William A Harris

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7179182/publications.pdf Version: 2024-02-01

MILLIAM & HADDIS

#	Article	IF	CITATIONS
1	A critical window for cooperation and competition among developing retinotectal synapses. Nature, 1998, 395, 37-44.	13.7	815
2	Cellular determination in the xenopus retina is independent of lineage and birth date. Neuron, 1988, 1, 15-26.	3.8	624
3	Specification of the vertebrate eye by a network of eye field transcription factors. Development (Cambridge), 2003, 130, 5155-5167.	1.2	471
4	The Genetic Sequence of Retinal Development in the Ciliary Margin of theXenopusEye. Developmental Biology, 1998, 199, 185-200.	0.9	304
5	Late Endosomes Act as mRNA Translation Platforms and Sustain Mitochondria in Axons. Cell, 2019, 176, 56-72.e15.	13.5	300
6	Xotch inhibits cell differentiation in the xenopus retina. Neuron, 1995, 14, 487-496.	3.8	285
7	Regulation of neuronal diversity in the Xenopus retina by Delta signalling. Nature, 1997, 385, 67-70.	13.7	266
8	Navigational errors made by growth cones without filopodia in the embryonic xenopus brain. Neuron, 1993, 11, 237-251.	3.8	264
9	Xath5 Participates in a Network of bHLH Genes in the Developing Xenopus Retina. Neuron, 1997, 19, 981-994.	3.8	253
10	Actomyosin Is the Main Driver of Interkinetic Nuclear Migration in the Retina. Cell, 2009, 138, 1195-1208.	13.5	234
11	From Progenitors to Differentiated Cells in the Vertebrate Retina. Annual Review of Cell and Developmental Biology, 2009, 25, 45-69.	4.0	218
12	How Variable Clones Build an Invariant Retina. Neuron, 2012, 75, 786-798.	3.8	217
13	Polarization and orientation of retinal ganglion cells in vivo. Neural Development, 2006, 1, 2.	1.1	216
14	p27Xic1, a Cdk Inhibitor, Promotes the Determination of Glial Cells in Xenopus Retina. Cell, 1999, 99, 499-510.	13.5	210
15	Xenopus Pax-6 and retinal development. Journal of Neurobiology, 1997, 32, 45-61.	3.7	200
16	Mechanisms of ventral patterning in the vertebrate nervous system. Nature Reviews Neuroscience, 2006, 7, 103-114.	4.9	194
17	Semaphorin 3A Elicits Stage-Dependent Collapse, Turning, and Branching in <i>Xenopus</i> Retinal Growth Cones. Journal of Neuroscience, 2001, 21, 8538-8547.	1.7	187
18	In Vivo Time-Lapse Imaging of Cell Divisions during Neurogenesis in the Developing Zebrafish Retina. Neuron, 2003, 37, 597-609.	3.8	183

#	Article	IF	CITATIONS
19	Influences on neural lineage and mode of division in the zebrafish retina in vivo. Journal of Cell Biology, 2005, 171, 991-999.	2.3	176
20	RNA Docking and Local Translation Regulate Site-Specific Axon Remodeling InÂVivo. Neuron, 2017, 95, 852-868.e8.	3.8	163
21	Endocytosis-dependent desensitization and protein synthesis–dependent resensitization in retinal growth cone adaptation. Nature Neuroscience, 2005, 8, 179-186.	7.1	161
22	Retinal stem cells in vertebrates. BioEssays, 2000, 22, 685-688.	1.2	149
23	Cellular diversification in the vertebrate retina. Current Opinion in Genetics and Development, 1997, 7, 651-658.	1.5	145
24	Co-ordinating retinal histogenesis: early cell cycle exit enhances early cell fate determination in the <i>Xenopus </i> retina. Development (Cambridge), 2002, 129, 2435-2446.	1.2	144
25	Hedgehog signaling and the retina: insights into the mechanisms controlling the proliferative properties of neural precursors. Genes and Development, 2006, 20, 3036-3048.	2.7	142
26	Reconstruction of rat retinal progenitor cell lineages in vitro reveals a surprising degree of stochasticity in cell fate decisions. Development (Cambridge), 2011, 138, 227-235.	1.2	139
27	A novel function forHedgehogsignalling in retinal pigment epithelium differentiation. Development (Cambridge), 2003, 130, 1565-1577.	1.2	138
28	Fate of the anterior neural ridge and the morphogenesis of thexenopus forebrain. Journal of Neurobiology, 1995, 28, 146-158.	3.7	135
29	Local positional cues in the neuroepithelium guide retinal axons in embryonic Xenopus brain. Nature, 1989, 339, 218-221.	13.7	133
30	The effects of eliminating impulse activity on the development of the retinotectal projection in salamanders. Journal of Comparative Neurology, 1980, 194, 303-317.	0.9	123
31	Two cellular inductions involved in photoreceptor determination in the Xenopus retina. Neuron, 1992, 9, 357-372.	3.8	118
32	Apical migration of nuclei during G2 is a prerequisite for all nuclear motion in zebrafish neuroepithelia. Development (Cambridge), 2011, 138, 5003-5013.	1.2	117
33	Homing behaviour of axons in the embryonic vertebrate brain. Nature, 1986, 320, 266-269.	13.7	112
34	Vsx2 in the zebrafish retina: restricted lineages through derepression. Neural Development, 2009, 4, 14.	1.1	109
35	The Oriented Emergence of Axons from Retinal Ganglion Cells Is Directed by Laminin Contact InÂVivo. Neuron, 2011, 70, 266-280.	3.8	107
36	On-Site Ribosome Remodeling by Locally Synthesized Ribosomal Proteins in Axons. Cell Reports, 2019, 29, 3605-3619.e10.	2.9	103

#	Article	IF	CITATIONS
37	Retinoic acid receptor signaling regulates choroid fissure closure through independent mechanisms in the ventral optic cup and periocular mesenchyme. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 8698-8703.	3.3	99
38	Müller glia provide essential tensile strength to the developing retina. Journal of Cell Biology, 2015, 210, 1075-1083.	2.3	99
39	Dorsoventral patterning of the Xenopus eye: a collaboration of Retinoid, Hedgehog and FGF receptor signaling. Development (Cambridge), 2005, 132, 1737-1748.	1.2	91
40	Ptf1a is expressed transiently in all types of amacrine cells in the embryonic zebrafish retina. Neural Development, 2009, 4, 34.	1.1	86
41	Coupling of NF-protocadherin signaling to axon guidance by cue-induced translation. Nature Neuroscience, 2013, 16, 166-173.	7.1	70
42	Single-molecule analysis of endogenous β-actin mRNA trafficking reveals a mechanism for compartmentalized mRNA localization in axons. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E9697-E9706.	3.3	69
43	Exclusive multipotency and preferential asymmetric divisions in post-embryonic neural stem cells of the fish retina. Development (Cambridge), 2014, 141, 3472-3482.	1.2	64
44	Origin and Determination of Inhibitory Cell Lineages in the Vertebrate Retina. Journal of Neuroscience, 2011, 31, 2549-2562.	1.7	63
45	Numb is Required for the Production of Terminal Asymmetric Cell Divisions in the Developing Mouse Retina. Journal of Neuroscience, 2012, 32, 17197-17210.	1.7	60
46	The ciliary marginal zone of the zebrafish retina: clonal and time-lapse analysis of a continuously growing tissue. Development (Cambridge), 2016, 143, 1099-107.	1.2	60
47	Axon-Axon Interactions Regulate Topographic Optic Tract Sorting via CYFIP2-Dependent WAVE Complex Function. Neuron, 2018, 97, 1078-1093.e6.	3.8	59
48	Sequential genesis and determination of cone and rod photoreceptors inXenopus. Journal of Neurobiology, 1998, 35, 227-244.	3.7	57
49	Cellular competence plays a role in photoreceptor differentiation in the developingXenopus retina. Journal of Neurobiology, 2001, 49, 129-141.	3.7	57
50	Differential requirement of F-actin and microtubule cytoskeleton in cue-induced local protein synthesis in axonal growth cones. Neural Development, 2015, 10, 3.	1.1	53
51	Myosin functions inXenopus retinal ganglion cell growth cone motilityin vivo. Journal of Neurobiology, 1997, 32, 567-578.	3.7	51
52	Co-ordinating retinal histogenesis: early cell cycle exit enhances early cell fate determination in the Xenopus retina. Development (Cambridge), 2002, 129, 2435-46.	1.2	51
53	RNA-Binding Protein Hermes/RBPMS Inversely Affects Synapse Density and Axon Arbor Formation in Retinal Ganglion Cells In Vivo. Journal of Neuroscience, 2013, 33, 10384-10395.	1.7	50
54	The multiple decisions made by growth cones of RGCs as they navigate from the retina to the tectum inXenopus embryos. Journal of Neurobiology, 2000, 44, 246-259.	3.7	49

#	Article	IF	CITATIONS
55	Spectrum of Fates: a new approach to the study of the developing zebrafish retina. Development (Cambridge), 2014, 141, 1971-1980.	1.2	49
56	Receptor-specific interactome as a hub for rapid cue-induced selective translation in axons. ELife, 2019, 8, .	2.8	48
57	Reconciling competence and transcriptional hierarchies with stochasticity in retinal lineages. Current Opinion in Neurobiology, 2014, 27, 68-74.	2.0	46
58	The vertebrate retina: A model for neuronal polarization <i>in vivo</i> . Developmental Neurobiology, 2011, 71, 567-583.	1.5	42
59	Cellular Requirements for Building a Retinal Neuropil. Cell Reports, 2013, 3, 282-290.	2.9	41
60	Biasing Amacrine Subtypes in the Atoh7 Lineage through Expression of Barhl2. Journal of Neuroscience, 2012, 32, 13929-13944.	1.7	40
61	The Independent Probabilistic Firing of Transcription Factors: A Paradigm for Clonal Variability in the Zebrafish Retina. Developmental Cell, 2015, 34, 532-543.	3.1	37
62	The serotonergic somatosensory projection to the tectum of normal and eyeless salamanders. Journal of Morphology, 1981, 170, 55-69.	0.6	33
63	Regions of the brain influencing the projection of developing optic tracts in the salamander. Journal of Comparative Neurology, 1980, 194, 319-333.	0.9	31
64	Inhibitory neuron migration and IPL formation in the developing zebrafish retina. Development (Cambridge), 2015, 142, 2665-77.	1.2	30
65	Using <i>myc</i> genes to search for stem cells in the ciliary margin of the <i>Xenopus</i> retina. Developmental Neurobiology, 2012, 72, 475-490.	1.5	29
66	Mechanisms of Müller glial cell morphogenesis. Current Opinion in Neurobiology, 2017, 47, 31-37.	2.0	25
67	Activin/Nodal Signaling Supports Retinal Progenitor Specification in a Narrow Time Window during Pluripotent Stem Cell Neuralization. Stem Cell Reports, 2015, 5, 532-545.	2.3	20
68	Genetic control of cellular morphogenesis in Müller glia. Glia, 2019, 67, 1401-1411.	2.5	20
69	Hermes Regulates Axon Sorting in the Optic Tract by Post-Trancriptional Regulation of Neuropilin 1. Journal of Neuroscience, 2016, 36, 12697-12706.	1.7	18
70	Nuclear crowding and nonlinear diffusion during interkinetic nuclear migration in the zebrafish retina. ELife, 2020, 9, .	2.8	15
71	Self-organising aggregates of zebrafish retinal cells for investigating mechanisms of neural lamination. Development (Cambridge), 2017, 144, 1097-1106.	1.2	13
72	A Novel Tool to Measure Extracellular Glutamate in the Zebrafish Nervous System <i>In Vivo</i> . Zebrafish, 2017, 14, 284-286.	0.5	13

#	Article	IF	CITATIONS
73	Dorsoventral patterning of the Xenopus eye involves differential temporal changes in the response of optic stalk and retinal progenitors to Hh signalling. Neural Development, 2015, 10, 7.	1.1	11
74	NF-Protocadherin Regulates Retinal Ganglion Cell Axon Behaviour in the Developing Visual System. PLoS ONE, 2015, 10, e0141290.	1.1	11
75	Common Mechanisms in Vertebrate Axonal Navigation: Retinal Transplants Between Distantly Related Amphibia. Journal of Neurogenetics, 1984, 1, 127-140.	0.6	9
76	Nutrient-Deprived Retinal Progenitors Proliferate in Response to Hypoxia: Interaction of the HIF-1 and mTOR Pathway. Journal of Developmental Biology, 2016, 4, 17.	0.9	8
77	Formation of the eye field. , 2006, , 8-29.		7
78	In vivo expression of Nurr1/Nr4a2a in developing retinal amacrine subtypes in zebrafish <i>Tg(nr4a2a:eGFP)</i> transgenics. Journal of Comparative Neurology, 2017, 525, 1962-1979.	0.9	7
79	Genetics and Development of the Nervous System. Journal of Neurogenetics, 1985, 2, 179-196.	0.6	6
80	Cell determination. , 2006, , 75-98.		4
81	Induction of Hypoxia in Living Frog and Zebrafish Embryos. Journal of Visualized Experiments, 2017, , .	0.2	3
82	Disaggregation and Reaggregation of Zebrafish Retinal Cells for the Analysis of Neuronal Layering. Methods in Molecular Biology, 2017, 1576, 255-271.	0.4	3
83	The multiple decisions made by growth cones of RGCs as they navigate from the retina to the tectum in Xenopus embryos. Journal of Neurobiology, 2000, 44, 246.	3.7	3
84	Dedication to Friedrich Bonhoeffer. Journal of Neurobiology, 2004, 59, 1-2.	3.7	0
85	Yoshiki and KS222. Journal of Neurogenetics, 2012, 26, 5-6.	0.6	0

6 Generation of Neural Diversity. , 2019, , 85-117.

0