
Philip I Anderson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/718002/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Computer-controlled electromagnetic control and image capture system for alignment of magnetic graphene nanofillers in epoxy composites. International Journal of Applied Electromagnetics and Mechanics, 2019, 61, S23-S29.	0.6	1
2	Comparison between measured and computed magnetic flux density distribution of simulated transformer core joints assembled from grain-oriented and non-oriented electrical steel. AIP Advances, 2018, 8, .	1.3	5
3	CrAlN coating to enhance the power loss and magnetostriction in grain oriented electrical steel. AIP Advances, 2016, 6, 055924.	1.3	3
4	Experimental study on interâ€laminar short ircuit faults at random positions in laminated magnetic cores. IET Electric Power Applications, 2016, 10, 604-613.	1.8	8
5	Localized Surface Vibration and Acoustic Noise Emitted From Laboratory-Scale Transformer Cores Assembled From Grain-Oriented Electrical Steel. IEEE Transactions on Magnetics, 2016, 52, 1-15.	2.1	39
6	Magnetostriction in grainâ€oriented electrical steels under AC magnetisation at angles to the rolling direction. IET Electric Power Applications, 2016, 10, 932-938.	1.8	12
7	An overview of the recent developments of the inter-laminar short circuit fault detection methods in magnetic cores. , 2015, , .		4
8	Modeling 2-D Magnetostriction in Nonoriented Electrical Steels Using a Simple Magnetic Domain Model. IEEE Transactions on Magnetics, 2015, 51, 1-7.	2.1	24
9	Approximation and Prediction of AC Magnetization Curves for Power Transformer Core Analysis. IEEE Transactions on Magnetics, 2015, 51, 1-8.	2.1	18
10	Interlaminar Insulation Faults Detection and Quality Assessment of Magnetic Cores Using Flux Injection Probe. IEEE Transactions on Power Delivery, 2015, 30, 2205-2214.	4.3	16
11	Application of an advanced eddyâ€current loss modelling to magnetic properties of electrical steel laminations in a wide range of measurements. IET Science, Measurement and Technology, 2015, 9, 807-816.	1.6	11
12	Eddy Current Loss Estimation of Edge Burr-Affected Magnetic Laminations Based on Equivalent Electrical Network—Part II: Analytical Modeling and Experimental Results. IEEE Transactions on Power Delivery, 2014, 29, 651-659.	4.3	23
13	Eddy Current Loss Estimation of Edge Burr-Affected Magnetic Laminations Based on Equivalent Electrical Network—Part I: Fundamental Concepts and FEM Modeling. IEEE Transactions on Power Delivery, 2014, 29, 642-650.	4.3	48
14	Study of the Effects of Surface Coating on Magnetic Barkhausen Noise in Grain-Oriented Electrical Steel. IEEE Transactions on Magnetics, 2012, 48, 1393-1396.	2.1	24
15	Measurement and Modeling of 2-D Magnetostriction of Nonoriented Electrical Steel. IEEE Transactions on Magnetics, 2012, 48, 711-714.	2.1	33
16	Effect of Artificial Burrs on Local Power Loss in a Three-Phase Transformer Core. IEEE Transactions on Magnetics, 2012, 48, 1653-1656.	2.1	24
17	Influence of Cutting Techniques on Magnetostriction Under Stress of Grain Oriented Electrical Steel. IEEE Transactions on Magnetics, 2012, 48, 1417-1420.	2.1	31
18	Equivalence of Measurements on Soft Magnetic Materials in the U.K. and Measurements for Operational Conditions. IEEE Transactions on Instrumentation and Measurement, 2011, 60, 2275-2279.	4.7	5

Philip I Anderson

#	Article	IF	CITATIONS
19	Magnetostriction Anisotropy and Rotational Magnetostriction of a Nonoriented Electrical Steel. IEEE Transactions on Magnetics, 2010, 46, 302-305.	2.1	47
20	Equivalence of measurements on soft magnetic materials in the UK and measurements for operational conditions. , 2010, , .		1
21	Effect of Magnetostriction Anisotropy in Nonoriented Electrical Steels on Deformation of Induction Motor Stator Cores. IEEE Transactions on Magnetics, 2009, 45, 4744-4747.	2.1	34
22	Measurement of the stress sensitivity of magnetostriction in electrical steels under distorted waveform conditions. Journal of Magnetism and Magnetic Materials, 2008, 320, e583-e588.	2.3	24
23	A universal DC characterisation system for hard and soft magnetic materials. Journal of Magnetism and Magnetic Materials, 2008, 320, e589-e593.	2.3	13
24	Prediction of power loss and permeability with the use of an artificial neural network in wound toroidal cores. Journal of Magnetism and Magnetic Materials, 2008, 320, e1001-e1005.	2.3	6
25	Mechanical Resonance in Nonoriented Electrical Steels Induced by Magnetostriction Under PWM Voltage Excitation. IEEE Transactions on Magnetics, 2008, 44, 4062-4065.	2.1	5
26	A novel way of measuring DC magnetic shielding efficiency of grain oriented and non oriented electrical steel. International Journal of Applied Electromagnetics and Mechanics, 2007, 25, 219-224.	0.6	0
27	Assessment of the Stress Sensitivity of Magnetostriction in Grain-Oriented Silicon Steel. IEEE Transactions on Magnetics, 2007, 43, 3467-3476.	2.1	66
28	Apparent permeability of electrical steel under PWM magnetisation. Journal of Magnetism and Magnetic Materials, 2006, 304, e543-e545.	2.3	2
29	Measurement of resistivity of soft magnetic laminations at elevated temperatures. Journal of Magnetism and Magnetic Materials, 2006, 304, e546-e548.	2.3	4
30	Measured and Computed Effect of Holes on Low-Frequency Magnetic Shielding Performance of Electrical Steel Sheet. IEEE Transactions on Magnetics, 2006, 42, 3527-3529.	2.1	5