Joana Oliveira

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7179343/publications.pdf

Version: 2024-02-01

80 2,268 28 44
papers citations h-index g-index

81 81 81 1888
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Antioxidant Properties of Prepared Blueberry (Vaccinium myrtillus) Extracts. Journal of Agricultural and Food Chemistry, 2005, 53, 6896-6902.	5.2	172
2	Anthocyanins and derivatives are more than flavylium cations. Tetrahedron, 2015, 71, 3107-3114.	1.9	95
3	Solid Lipid Nanoparticles as Carriers of Natural Phenolic Compounds. Antioxidants, 2020, 9, 998.	5.1	85
4	Pyranoanthocyanin Dimers: A New Family of Turquoise Blue Anthocyanin-Derived Pigments Found in Port Wine. Journal of Agricultural and Food Chemistry, 2010, 58, 5154-5159.	5 . 2	82
5	NMR structure characterization of a new vinylpyranoanthocyanin–catechin pigment (a portisin). Tetrahedron Letters, 2004, 45, 3455-3457.	1.4	81
6	Blackberry anthocyanins: \hat{l}^2 -Cyclodextrin fortification for thermal and gastrointestinal stabilization. Food Chemistry, 2018, 245, 426-431.	8.2	80
7	Reaction between Hydroxycinnamic Acids and Anthocyaninâ^'Pyruvic Acid Adducts Yielding New Portisins. Journal of Agricultural and Food Chemistry, 2007, 55, 6349-6356.	5. 2	76
8	Antioxidant properties of anthocyanidins, anthocyanidin-3-glucosides and respective portisins. Food Chemistry, 2010, 119, 518-523.	8.2	73
9	Color Properties of Four Cyanidinâ^'Pyruvic Acid Adducts. Journal of Agricultural and Food Chemistry, 2006, 54, 6894-6903.	5. 2	69
10	Previous and recent advances in pyranoanthocyanins equilibria in aqueous solution. Dyes and Pigments, 2014, 100, 190-200.	3.7	66
11	Molecular binding between anthocyanins and pectic polysaccharides – Unveiling the role of pectic polysaccharides structure. Food Hydrocolloids, 2020, 102, 105625.	10.7	65
12	A new vinylpyranoanthocyanin pigment occurring in aged red wine. Food Chemistry, 2006, 97, 689-695.	8.2	63
13	Chromatic and structural features of blue anthocyanin-derived pigments present in Port wine. Analytica Chimica Acta, 2006, 563, 2-9.	5.4	56
14	Oxovitisins: A New Class of Neutral Pyranone-anthocyanin Derivatives in Red Wines. Journal of Agricultural and Food Chemistry, 2010, 58, 8814-8819.	5. 2	54
15	New Family of Bluish Pyranoanthocyanins. Journal of Biomedicine and Biotechnology, 2004, 2004, 299-305.	3.0	51
16	Antioxidant Features of Red Wine Pyranoanthocyanins: Experimental and Theoretical Approaches. Journal of Agricultural and Food Chemistry, 2014, 62, 7002-7009.	5.2	48
17	Equilibrium Forms of Vitisin B Pigments in an Aqueous System Studied by NMR and Visible Spectroscopy. Journal of Physical Chemistry B, 2009, 113, 11352-11358.	2.6	45
18	Wine industry by-product: Full polyphenolic characterization of grape stalks. Food Chemistry, 2018, 268, 110-117.	8.2	45

#	Article	IF	CITATIONS
19	Impact of grape pectic polysaccharides on anthocyanins thermostability. Carbohydrate Polymers, 2020, 239, 116240.	10.2	45
20	A review of the current knowledge of red wine colour Oeno One, 2017, 51, .	1.4	43
21	Screening of Anthocyanins and Anthocyanin-Derived Pigments in Red Wine Grape Pomace Using LC-DAD/MS and MALDI-TOF Techniques. Journal of Agricultural and Food Chemistry, 2015, 63, 7636-7644.	5.2	41
22	First evidences of interaction between pyranoanthocyanins and salivary proline-rich proteins. Food Chemistry, 2017, 228, 574-581.	8.2	41
23	Bioavailability studies and anticancer properties of malvidin based anthocyanins, pyranoanthocyanins and non-oxonium derivatives. Food and Function, 2016, 7, 2462-2468.	4.6	37
24	Do white grapes really exist?. Food Research International, 2015, 69, 21-25.	6.2	35
25	Structural characterization of a A-type linked trimeric anthocyanin derived pigment occurring in a young Port wine. Food Chemistry, 2013, 141, 1987-1996.	8.2	34
26	Impact of a pectic polysaccharide on oenin copigmentation mechanism. Food Chemistry, 2016, 209, 17-26.	8.2	33
27	Fluorescence Approach for Measuring Anthocyanins and Derived Pigments in Red Wine. Journal of Agricultural and Food Chemistry, 2013, 61, 10156-10162.	5.2	31
28	A novel synthetic pathway to vitisin B compounds. Tetrahedron Letters, 2009, 50, 3933-3935.	1.4	28
29	Chemical Behavior of Methylpyranomalvidin-3- <i>O</i> -glucoside in Aqueous Solution Studied by NMR and UVâ^Visible Spectroscopy. Journal of Physical Chemistry B, 2011, 115, 1538-1545.	2.6	28
30	Exploring the Applications of the Photoprotective Properties of Anthocyanins in Biological Systems. International Journal of Molecular Sciences, 2020, 21, 7464.	4.1	25
31	Grape anthocyanin oligomerization: A putative mechanism for red color stabilization?. Phytochemistry, 2014, 105, 178-185.	2.9	24
32	Wine-Inspired Chemistry: Anthocyanin Transformations for a Portfolio of Natural Colors. Synlett, 2017, 28, 898-906.	1.8	23
33	Network of carboxypyranomalvidin-3-O-glucoside (vitisin A) equilibrium forms in aqueous solution. Tetrahedron Letters, 2013, 54, 5106-5110.	1.4	22
34	Anthocyanin-Related Pigments: Natural Allies for Skin Health Maintenance and Protection. Antioxidants, 2021, 10, 1038.	5.1	22
35	Biorefinery of high polymerization degree proanthocyanidins in the context of circular economy. Industrial Crops and Products, 2020, 151, 112450.	5.2	21
36	Screening of Portisins (Vinylpyranoanthocyanin Pigments) in Port Wine by LC/DAD-MS. Food Science and Technology International, 2005, 11, 353-358.	2.2	19

#	Article	IF	Citations
37	A 1000-year-old mystery solved: Unlocking the molecular structure for the medieval blue from <i>Chrozophora tinctoria</i>), also known as folium. Science Advances, 2020, 6, eaaz7772.	10.3	19
38	The Role of Nutraceutical Containing Polyphenols in Diabetes Prevention. Metabolites, 2022, 12, 184.	2.9	18
39	Influence of the structural features of amino-based pyranoanthocyanins on their acid-base equilibria in aqueous solutions. Dyes and Pigments, 2017, 141, 479-486.	3.7	17
40	Study of the multi-equilibria of red wine colorants pyranoanthocyanins and evaluation of their potential in dye-sensitized solar cells. Solar Energy, 2019, 191, 100-108.	6.1	17
41	Pyranoanthocyanins Interfering with the Quorum Sensing of Pseudomonas aeruginosa and Staphylococcus aureus. International Journal of Molecular Sciences, 2021, 22, 8559.	4.1	16
42	Alternative Extraction and Downstream Purification Processes for Anthocyanins. Molecules, 2022, 27, 368.	3.8	16
43	Reactivity of Cork Extracts with (+)-Catechin and Malvidin-3- <i>O</i> -glucoside in Wine Model Solutions: Identification of a New Family of Ellagitannin-Derived Compounds (Corklins). Journal of Agricultural and Food Chemistry, 2017, 65, 8714-8726.	5.2	15
44	Dye-sensitized solar cells based on dimethylamino-Ï€-bridge-pyranoanthocyanin dyes. Solar Energy, 2020, 206, 188-199.	6.1	15
45	A New Insight into the Degradation of Anthocyanins: Reversible versus the Irreversible Chemical Processes. Journal of Agricultural and Food Chemistry, 2022, 70, 656-668.	5.2	15
46	Synthesis and structural characterization by LC–MS and NMR of a new semi-natural blue amino-based pyranoanthocyanin compound. Tetrahedron Letters, 2016, 57, 1277-1281.	1.4	14
47	A New Chemical Pathway Yielding A-Type Vitisins in Red Wines. International Journal of Molecular Sciences, 2017, 18, 762.	4.1	14
48	Stabilization of bluish pyranoanthocyanin pigments in aqueous systems using lignin nanoparticles. Dyes and Pigments, 2019, 166, 367-374.	3.7	14
49	A theoretical interpretation of the color of two classes of pyranoanthocyanins. Computational and Theoretical Chemistry, 2010, 948, 61-64.	1.5	13
50	Synthesis and Structural Characterization of Amino-Based Pyranoanthocyanins with Extended Electronic Delocalization. Synlett, 2016, 27, 2459-2462.	1.8	13
51	Unusual Color Change of Vinylpyranoanthocyaninâ^'Phenolic Pigments. Journal of Agricultural and Food Chemistry, 2010, 58, 4292-4297.	5.2	12
52	Effect of sugar acylation on the antioxidant properties of <i>Vitis vinifera</i> red grape malvidinâ€3â€glucoside. International Journal of Food Science and Technology, 2011, 46, 343-349.	2.7	12
53	Characterization of Anthocyanins and Anthocyanin-Derivatives in Red Wines during Ageing in Custom Oxygenation Oak Wood Barrels. Molecules, 2021, 26, 64.	3.8	12
54	Synthesis of a new bluish pigment from the reaction of a methylpyranoanthocyanin with sinapaldehyde. Tetrahedron Letters, 2011, 52, 1996-2000.	1.4	11

#	Article	IF	Citations
55	Impact of Lignosulfonates on the Thermodynamic and Kinetic Parameters of Malvidin-3- <i>O</i> -glucoside in Aqueous Solutions. Journal of Agricultural and Food Chemistry, 2018, 66, 6382-6387.	5.2	11
56	Flavanols: Catechins and Proanthocyanidins., 2013,, 1753-1801.		10
57	Colour modulation of blue anthocyanin-derivatives. Lignosulfonates as a tool to improve the water solubility of natural blue dyes. Dyes and Pigments, 2018, 153, 150-159.	3.7	10
58	On the Limits of Anthocyanins Co-Pigmentation Models and Respective Equations. Journal of Agricultural and Food Chemistry, 2021, 69, 1359-1367.	5.2	10
59	Influence of anthocyanins and derivative pigments from blueberry (Vaccinium myrtillus) extracts on MPP+ intestinal uptake: A structure–activity approach. Food Chemistry, 2008, 109, 587-594.	8.2	9
60	Copigmentation of anthocyanins with copigments possessing an acid-base equilibrium in moderately acidic solutions. Dyes and Pigments, 2021, 193, 109438.	3.7	9
61	Polyphenolic Characterization of Nebbiolo Red Wines and Their Interaction with Salivary Proteins. Foods, 2020, 9, 1867.	4.3	8
62	The peculiarity of malvidin 3-O-(6-O-p-coumaroyl) glucoside aggregation. Intra and intermolecular interactions. Dyes and Pigments, 2020, 180, 108382.	3.7	8
63	Antiradical Properties of Red Wine Portisins. Journal of Agricultural and Food Chemistry, 2011, 59, 11833-11837.	5.2	7
64	Tuning of Proanthocyanidin Extract's Composition through Quaternary Eutectic Solvents Extraction. Antioxidants, 2020, 9, 1124.	5.1	7
65	Metabolic pathways of degradation of malvidin-3-O-monoglucoside by Candida oleophila. International Biodeterioration and Biodegradation, 2019, 144, 104768.	3.9	6
66	The Role of Anthocyanins, Deoxyanthocyanins and Pyranoanthocyanins on the Modulation of Tyrosinase Activity: An In Vitro and In Silico Approach. International Journal of Molecular Sciences, 2021, 22, 6192.	4.1	6
67	Strategies used by nature to fix the red, purple and blue colours in plants: a physical chemistry approach. Physical Chemistry Chemical Physics, 2021, 23, 24080-24101.	2.8	6
68	Impact of Eutectic Solvents Utilization in the Microwave Assisted Extraction of Proanthocyanidins from Grape Pomace. Molecules, 2022, 27, 246.	3.8	6
69	A computational study of vinylpyranoanthocyanin-phenolic pigments (portisins). Computational and Theoretical Chemistry, 2010, 946, 113-118.	1.5	5
70	Polymeric Pigments in Red Wines. , 2019, , 207-218.		5
71	Pyranoflavylium Derivatives Extracted from Wine Grape as Photosensitizers in Solar Cells. Journal of the Brazilian Chemical Society, 2014 , , .	0.6	5
72	Synthesis, structural characterization and chromatic features of new 2-phenyl-1-benzopyrylium and 2-phenyl-styryl-1-benzopyrylium amino-based blue dyes. Tetrahedron Letters, 2021, 85, 153487.	1.4	5

#	Article	IF	CITATIONS
73	Synthesis of a new pyranoanthocyanin dimer linked through a methyl-methine bridge. Tetrahedron Letters, 2011, 52, 2957-2960.	1.4	3
74	Photochemistry of 5-Hydroxy-4'-Dimethylaminoflavylium in the presence of SDS micelles. The role of metastable states of flavylium cation-quinoidal base and trans-chalcones. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 402, 112827.	3.9	3
75	Interaction between salivary proteins and cork phenolic compounds able to migrate to wine model solutions. Food Chemistry, 2022, 367, 130607.	8.2	2
76	Photoactivated cell-killing amino-based flavylium compounds. Scientific Reports, 2021, 11, 22005.	3.3	2
77	On the contribution of intramolecular kinetics properties of an important rotamer of vinylpyranoanthocyaninâ€phenol pigment (portisin). International Journal of Quantum Chemistry, 2011, 111, 1355-1360.	2.0	1
78	Unravelling the relationship between protein sequence and low-complexity regions entropies: Interactome implications. Journal of Theoretical Biology, 2015, 382, 320-327.	1.7	1
79	Development of a new procedure for the determination of the reactivity of brandies used in wine fortification. Oeno One, 2021, 55, 161-172.	1.4	1
80	Modulating the thermodynamics, kinetics and photochemistry of 7-diethylamino-4′-dimethylaminoflavylium in water/ethanol, SDS and CTAB micelles. Physical Chemistry Chemical Physics, 0, , .	2.8	1