List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7179657/publications.pdf Version: 2024-02-01



LINUE OIAN

| #  | Article                                                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Highly graphitized nitrogen-doped porous carbon nanopolyhedra derived from ZIF-8 nanocrystals as efficient electrocatalysts for oxygen reduction reactions. Nanoscale, 2014, 6, 6590-6602.                                                                      | 2.8 | 720       |
| 2  | Carbon dioxide capture and conversion by an acid-base resistant metal-organic framework. Nature<br>Communications, 2017, 8, 1233.                                                                                                                               | 5.8 | 286       |
| 3  | Stringing Bimetallic Metal–Organic Frameworkâ€Derived Cobalt Phosphide Composite for<br>High‣fficiency Overall Water Splitting. Advanced Science, 2020, 7, 1903195.                                                                                             | 5.6 | 214       |
| 4  | MOF derived N-doped carbon coated CoP particle/carbon nanotube composite for efficient oxygen evolution reaction. Carbon, 2019, 141, 643-651.                                                                                                                   | 5.4 | 192       |
| 5  | Chemical and morphological transformation of MOF-derived bimetallic phosphide for efficient oxygen evolution. Nano Energy, 2019, 62, 745-753.                                                                                                                   | 8.2 | 189       |
| 6  | Bottom-up synthesis of MOF-derived hollow N-doped carbon materials for enhanced ORR performance. Carbon, 2019, 146, 248-256.                                                                                                                                    | 5.4 | 177       |
| 7  | Highly selective carbon dioxide adsorption in a water-stable indium–organic framework material.<br>Chemical Communications, 2012, 48, 9696.                                                                                                                     | 2.2 | 148       |
| 8  | In situ large-scale construction of sulfur-functionalized metal–organic framework and its efficient<br>removal of Hg( <scp>ii</scp> ) from water. Journal of Materials Chemistry A, 2016, 4, 15370-15374.                                                       | 5.2 | 135       |
| 9  | A review of recent work on using metal–organic frameworks to grow carbon nanotubes. Chemical<br>Communications, 2020, 56, 10809-10823.                                                                                                                          | 2.2 | 135       |
| 10 | Self-supported hierarchical CuO <sub>x</sub> @Co <sub>3</sub> O <sub>4</sub> heterostructures as<br>efficient bifunctional electrocatalysts for water splitting. Journal of Materials Chemistry A, 2018, 6,<br>14431-14439.                                     | 5.2 | 121       |
| 11 | Fe7C3 nanoparticles with in situ grown CNT on nitrogen doped hollow carbon cube with greatly enhanced conductivity and ORR performance for alkaline fuel cell. Carbon, 2021, 174, 531-539.                                                                      | 5.4 | 100       |
| 12 | An unusual bifunctional Tb-MOF for highly sensitive sensing of Ba <sup>2+</sup> ions and with<br>remarkable selectivities for CO <sub>2</sub> –N <sub>2</sub> and CO <sub>2</sub> –CH <sub>4</sub> .<br>Journal of Materials Chemistry A, 2015, 3, 13526-13532. | 5.2 | 91        |
| 13 | Rational Design and Growth of MOFâ€onâ€MOF Heterostructures. Small, 2021, 17, e2100607.                                                                                                                                                                         | 5.2 | 90        |
| 14 | CoMo carbide/nitride from bimetallic MOF precursors for enhanced OER performance. International<br>Journal of Hydrogen Energy, 2021, 46, 22268-22276.                                                                                                           | 3.8 | 78        |
| 15 | Heterometallic cluster-based indium–organic frameworks. Chemical Communications, 2014, 50,<br>15224-15227.                                                                                                                                                      | 2.2 | 72        |
| 16 | Polymeric double-anion templated Er <sub>48</sub> nanotubes. Chemical Communications, 2014, 50, 1113-1115.                                                                                                                                                      | 2.2 | 66        |
| 17 | General approach to MOF-derived core-shell bimetallic oxide nanowires for fast response to glucose oxidation. Sensors and Actuators B: Chemical, 2020, 306, 127551.                                                                                             | 4.0 | 64        |
| 18 | CuO Nanorod Arrays Shelled with Amorphous NiFe Layered Double Hydroxide Film for Enhanced Electrocatalytic Water Oxidation Activity. ACS Applied Energy Materials, 2018, 1, 1364-1373.                                                                          | 2.5 | 58        |

| #  | Article                                                                                                                                                                                                                                                                                                                             | IF                     | CITATIONS           |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|---------------------|
| 19 | A bimetallic carbide derived from a MOF precursor for increasing electrocatalytic oxygen evolution activity. Chemical Communications, 2017, 53, 13027-13030.                                                                                                                                                                        | 2.2                    | 57                  |
| 20 | Coexistence of cages and one-dimensional channels in a porous MOF with high H2 and CH4 uptakes.<br>Chemical Communications, 2014, 50, 2834.                                                                                                                                                                                         | 2.2                    | 55                  |
| 21 | Facile Incorporation of Au Nanoparticles into an Unusual Twofold Entangled Zn(II)-MOF with<br>Nanocages for Highly Efficient CO <sub>2</sub> Fixation under Mild Conditions. ACS Applied Materials<br>& Interfaces, 2019, 11, 47437-47445.                                                                                          | 4.0                    | 55                  |
| 22 | Stepwise Construction of Extra-Large Heterometallic Calixarene-Based Cages. Inorganic Chemistry, 2015, 54, 3183-3188.                                                                                                                                                                                                               | 1.9                    | 53                  |
| 23 | Facile synthesis of porous CuO polyhedron from Cu-based metal organic framework (MOF-199) for electrocatalytic water oxidation. RSC Advances, 2016, 6, 77358-77365.                                                                                                                                                                 | 1.7                    | 51                  |
| 24 | High CO <sub>2</sub> Uptake Capacity and Selectivity in a Fascinating Nanotube-Based Metal–Organic<br>Framework. Inorganic Chemistry, 2017, 56, 908-913.                                                                                                                                                                            | 1.9                    | 51                  |
| 25 | Constructing Crystalline Heterometallic Indium–Organic Frameworks by the Bifunctional Method.<br>Crystal Growth and Design, 2015, 15, 1440-1445.                                                                                                                                                                                    | 1.4                    | 50                  |
| 26 | Surfactantâ€Mediated Morphological Evolution of MnCo Prussian Blue Structures. Small, 2020, 16, e2004614.                                                                                                                                                                                                                           | 5.2                    | 49                  |
| 27 | Construction of Two Microporous Metal–Organic Frameworks with flu and pyr Topologies Based on<br>Zn <sub>4</sub> (μ <sub>3</sub> -OH) <sub>2</sub> (CO <sub>2</sub> ) <sub>6</sub> and<br>Zn <sub>6</sub> (μ <sub>6</sub> -O)(CO <sub>2</sub> ) <sub>6</sub> Secondary Building Units. Inorganic<br>Chemistry. 2014. 53. 1032-1038. | 1.9                    | 48                  |
| 28 | A microporous MOF with open metal sites and Lewis basic sites for selective CO <sub>2</sub> capture.<br>Dalton Transactions, 2017, 46, 14102-14106.                                                                                                                                                                                 | 1.6                    | 47                  |
| 29 | Thiacalix[4]arene-Supported Kite-Like Heterometallic Tetranuclear<br>Zn <sup>II</sup> Ln <sup>III</sup> <sub>3</sub> (Ln = Gd, Tb, Dy, Ho) Complexes. Inorganic Chemistry,<br>2013, 52, 3780-3786.                                                                                                                                  | 1.9                    | 45                  |
| 30 | Generalized Synthesis of Calixarene-Based High-Nuclearity M <sub>4<i>n</i></sub> Nanocages (M = Ni) Tj ETQq                                                                                                                                                                                                                         | 0 0 0 rgB1<br>1.4 rgB1 | Γ/Overlock 10<br>42 |
| 31 | Unconventional inorganic precursors determine the growth of metal-organic frameworks.<br>Coordination Chemistry Reviews, 2021, 434, 213804.                                                                                                                                                                                         | 9.5                    | 42                  |
| 32 | Cuboctahedron-based indium–organic frameworks for gas sorption and selective cation exchange.<br>Chemical Communications, 2016, 52, 7978-7981.                                                                                                                                                                                      | 2.2                    | 41                  |
| 33 | Open Pentameric Calixarene Nanocage. Inorganic Chemistry, 2014, 53, 18-20.                                                                                                                                                                                                                                                          | 1.9                    | 38                  |
| 34 | Robust Cage-Based Zinc–Organic Frameworks Derived Dual-Doped Carbon Materials for Supercapacitor. Crystal Growth and Design, 2018, 18, 2358-2364.                                                                                                                                                                                   | 1.4                    | 38                  |
| 35 | MOF-templated syntheses of porous Co <sub>3</sub> O <sub>4</sub> hollow spheres and micro-flowers for enhanced performance in supercapacitors. CrystEngComm, 2018, 20, 3812-3816.                                                                                                                                                   | 1.3                    | 38                  |
|    |                                                                                                                                                                                                                                                                                                                                     |                        |                     |

36Self-supported bimetallic phosphide-carbon nanostructures derived from metal-organic frameworks<br/>as bifunctional catalysts for highly efficient water splitting. Electrochimica Acta, 2019, 318, 244-251.2.637

| #  | Article                                                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Construction of a C@MoS <sub>2</sub> @C sandwiched heterostructure for accelerating the pH-universal hydrogen evolution reaction. Chemical Communications, 2020, 56, 13393-13396.                                                                                  | 2.2 | 37        |
| 38 | Enhanced oxygen evolution catalyzed by <i>in situ</i> formed Fe-doped Ni oxyhydroxides in carbon nanotubes. Journal of Materials Chemistry A, 2022, 10, 16007-16015.                                                                                               | 5.2 | 36        |
| 39 | Sorption behaviour in a unique 3,12-connected zinc–organic framework with 2.4 nm cages. Journal of<br>Materials Chemistry A, 2013, 1, 10631.                                                                                                                       | 5.2 | 34        |
| 40 | A photoluminescent indium–organic framework with discrete cages and one-dimensional channels<br>for gas adsorption. Chemical Communications, 2016, 52, 9032-9035.                                                                                                  | 2.2 | 34        |
| 41 | Abundant Co-Nx sites onto hollow MOF-Derived nitrogen-doped carbon materials for enhanced oxygen reduction. Journal of Power Sources, 2021, 492, 229632.                                                                                                           | 4.0 | 34        |
| 42 | Construction of hierarchical Mo2C nanoparticles onto hollow N-doped carbon polyhedrons for efficient hydrogen evolution reaction. Electrochimica Acta, 2019, 321, 134680.                                                                                          | 2.6 | 33        |
| 43 | Generally transform 3-dimensional In-based metal-organic frameworks into 2-dimensional Co,N-doped carbon nanosheets for Zn-air battery. Journal of Power Sources, 2019, 440, 227158.                                                                               | 4.0 | 33        |
| 44 | Structural and Morphological Conversion between Two Co-Based MOFs for Enhanced Water<br>Oxidation. Inorganic Chemistry, 2020, 59, 2701-2710.                                                                                                                       | 1.9 | 33        |
| 45 | Unusual pore structure and sorption behaviour in a hexanodal zinc–organic framework material.<br>Chemical Communications, 2014, 50, 1678-1681.                                                                                                                     | 2.2 | 31        |
| 46 | An alternative strategy to construct Fe( <scp>ii</scp> )-based MOFs with multifarious structures and magnetic behaviors. CrystEngComm, 2014, 16, 9208-9215.                                                                                                        | 1.3 | 31        |
| 47 | Thermal conversion of hollow nickel-organic framework into bimetallic FeNi3 alloy embedded in carbon materials as efficient oer electrocatalyst. Electrochimica Acta, 2020, 354, 136716.                                                                           | 2.6 | 31        |
| 48 | Butterfly-like enantiomerically homochiral<br>{Co <sup>II</sup> <sub>6</sub> Co <sup>III</sup> <sub>4</sub> } clusters exhibiting both slow magnetic<br>relaxation and ferroelectric property. Dalton Transactions, 2014, 43, 3238-3243.                           | 1.6 | 30        |
| 49 | A (3,8)-connected metal–organic framework with a unique binuclear<br>[Ni <sub>2</sub> (μ4 <sub>2</sub> -OH)(COO) <sub>2</sub> ] node for high H <sub>2</sub> and<br>CO <sub>2</sub> adsorption capacities. Journal of Materials Chemistry A, 2015, 3, 15399-15402. | 5.2 | 30        |
| 50 | A pyrene-modified cobalt salophen complex immobilized on multiwalled carbon nanotubes acting as a precursor for efficient electrocatalytic water oxidation. Dalton Transactions, 2017, 46, 13020-13026.                                                            | 1.6 | 30        |
| 51 | Bottom-up preparation of hierarchically porous MOF-modified carbon sphere derivatives for efficient oxygen reduction. Nanoscale, 2020, 12, 8785-8792.                                                                                                              | 2.8 | 30        |
| 52 | Hierarchical N-doped CNTs grafted onto MOF-derived porous carbon nanomaterials for efficient oxygen reduction. Journal of Colloid and Interface Science, 2022, 606, 1833-1841.                                                                                     | 5.0 | 30        |
| 53 | Increase in pore size and gas uptake capacity in indium-organic framework materials. Journal of Materials Chemistry A, 2013, 1, 9075.                                                                                                                              | 5.2 | 29        |
| 54 | Bridging different Co <sub>4</sub> –calix[4]arene building blocks into grids, cages and 2D polymers<br>with chiral camphoric acid. CrystEngComm, 2015, 17, 1750-1753.                                                                                              | 1.3 | 29        |

| #          | Article                                                                                                                                                                                                                             | IF               | CITATIONS          |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------------|
| 55         | Paintbrush-like Co doped Cu3P grown on Cu foam as an efficient janus electrode for overall water<br>splitting. International Journal of Hydrogen Energy, 2019, 44, 28833-28840.                                                     | 3.8              | 29                 |
| 56         | Highly Selective and Active Electrochemical Reduction of CO <sub>2</sub> to CO on a Polymeric Co(II)<br>Phthalocyanine@Graphitic Carbon Nitride Nanosheet–Carbon Nanotube Composite. Inorganic<br>Chemistry, 2020, 59, 14184-14192. | 1.9              | 29                 |
| 5 <b>7</b> | In-MOF-derived ultrathin heteroatom-doped carbon nanosheets for improving oxygen reduction.<br>Nanoscale, 2020, 12, 10019-10025.                                                                                                    | 2.8              | 29                 |
| 58         | Rational construction of ultrafine noble metals onto carbon nanoribbons with efficient oxygen reduction in practical alkaline fuel cell. Chemical Engineering Journal, 2021, 424, 130336.                                           | 6.6              | 29                 |
| 59         | Low-Pressure Selectivity, Stepwise Gas Sorption Behaviors, and Luminescent Properties (Experimental) Tj ETQq1<br>Growth and Design, 2017, 17, 3965-3973.                                                                            | 1 0.78431<br>1.4 | l4 rgBT /Ove<br>29 |
| 60         | Cube-shaped metal-nitrogen–carbon derived from metal-ammonia complex-impregnated metal-organic framework for highly efficient oxygen reduction reaction. Carbon, 2020, 158, 719-727.                                                | 5.4              | 27                 |
| 61         | MOF-on-MOF Strategy to Construct a Nitrogen-Doped Carbon-Incorporated CoP@Fe–CoP Core-Shelled<br>Heterostructure for High-Performance Overall Water Splitting. Inorganic Chemistry, 2022, 61,<br>1159-1168.                         | 1.9              | 26                 |
| 62         | Highly graphitized N-doped carbon nanosheets from 2-dimensional coordination polymers for efficient metal-air batteries. Carbon, 2022, 188, 135-145.                                                                                | 5.4              | 25                 |
| 63         | Electrodeposition of a cobalt phosphide film for the enhanced photoelectrochemical water oxidation with $\hat{l}$ -Fe2O3 photoanode. Electrochimica Acta, 2019, 307, 92-99.                                                         | 2.6              | 24                 |
| 64         | Normal-pulse-voltage-assisted <i>in situ</i> fabrication of graphene-wrapped MOF-derived CuO nanoflowers for water oxidation. Chemical Communications, 2020, 56, 8750-8753.                                                         | 2.2              | 24                 |
| 65         | MOF-derived three-dimensional ordered porous carbon nanomaterial for efficient alkaline zinc-air batteries. Science China Materials, 2022, 65, 1453-1462.                                                                           | 3.5              | 24                 |
| 66         | Multifarious zinc coordination polymers based on biphenyl-3,3′,5,5′-tetracarboxylate and different<br>flexibility of N-donor ligands. RSC Advances, 2014, 4, 32391.                                                                 | 1.7              | 23                 |
| 67         | Chitosan hydrogel derived carbon foam with typical transition-metal catalysts for efficient water splitting. Carbon, 2021, 177, 160-170.                                                                                            | 5.4              | 23                 |
| 68         | Couple of Nonpolarized/Polarized Electrodes Building a New Universal Electrochemical Energy<br>Storage System with an Impressive Energy Density. ACS Applied Materials & Interfaces, 2021, 13,<br>45375-45384.                      | 4.0              | 23                 |
| 69         | Five novel Zn( <scp>ii</scp> )/Cd( <scp>ii</scp> ) coordination polymers based on bis(pyrazinyl)-triazole<br>and varied polycarboxylates: syntheses, topologies and photoluminescence. CrystEngComm, 2014, 16,<br>11078-11087.      | 1.3              | 22                 |
| 70         | Construction of a polymeric cobalt phthalocyanine@mesoporous graphitic carbon nitride composite for efficient photocatalytic CO <sub>2</sub> reduction. Chemical Communications, 2021, 57, 6987-6990.                               | 2.2              | 22                 |
| 71         | Diverse architectures and luminescence properties of two novel copper( <scp>i</scp> ) coordination polymers assembled from 2,6-bis[3-(pyrid-4-yl)-1,2,4-triazolyl]pyridine ligands. CrystEngComm, 2015, 17, 1541-1548.              | 1.3              | 21                 |
| 72         | Silicaâ€Templated Metal Organic Frameworkâ€Derived Hierarchically Porous Cobalt Oxide in<br>Nitrogenâ€Doped Carbon Nanomaterials for Electrochemical Glucose Sensing. ChemElectroChem, 2021,<br>8, 812-818.                         | 1.7              | 20                 |

| #  | Article                                                                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Co3O4-anchored MWCNTs network derived from metal-organic frameworks as efficient OER electrocatalysts. Materials Letters, 2019, 248, 181-184.                                                                                                                                      | 1.3 | 19        |
| 74 | Crystal structure, morphology and sorption behaviour of porous indium-tetracarboxylate framework materials. CrystEngComm, 2015, 17, 8512-8518.                                                                                                                                     | 1.3 | 18        |
| 75 | Self-Assembly of Polyhedral Indium–Organic Nanocages. Inorganic Chemistry, 2014, 53, 12228-12230.                                                                                                                                                                                  | 1.9 | 17        |
| 76 | Synthesis and characterization of decanuclear Ln(III) cluster of mixed calix[8]arene-phosphonate ligands (Ln=Pr, Nd). Inorganic Chemistry Communication, 2015, 54, 34-37.                                                                                                          | 1.8 | 17        |
| 77 | CuCo2S4 integrated multiwalled carbon nanotube as high-performance electrocatalyst for<br>electroreduction of nitrogen to ammonia. International Journal of Hydrogen Energy, 2020, 45,<br>14640-14647.                                                                             | 3.8 | 17        |
| 78 | Bimetallic AgNi nanoparticles anchored onto MOF-derived nitrogen-doped carbon nanostrips for efficient hydrogen evolution. Green Energy and Environment, 2023, 8, 258-266.                                                                                                         | 4.7 | 17        |
| 79 | Morphologically Controlled Metal–Organic Framework-Derived FeNi Oxides for Efficient Water<br>Oxidation. Inorganic Chemistry, 2022, 61, 8909-8919.                                                                                                                                 | 1.9 | 17        |
| 80 | Alkali-Metal-Templated Assembly of Two High-Nuclearity Cobalt Clusters Based on Thiacalix[4]arene.<br>Crystal Growth and Design, 2014, 14, 5865-5870.                                                                                                                              | 1.4 | 16        |
| 81 | Highly chemically and thermally stable lanthanide coordination polymers for luminescent probes and white light emitting diodes. CrystEngComm, 2020, 22, 2667-2674.                                                                                                                 | 1.3 | 16        |
| 82 | Self-supported N-Doped Carbon@NiXCo2-XP core-shell nanorod arrays on 3D Ni foam for boosted hydrogen evolution reaction. International Journal of Hydrogen Energy, 2021, 46, 36046-36055.                                                                                          | 3.8 | 16        |
| 83 | Differentiated Oxygen Evolution Behavior in MOF-Derived Oxide Nanomaterials Induced by Phase<br>Transition. ACS Applied Materials & Interfaces, 2021, 13, 55454-55462.                                                                                                             | 4.0 | 16        |
| 84 | Self-assembly of two high-nuclearity manganese calixarene-phosphonate clusters: diamond-like<br>Mn <sub>16</sub> and drum-like Mn <sub>14</sub> . RSC Advances, 2015, 5, 33579-33585.                                                                                              | 1.7 | 15        |
| 85 | Abundant nanotube coated ordered macroporous carbon matrix with enhanced electrocatalytic activity. Journal of Power Sources, 2020, 467, 228302.                                                                                                                                   | 4.0 | 15        |
| 86 | Ultrasmall Mo2C in N-doped carbon material from bimetallic ZnMo-MOF for efficient hydrogen evolution. International Journal of Hydrogen Energy, 2021, 46, 2182-2190.                                                                                                               | 3.8 | 15        |
| 87 | Electrochemical evolution of cobalt-carboxylate framework for efficient water oxidation. Journal of<br>Power Sources, 2021, 499, 229947.                                                                                                                                           | 4.0 | 15        |
| 88 | Ligand-oriented assembly of a porous metal–organic framework by<br>[Cu <sup>I</sup> <sub>4</sub> I <sub>4</sub> ] clusters and paddle-wheel<br>[Cu <sup>II</sup> <sub>2</sub> (COO) <sub>4</sub> (H <sub>2</sub> O) <sub>2</sub> ] subunits.<br>CrystEngComm. 2016. 18. 8362-8365. | 1.3 | 14        |
| 89 | Two cage-based zinc-tetracarboxylate frameworks with white-light emission. CrystEngComm, 2017, 19, 214-217.                                                                                                                                                                        | 1.3 | 14        |
| 90 | An efficient glucose sensor thermally calcined from copper-organic coordination cages. Talanta, 2022, 241, 123263.                                                                                                                                                                 | 2.9 | 14        |

| #   | Article                                                                                                                                                                                                    | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Sorption comparison of two indium–organic framework isomers with syn–anti configurations.<br>CrystEngComm, 2014, 16, 7434.                                                                                 | 1.3 | 12        |
| 92  | Syntheses, structures, luminescence and magnetic properties of three high-nuclearity neodymium compounds based on mixed sulfonylcalix[4]arene-phosphonate ligands. CrystEngComm, 2016, 18, 4921-4928.      | 1.3 | 12        |
| 93  | Anion dependent self-assembly of sandwich 13-metal Ni–Ln nanoclusters with a long-chain Schiff base<br>ligand. Dalton Transactions, 2017, 46, 1748-1752.                                                   | 1.6 | 11        |
| 94  | A family of planar hexanuclear CoIII4LnIII2 clusters with lucanidae-like arrangement and single-molecule magnet behavior. Dalton Transactions, 2019, 48, 12880-12887.                                      | 1.6 | 11        |
| 95  | Phthalocyanine-induced iron active species in metal–organic framework-derived porous carbon for efficient alkaline zinc–air batteries. Inorganic Chemistry Frontiers, 2022, 9, 2557-2567.                  | 3.0 | 11        |
| 96  | Variable HOF-derived carbon-coated cobalt phosphide for electrocatalytic oxygen evolution. Carbon, 2022, 196, 457-465.                                                                                     | 5.4 | 11        |
| 97  | Chemical stability and tunable luminescence of Ln( <scp>iii</scp> )–K( <scp>i</scp> ) coordination polymers featuring a tracery-like architecture. RSC Advances, 2015, 5, 49110-49114.                     | 1.7 | 10        |
| 98  | A microporous europium–organic framework anchored with open –COOH groups for selective cation sensing. CrystEngComm, 2016, 18, 7955-7958.                                                                  | 1.3 | 10        |
| 99  | Methylation-Induced Reversible Metallic-Semiconducting Transition of Single-Walled Carbon<br>Nanotube Arrays for High-Performance Field-Effect Transistors. Nano Letters, 2020, 20, 496-501.               | 4.5 | 10        |
| 100 | Selective adsorption behaviour of carbon dioxide in OH-functionalized metal–organic framework<br>materials. CrystEngComm, 2017, 19, 5346-5350.                                                             | 1.3 | 9         |
| 101 | Metal–Organic Framework–Impregnated Calixareneâ€Based Clusterâ€Derived Hierarchically Porous<br>Bimetallic Phosphide Nanocomposites for Efficient Water Splitting. Energy Technology, 2020, 8,<br>2000059. | 1.8 | 9         |
| 102 | MOF-derived carbon-coated cuprous phosphide nanosheets for electrocatalytic glucose oxidation.<br>CrystEngComm, 2022, 24, 3649-3655.                                                                       | 1.3 | 9         |
| 103 | Ion Motor as a New Universal Strategy for the Boosting the Performance of Zn-Ion Batteries. ACS<br>Applied Materials & Interfaces, 2022, 14, 30839-30846.                                                  | 4.0 | 9         |
| 104 | Self-assembly of nickel-organic polyhedra with octahedral nanocage, magnetic property and sorption behavior. Inorganica Chimica Acta, 2017, 461, 298-300.                                                  | 1.2 | 8         |
| 105 | Sulfurâ€Induced Growth of Coordination Polymer Derivedâ€Straight Carbon Nanotubes on Carbon<br>Nanofiber Network for Znâ€Air Batteries. Chemistry - A European Journal, 2021, 27, 7704-7711.               | 1.7 | 8         |
| 106 | Selfâ€Supported CoPâ€Decorated Hierarchical CuO Nanowire Flowers Toward Enhanced Oxygen<br>Evolution Reaction. ChemElectroChem, 2021, 8, 2101-2107.                                                        | 1.7 | 8         |
| 107 | Heteroepitaxial metal-organic frameworks derived cobalt and nitrogen codoped carbon nanosheets to boost oxygen reduction. Journal of Colloid and Interface Science, 2022, 623, 1210-1219.                  | 5.0 | 8         |
| 108 | Coexistence of sorption behavior and magnetic property in heterometallic cluster-based frameworks.<br>Microporous and Mesoporous Materials, 2016, 234, 196-199.                                            | 2.2 | 7         |

| #   | Article                                                                                                                                                                                                            | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Efficient construction of diverse 3-cyanoindoles under novel tandem catalysis. Chemical Communications, 2020, 56, 12660-12663.                                                                                     | 2.2 | 7         |
| 110 | Highly efficient zinc finger peptide detection with ZIF-8-modified micropipets. Chemical Communications, 2020, 56, 10855-10858.                                                                                    | 2.2 | 7         |
| 111 | Zinc-tetracarboxylate framework material with nano-cages and one-dimensional channels for excellent selective and effective adsorption of methyl blue dye. RSC Advances, 2020, 10, 3539-3543.                      | 1.7 | 7         |
| 112 | Preparation of Highly Stable DUT-52 Materials and Adsorption of Dichromate lons in Aqueous Solution. ACS Omega, 2022, 7, 16414-16421.                                                                              | 1.6 | 7         |
| 113 | A heterometallic microporous MOFs with two types of intrinsic secondary building units for selective gas separation and luminescence property. Polyhedron, 2018, 155, 218-222.                                     | 1.0 | 6         |
| 114 | In situ growth of ZIF-8 into solid-state nanochannels. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 570, 260-264.                                                                       | 2.3 | 6         |
| 115 | Doubly interpenetrated indium-tricarboxylate frameworks mediated by small molecules with enhanced porosity. CrystEngComm, 2019, 21, 5045-5049.                                                                     | 1.3 | 5         |
| 116 | Fe-Induced Coordination Environment Regulation in MOF-Derived Carbon Materials for Oxygen<br>Reduction. ACS Sustainable Chemistry and Engineering, 2022, 10, 8641-8649.                                            | 3.2 | 5         |
| 117 | Sorption Behavior and Magnetic Properties of A Heterometallic Organic Framework with Octahedral<br>Cages and Oneâ€Dimensional Channels. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2016, 642,<br>579-582. | 0.6 | 4         |
| 118 | Laser-induced phenylation reaction to prepare semiconducting single-walled carbon nanotube arrays.<br>Chemical Communications, 2020, 56, 14259-14262.                                                              | 2.2 | 4         |
| 119 | Improved performance of photoelectrochemical water oxidation from nanostructured hematite photoanode with an immobilized molecular cobalt salophen catalyst. Journal of Materials Science, 2020, 55, 12864-12875.  | 1.7 | 4         |
| 120 | Co/N-doped carbon nanosheets derived from InOF-1 precursors for efficient Zn-Air battery.<br>Microporous and Mesoporous Materials, 2021, 314, 110868.                                                              | 2.2 | 4         |
| 121 | Confined Fe Catalysts for Highâ€Density SWNT Arrays Growth: a New Territory for Catalystâ€Substrate<br>Interaction Engineering. Small, 2021, 17, e2103433.                                                         | 5.2 | 4         |
| 122 | Carbon Nanotubes Grown on CuO Nanoparticle-Decorated Porous Carbon Microparticles for Water<br>Oxidation. ACS Applied Nano Materials, 2021, 4, 12119-12126.                                                        | 2.4 | 4         |
| 123 | An Effective Method to Construct Clusterâ€based Frameworks with Multifarious Structures,<br>Luminescence, and Sorption Properties. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2017, 643,<br>166-170.      | 0.6 | 3         |
| 124 | Bimetallic phosphide nanoparticles embedded in carbon nanostrips for electrocatalytic water oxidation. International Journal of Hydrogen Energy, 2022, 47, 18700-18707.                                            | 3.8 | 3         |
| 125 | Terbium-Tetracarboxylate Framework as a Luminescent Probe for the Selective Detection of Nitrofurazone. Crystals, 2020, 10, 222.                                                                                   | 1.0 | 1         |
| 126 | Partial nitridation on copper nanoparticles in carbon nanomaterials derived from copper-organic polyhedra for enhanced water oxidation. Materials Letters, 2021, 295, 129839.                                      | 1.3 | 1         |