Wei Bu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7179453/publications.pdf

Version: 2024-02-01

		279798	361022
78	1,524	23	35
papers	citations	h-index	g-index
70	70	70	1747
78	78	78	1747
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Interfacial Restructuring of Ionic Liquids Determined by Sum-Frequency Generation Spectroscopy and X-Ray Reflectivity. Journal of Physical Chemistry C, 2008, 112, 19649-19654.	3.1	116
2	Nanoscale view of assisted ion transport across the liquid–liquid interface. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 18227-18232.	7.1	68
3	Observation of a Rare Earth Ion–Extractant Complex Arrested at the Oil–Water Interface During Solvent Extraction. Journal of Physical Chemistry B, 2014, 118, 10662-10674.	2.6	64
4	How Accurate Is Poissonâ^Boltzmann Theory for Monovalent Ions near Highly Charged Interfaces?. Langmuir, 2006, 22, 5673-5681.	3.5	60
5	Stability of Ligands on Nanoparticles Regulating the Integrity of Biological Membranes at the Nano–Lipid Interface. ACS Nano, 2019, 13, 8680-8693.	14.6	59
6	Molecular Structure of Canonical Liquid Crystal Interfaces. Journal of the American Chemical Society, 2017, 139, 3841-3850.	13.7	56
7	Ordering by Collapse:Â Formation of Bilayer and Trilayer Crystals by Folding Langmuir Monolayers. Langmuir, 2007, 23, 1888-1897.	3.5	51
8	Interfacial Localization and Voltage-Tunable Arrays of Charged Nanoparticles. Nano Letters, 2014, 14, 6816-6822.	9.1	51
9	X-ray Studies of Interfacial Strontium–Extractant Complexes in a Model Solvent Extraction System. Journal of Physical Chemistry B, 2014, 118, 12486-12500.	2.6	47
10	Hydrophobic interactions modulate antimicrobial peptoid selectivity towards anionic lipid membranes. Biochimica Et Biophysica Acta - Biomembranes, 2018, 1860, 1414-1423.	2.6	43
11	Surface Nanocrystallization of an Ionic Liquid. Physical Review Letters, 2012, 108, 055502.	7.8	39
12	X-ray fluorescence spectroscopy from ions at charged vapor/water interfaces. Journal of Applied Physics, 2009, 105, .	2.5	37
13	Ion Distributions at the Water/1,2-Dichloroethane Interface: Potential of Mean Force Approach to Analyzing X-ray Reflectivity and Interfacial Tension Measurements. Journal of Physical Chemistry B, 2013, 117, 5365-5378.	2.6	36
14	Monovalent counterion distributions at highly charged water interfaces: Proton-transfer and Poisson-Boltzmann theory. Physical Review E, 2005, 72, 060501.	2.1	32
15	Armoring the Interface with Surfactants to Prevent the Adsorption of Monoclonal Antibodies. ACS Applied Materials & Samp; Interfaces, 2020, 12, 9977-9988.	8.0	32
16	The Role of Specific Ion Effects in Ion Transport: The Case of Nitrate and Thiocyanate. Journal of Physical Chemistry C, 2020, 124, 573-581.	3.1	30
17	Preferential Affinity of Calcium Ions to Charged Phosphatidic Acid Surface from a Mixed Calcium/Barium Solution: X-ray Reflectivity and Fluorescence Studies. Langmuir, 2009, 25, 1068-1073.	3.5	29
18	Interfacial Properties and Iron Binding to Bacterial Proteins That Promote the Growth of Magnetite Nanocrystals: X-ray Reflectivity and Surface Spectroscopy Studies. Langmuir, 2012, 28, 4274-4282.	3.5	28

#	Article	IF	CITATIONS
19	Two-Step Adsorption of PtCl62– Complexes at a Charged Langmuir Monolayer: Role of Hydration and lon Correlations. Journal of Physical Chemistry C, 2017, 121, 25377-25383.	3.1	28
20	Structure of Ceramide-1-Phosphate at the Air-Water Solution Interface in the Absence and Presence of Ca2+. Biophysical Journal, 2009, 96, 2204-2215.	0.5	27
21	Bilayer and Trilayer Crystalline Formation by Collapsing Behenic Acid Monolayers at Gas/Aqueous Interfaces. Langmuir, 2008, 24, 441-447.	3.5	25
22	X-ray Reflectivity Reveals a Nonmonotonic Ion-Density Profile Perpendicular to the Surface of ErCl ₃ Aqueous Solutions. Journal of Physical Chemistry C, 2013, 117, 19082-19090.	3.1	25
23	Electron Cartography in Clusters. Angewandte Chemie - International Edition, 2018, 57, 13815-13820.	13.8	24
24	Anions Enhance Rare Earth Adsorption at Negatively Charged Surfaces. Journal of Physical Chemistry Letters, 2020, 11, 4436-4442.	4.6	23
25	Neutrally Charged Gas/Liquid Interface by a Catanionic Langmuir Monolayer. Journal of Physical Chemistry Letters, 2010, 1, 1936-1940.	4.6	21
26	No ordinary proteins: Adsorption and molecular orientation of monoclonal antibodies. Science Advances, 2021, 7 , .	10.3	20
27	Salt Mediated Self-Assembly of Poly(ethylene glycol)-Functionalized Gold Nanorods. Scientific Reports, 2019, 9, 20349.	3.3	19
28	Liquid Surface X-ray Studies of Gold Nanoparticle–Phospholipid Films at the Air/Water Interface. Journal of Physical Chemistry B, 2016, 120, 9132-9141.	2.6	18
29	Liquid Surface X-Ray Scattering. , 2018, , 167-194.		18
30	Electrostatic Origin of Element Selectivity during Rare Earth Adsorption. Physical Review Letters, 2019, 122, 058001.	7.8	18
31	Antagonistic Role of Aqueous Complexation in the Solvent Extraction and Separation of Rare Earth lons. ACS Central Science, 2021, 7, 1908-1918.	11.3	18
32	Evolution and Reversible Polarity of Multilayering at the Ionic Liquid/Water Interface. Journal of Physical Chemistry B, 2020, 124, 6412-6419.	2.6	17
33	X-ray fluorescence from a model liquid/liquid solvent extraction system. Journal of Applied Physics, 2011, 110, .	2.5	15
34	Effect of (Poly)electrolytes on the Interfacial Assembly of Poly(ethylene glycol)-Functionalized Gold Nanoparticles. Langmuir, 2019, 35, 2251-2260.	3.5	15
35	Ion distributions at charged aqueous surfaces by near-resonance X-ray spectroscopy. Journal of Synchrotron Radiation, 2006, 13, 459-463.	2.4	14
36	Insertion of apoLp-III into a lipid monolayer is more favorable for saturated, more ordered, acyl-chains. Biochimica Et Biophysica Acta - Biomembranes, 2014, 1838, 482-492.	2.6	14

#	Article	IF	Citations
37	Chemical Potential Driven Reorganization of Anions between Stern and Diffuse Layers at the Air/Water Interface. Journal of Physical Chemistry C, 2022, 126, 1140-1151.	3.1	14
38	Specific Ion Effects in Lanthanide–Amphiphile Structures at the Air–Water Interface and Their Implications for Selective Separation. ACS Applied Materials & Enterfaces, 2022, 14, 7504-7512.	8.0	14
39	Extracting the pair distribution function of liquids and liquid-vapor surfaces by grazing incidence x-ray diffraction mode. Journal of Chemical Physics, 2008, 129, 044504.	3.0	13
40	Atomic Number Dependent "Structural Transitions―in Ordered Lanthanide Monolayers: Role of the Hydration Shell. Langmuir, 2017, 33, 1412-1418.	3.5	13
41	Two-Dimensional Crystallization of Poly(<i>N</i> li>-isopropylacrylamide)-Capped Gold Nanoparticles. Langmuir, 2018, 34, 8374-8378.	3.5	13
42	Unusual Effect of Iodine Ions on the Self-Assembly of Poly(ethylene glycol)-Capped Gold Nanoparticles. Langmuir, 2020, 36, 311-317.	3.5	12
43	Ion Distributions at Electrified Water-Organic Interfaces: PB-PMF Calculations and Impedance Spectroscopy Measurements. Journal of the Electrochemical Society, 2015, 162, H890-H897.	2.9	11
44	Electric Field Effect on Phospholipid Monolayers at an Aqueous–Organic Liquid–Liquid Interface. Journal of Physical Chemistry B, 2015, 119, 9319-9334.	2.6	11
45	Monomolecular Siloxane Film as a Model of Single Site Catalysts. Journal of the American Chemical Society, 2016, 138, 12432-12439.	13.7	11
46	Exposing the inadequacy of redox formalisms by resolving redox inequivalence within isovalent clusters. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 15836-15841.	7.1	11
47	Effects of ion adsorption on graphene oxide films and interfacial water structure: A molecular-scale description. Carbon, 2022, 195, 131-140.	10.3	11
48	Increased humidity can soften glassy Langmuir polymer films by two mechanisms: plasticization of the polymer material, and suppression of the evaporation cooling effect. Physical Chemistry Chemical Physics, 2017, 19, 10663-10675.	2.8	10
49	The influence of fractional surface coverage on the core–core separation in ordered monolayers of thiol-ligated Au nanoparticles. Soft Matter, 2019, 15, 8800-8807.	2.7	10
50	Structure and dynamics of lipid membranes interacting with antivirulence end-phosphorylated polyethylene glycol block copolymers. Soft Matter, 2020, 16, 983-989.	2.7	10
51	Thermally excited capillary waves at vapor/liquid interfaces of water–alcohol mixtures. Journal of Physics Condensed Matter, 2009, 21, 115105.	1.8	9
52	Density Profiles of Liquid/Vapor Interfaces Away from Their Critical Points. Journal of Physical Chemistry C, 2014, 118, 12405-12409.	3.1	9
53	Molecular interactions of phospholipid monolayers with a model phospholipase. Soft Matter, 2019, 15, 4068-4077.	2.7	8
54	Free Thiols Regulate the Interactions and Self-Assembly of Thiol-Passivated Metal Nanoparticles. Nano Letters, 2021, 21, 1613-1619.	9.1	8

#	Article	IF	Citations
55	Revealing redox isomerism in trichromium imides by anomalous diffraction. Chemical Science, 2021, 12, 15739-15749.	7.4	8
56	Localization length in deformed metallic carbon nanotubes. Physics Letters, Section A: General, Atomic and Solid State Physics, 2002, 302, 125-130.	2.1	7
57	Electronic structure in finite-length deformed metallic carbon nanotubes. European Physical Journal B, 2004, 42, 503-508.	1.5	7
58	Nucleation Kinetics and Structure Evolution of Quasi-Two-Dimensional ZnO at the Air–Water Interface: An ⟨i⟩In Situ⟨/i⟩ Time-Resolved Grazing Incidence X-ray Scattering Study. Nano Letters, 2022, 22, 3040-3046.	9.1	7
59	Amorphous iron-(hydr) oxide networks at liquid/vapor interfaces: In situ X-ray scattering and spectroscopy studies. Journal of Colloid and Interface Science, 2012, 384, 45-54.	9.4	6
60	Physical and monolayer film properties of potential fatty ester biolubricants. European Journal of Lipid Science and Technology, 2014, 116, n/a-n/a.	1.5	6
61	Salt-Induced Liquid–Liquid Phase Separation and Interfacial Crystal Formation in Poly(<1>N 1 -isopropylacrylamide)-Capped Gold Nanoparticles. Journal of Physical Chemistry C, 2021, 125, 5349-5362.	3.1	6
62	Spontaneous collapse of palmitic acid films on an alkaline buffer containing calcium ions. Colloids and Surfaces B: Biointerfaces, 2020, 193, 111100.	5.0	5
63	How Tim proteins differentially exploit membrane features to attain robust target sensitivity. Biophysical Journal, 2021, 120, 4891-4902.	0.5	5
64	Polyunsaturated Phospholipid Modified Membrane Degradation Catalyzed by a Secreted Phospholipase A2. Langmuir, 2019, 35, 11643-11650.	3.5	4
65	Correlating Ligand Density with Cellular Uptake of Gold Nanorods Revealed by X-ray Reflectivity. Journal of Nanoscience and Nanotechnology, 2019, 19, 7557-7563.	0.9	4
66	Penetration and preferential binding of charged nanoparticles to mixed lipid monolayers: interplay of lipid packing and charge density. Soft Matter, 2021, 17, 1963-1974.	2.7	4
67	Structural Changes in Films of Pulmonary Surfactant Induced by Surfactant Vesicles. Langmuir, 2020, 36, 13439-13447.	3.5	3
68	Iron Binding in an Ethylenediaminetetracetic Acidâ€Based Gemini Surfactant Monolayer Film. Journal of Surfactants and Detergents, 0, , .	2.1	3
69	Impeded Molecular Reorganization by Polyethylene Glycol Conjugation Revealed by X-ray Reflectivity and Diffraction Measurements. Langmuir, 2020, 36, 7573-7581.	3.5	2
70	Single-Molecule Fluorescence Spectroscopy of Phase-Separated 10,12-Pentacosadynoic Acid Films. Journal of Physical Chemistry B, 2021, 125, 3953-3962.	2.6	2
71	Structure of polymer-capped gold nanorods binding to model phospholipid monolayers. JPhys Materials, 2021, 4, 034004.	4.2	2
72	Synchrotron X-Ray Scattering from Liquid Surfaces and Interfaces. , 2016, , 1579-1616.		2

#	Article	IF	CITATIONS
73	Synchrotron X-Ray Scattering from Liquid Surfaces and Interfaces. , 2020, , 1897-1933.		2
74	Quantitative analysis of total reflection X-ray fluorescence from finely layered structures using XeRay. Review of Scientific Instruments, 2017, 88, 033112.	1.3	1
75	Influence of Substitutional Groups on the Ordering and Crystallization of Amphiphilic Silsesquioxanes at the Air–Water Interface. Langmuir, 2021, 37, 6232-6242.	3.5	1
76	Synchrotron X-Ray Scattering from Liquid Surfaces and Interfaces. , 2015, , 1-33.		1
77	X-Ray Studies of Liquid Interfaces in Model Solvent Extraction Systems. , 2019, , 115-145.		1
78	Knowledge-Based Design of 5-Fluororacil Prodrug Liposomal Formulation: Molecular Packing and Interaction Revealed by Interfacial Isotherms and X-ray Scattering Techniques. Molecular Pharmaceutics, 2021, 18, 4331-4340.	4.6	0