Wang Meng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7179754/publications.pdf Version: 2024-02-01

WANG MENG

#	Article	IF	CITATIONS
1	Spatially differentiated changes in regional climate and underlying drivers in southwestern China. Journal of Forestry Research, 2022, 33, 755-765.	1.7	6
2	Influence of ultrasound and microwave treatments on the structural and thermal properties of normal maize starch and potato starch: A comparative study. Food Chemistry, 2022, 377, 131990.	4.2	48
3	Super-assembled highly compressible and flexible cellulose aerogels for methylene blue removal from water. Chinese Chemical Letters, 2021, 32, 2091-2096.	4.8	37
4	Effect of Ultrasonic and Microwave Dual-Treatment on the Physicochemical Properties of Chestnut Starch. Polymers, 2020, 12, 1718.	2.0	44
5	Compressible, Fatigue Resistant, and Pressure-Sensitive Carbon Aerogels Developed with a Facile Method for Sensors and Electrodes. ACS Sustainable Chemistry and Engineering, 2019, 7, 12726-12733.	3.2	35
6	Synthesis of N-doped carbon quantum dots from bio-waste lignin for selective irons detection and cellular imaging. International Journal of Biological Macromolecules, 2019, 128, 537-545.	3.6	119
7	Transformation of lignosulfonate into graphene-like 2D nanosheets: Self-assembly mechanism and their potential in biomedical and electrical applications. International Journal of Biological Macromolecules, 2019, 128, 621-628.	3.6	18
8	Effect of microwave irradiation-retrogradation treatment on the digestive and physicochemical properties of starches with different crystallinity. Food Chemistry, 2019, 298, 125015.	4.2	88
9	Mimicking Dynamic Adhesiveness and Strain-Stiffening Behavior of Biological Tissues in Tough and Self-Healable Cellulose Nanocomposite Hydrogels. ACS Applied Materials & Interfaces, 2019, 11, 5885-5895.	4.0	171
10	Mussel-Inspired Cellulose Nanocomposite Tough Hydrogels with Synergistic Self-Healing, Adhesive, and Strain-Sensitive Properties. Chemistry of Materials, 2018, 30, 3110-3121.	3.2	627
11	Interactive effects of wind speed, vegetation coverage and soil moisture in controlling wind erosion in a temperate desert steppe, Inner Mongolia of China. Journal of Arid Land, 2018, 10, 534-547.	0.9	70
12	Synthesis of Nitrogen-Doped Lignin/DES Carbon Quantum Dots as a Fluorescent Probe for the Detection of Fe3+ Ions. Polymers, 2018, 10, 1282.	2.0	44
13	Super-compressible, fatigue resistant and anisotropic carbon aerogels for piezoresistive sensors. Cellulose, 2018, 25, 7329-7340.	2.4	46
14	An approach for reinforcement of paper with high strength and barrier properties via coating regenerated cellulose. Carbohydrate Polymers, 2018, 200, 100-105.	5.1	35
15	Review and classification of hybrid shop scheduling. Production Engineering, 2018, 12, 597-609.	1.1	25
16	A Self-Healing Cellulose Nanocrystal-Poly(ethylene glycol) Nanocomposite Hydrogel via Diels–Alder Click Reaction. ACS Sustainable Chemistry and Engineering, 2017, 5, 6167-6174.	3.2	206
17	A study of cationic glucomannan as a paper strength agent. Journal of Macromolecular Science - Pure and Applied Chemistry, 2017, 54, 216-220.	1.2	8
18	High-Strength, Tough, and Self-Healing Nanocomposite Physical Hydrogels Based on the Synergistic Effects of Dynamic Hydrogen Bond and Dual Coordination Bonds. ACS Applied Materials & Interfaces, 2017, 9, 28305-28318.	4.0	326

WANG MENG

#	Article	IF	CITATIONS
19	Preparation of carbon aerogels from TEMPO-oxidized cellulose nanofibers for organic solvents absorption. RSC Advances, 2017, 7, 38220-38230.	1.7	40
20	Sustainable, Reusable, and Superhydrophobic Aerogels from Microfibrillated Cellulose for Highly Effective Oil/Water Separation. ACS Sustainable Chemistry and Engineering, 2016, 4, 6409-6416.	3.2	197
21	Facile Template Synthesis of Microfibrillated Cellulose/Polypyrrole/Silver Nanoparticles Hybrid Aerogels with Electrical Conductive and Pressure Responsive Properties. ACS Sustainable Chemistry and Engineering, 2015, 3, 3346-3354.	3.2	103
22	Structure and mechanical properties of transparent layered nanocomposites from LAPONITE [®] -hydroxyethyl cellulose vacuum-assisted self-assembly. RSC Advances, 2015, 5, 35976-35984.	1.7	5
23	Carboxymethylated glucomannan as paper strengthening agent. Carbohydrate Polymers, 2015, 125, 334-339.	5.1	33