonial integration in reef-building corals. Current Biology, 2022, 32, 2596-2609.e7.	1.8	10
26	Animal models of trigeminal neuralgia: A commentary. Molecular Pain, 2020, 16, 174480692098053.	1.0	9
27	Serotonin limits generation of chromaffin cells during adrenal organ development. Nature Communications, 2022, 13 , .	5.8	8
28	Schwann cell precursors generate sympathoadrenal system during zebrafish development. Journal of Neuroscience Research, 2021, 99, 2540-2557.	1.3	6
29	Sodium channel expression in NGFâ€overexpressing transgenic mice. Journal of Neuroscience Research, 1999, 57, 39-47.	1.3	2