Animesh Dutta

List of Publications by Citations

Source: https://exaly.com/author-pdf/7179181/animesh-dutta-publications-by-citations.pdf

Version: 2024-04-17

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

161
papers5,842
citations34
h-index74
g-index164
ext. papers7,158
ext. citations5
avg, IF6.73
L-index

#	Paper	IF	Citations
161	A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications. <i>Renewable and Sustainable Energy Reviews</i> , 2015 , 45, 359-378	16.2	788
160	A review on thermal and catalytic pyrolysis of plastic solid waste (PSW). <i>Journal of Environmental Management</i> , 2017 , 197, 177-198	7.9	414
159	Torrefaction of Agriculture Residue To Enhance Combustible Properties []Energy & amp; Fuels, 2010, 24, 4638-4645	4.1	294
158	Thermodynamic equilibrium model and second law analysis of a downdraft waste gasifier. <i>Energy</i> , 2007 , 32, 1660-1669	7.9	288
157	Strength, storage, and combustion characteristics of densified lignocellulosic biomass produced via torrefaction and hydrothermal carbonization. <i>Applied Energy</i> , 2014 , 135, 182-191	10.7	236
156	Production of activated carbon from coconut shell: optimization using response surface methodology. <i>Bioresource Technology</i> , 2008 , 99, 4887-95	11	229
155	An investigation into steam gasification of biomass for hydrogen enriched gas production in presence of CaO. <i>International Journal of Hydrogen Energy</i> , 2010 , 35, 1582-1589	6.7	215
154	Equilibrium modeling of gasification: Gibbs free energy minimization approach and its application to spouted bed and spout-fluid bed gasifiers. <i>Energy Conversion and Management</i> , 2008 , 49, 1345-1356	10.6	178
153	Comparative evaluation of torrefaction and hydrothermal carbonization of lignocellulosic biomass for the production of solid biofuel. <i>Energy Conversion and Management</i> , 2015 , 105, 746-755	10.6	177
152	Challenges and opportunities of lignocellulosic biomass for anaerobic digestion. <i>Resources, Conservation and Recycling,</i> 2018 , 130, 164-174	11.9	176
151	Friction and heat transfer characteristics of laminar swirl flow through a circular tube fitted with regularly spaced twisted-tape elements. <i>International Journal of Heat and Mass Transfer</i> , 2001 , 44, 4211	- 42 23	167
150	A review of the current knowledge and challenges of hydrothermal carbonization for biomass conversion. <i>Journal of the Energy Institute</i> , 2019 , 92, 1779-1799	5.7	133
149	A review on advances of torrefaction technologies for biomass processing. <i>Biomass Conversion and Biorefinery</i> , 2012 , 2, 349-369	2.3	132
148	CaO-based CO2 sorbents: A review on screening, enhancement, cyclic stability, regeneration and kinetics modelling. <i>Journal of CO2 Utilization</i> , 2018 , 23, 179-199	7.6	113
147	Chemical-Looping Gasification of Biomass for Hydrogen-Enriched Gas Production with In-Process Carbon Dioxide Capture. <i>Energy & Dioxide Capture Senergy & Dioxide Capture Sene</i>	4.1	97
146	Energy storage system based on nanoparticle-enhanced phase change material inside porous medium. <i>International Journal of Thermal Sciences</i> , 2015 , 91, 49-58	4.1	96
145	Nano-PCM filled energy storage system for solar-thermal applications. <i>Renewable Energy</i> , 2018 , 126, 137-155	8.1	82

(2019-2015)

144	Review on comparative study of dry and wet torrefaction. <i>Sustainable Energy Technologies and Assessments</i> , 2015 , 12, 26-37	4.7	81	
143	An experimental study of combustion and emissions of biomass pellets in a prototype pellet furnace. <i>Applied Energy</i> , 2013 , 108, 298-307	10.7	79	
142	Convection effect on the melting process of nano-PCM inside porous enclosure. <i>International Journal of Heat and Mass Transfer</i> , 2015 , 85, 206-220	4.9	73	•
141	Thermohydraulic Study of Laminar Swirl Flow Through a Circular Tube Fitted With Twisted Tapes. <i>Journal of Heat Transfer</i> , 2001 , 123, 417-427	1.8	7 ²	
140	Process Water from the Hydrothermal Carbonization of Biomass: A Waste or a Valuable Product?. Waste and Biomass Valorization, 2018 , 9, 1181-1189	3.2	68	
139	Review of biosolids management options and co-incineration of a biosolid-derived fuel. <i>Waste Management</i> , 2011 , 31, 2228-35	8.6	56	
138	Charging nanoparticle enhanced bio-based PCM in open cell metallic foams: An experimental investigation. <i>Applied Thermal Engineering</i> , 2019 , 148, 1029-1042	5.8	56	
137	Hydrothermal Carbonization of Fruit Wastes: A Promising Technique for Generating Hydrochar. <i>Energies</i> , 2018 , 11, 2022	3.1	50	
136	Comparison of liquid and vapor hydrothermal carbonization of corn husk for the use as a solid fuel. <i>Bioresource Technology</i> , 2016 , 200, 804-11	11	47	
135	Torrefaction of non -lignocellulose biomass waste. <i>Canadian Journal of Chemical Engineering</i> , 2012 , 90, 186-195	2.3	43	
134	Impact of agronomic treatments on fuel characteristics of herbaceous biomass for combustion. <i>Fuel Processing Technology</i> , 2013 , 109, 96-102	7.2	43	
133	An investigation of MSW gasification in a spout-fluid bed reactor. <i>Fuel Processing Technology</i> , 2008 , 89, 949-957	7.2	43	
132	Effects of Reactor Design on the Torrefaction of Biomass. <i>Journal of Energy Resources Technology, Transactions of the ASME</i> , 2012 , 134,	2.6	41	
131	Melting of nano-PCM in an enclosed space: Scale analysis and heatline tracking. <i>International Journal of Heat and Mass Transfer</i> , 2018 , 119, 841-859	4.9	38	
130	Chemical looping gasification for hydrogen production: A comparison of two unique processes simulated using ASPEN Plus. <i>International Journal of Hydrogen Energy</i> , 2014 , 39, 5804-5817	6.7	38	
129	Review of syngas fermentation processes for bioethanol. <i>Biofuels</i> , 2014 , 5, 551-564	2	36	
128	Intensified green production of astaxanthin from Haematococcus pluvialis. <i>Food and Bioproducts Processing</i> , 2016 , 99, 1-11	4.9	34	
127	Prediction of Hydrothermal Carbonization with Respect to the Biomass Components and Severity Factor. <i>Energy & Description</i> , 2019, 33, 9916-9924	4.1	32	

126	Effects of Process Water Recycling and Particle Sizes on Hydrothermal Carbonization of Biomass. <i>Energy & Energy & Energ</i>	4.1	32
125	Melting of nano-phase change material inside a porous enclosure. <i>International Journal of Heat and Mass Transfer</i> , 2016 , 102, 773-787	4.9	31
124	Simulation and kinetic modeling of supercritical water gasification of biomass. <i>International Journal of Hydrogen Energy</i> , 2015 , 40, 4481-4493	6.7	30
123	Integrated Haematococcus pluvialis biomass production and nutrient removal using bioethanol plant waste effluent. <i>Chemical Engineering Research and Design</i> , 2017 , 111, 128-137	5.5	29
122	Technological and life cycle assessment of organics processing odour control technologies. <i>Science of the Total Environment</i> , 2015 , 527-528, 401-12	10.2	28
121	Dry reforming of multiple biogas types for syngas production simulated using Aspen Plus: The use of partial oxidation and hydrogen combustion to achieve thermo-neutrality. <i>International Journal of Hydrogen Energy</i> , 2015 , 40, 6307-6318	6.7	26
120	Biochar as a filler in glassfiber reinforced composites: Experimental study of thermal and mechanical properties. <i>Composites Part B: Engineering</i> , 2019 , 175, 107169	10	24
119	Catalytic supercritical gasification of biocrude from hydrothermal liquefaction of cattle manure. <i>Applied Catalysis B: Environmental</i> , 2016 , 189, 119-132	21.8	24
118	Bio-carbon production by oxidation and hydrothermal carbonization of paper recycling black liquor. Journal of Cleaner Production, 2019 , 213, 332-341	10.3	23
117	Effect of Convection Heat Transfer on Performance of Waste Heat Thermoelectric Generator. <i>Heat Transfer Engineering</i> , 2015 , 36, 1458-1471	1.7	22
116	Potential of sustainable energy technologies under CDM in Thailand: Opportunities and barriers. <i>Renewable Energy</i> , 2008 , 33, 2122-2133	8.1	22
115	An experimental investigation into the heat transfer on wing walls in a circulating fluidized bed boiler. <i>International Journal of Heat and Mass Transfer</i> , 2002 , 45, 4479-4491	4.9	22
114	Experimental investigation of a multi-stage air-steam gasification process for hydrogen enriched gas production. <i>International Journal of Energy Research</i> , 2012 , 36, 335-345	4.5	21
113	An Improved Cluster-Renewal Model for the Estimation of Heat Transfer Coefficients on the Furnace Walls of Commercial Circulating Fluidized Bed Boilers. <i>Journal of Heat Transfer</i> , 2004 , 126, 104	0 ⁻¹ 1843	21
112	Co-Benefits of Wollastonite Weathering in Agriculture: CO Sequestration and Promoted Plant Growth. <i>ACS Omega</i> , 2019 , 4, 1425-1433	3.9	21
111	Fuel property enhancement of lignocellulosic and nonlignocellulosic biomass through torrefaction. <i>Biomass Conversion and Biorefinery</i> , 2016 , 6, 139-149	2.3	19
110	Numerical simulation of nanostructured thermoelectric generator considering surface to surrounding convection. <i>International Communications in Heat and Mass Transfer</i> , 2014 , 56, 146-151	5.8	19
109	Greenhouse gas emissions and production cost of ethanol produced from biosyngas fermentation process. <i>Bioresource Technology</i> , 2015 , 192, 185-91	11	19

(2018-2020)

108	Numerical Comparison of a Combined Hydrothermal Carbonization and Anaerobic Digestion System with Direct Combustion of Biomass for Power Production. <i>Processes</i> , 2020 , 8, 43	2.9	18	
107	Municipal Food Waste to Biomethane and Biofertilizer: A Circular Economy Concept. <i>Waste and Biomass Valorization</i> , 2018 , 9, 601-611	3.2	18	
106	Circulating-Fluidized-Bed-Based Calcium-Looping Gasifier: Experimental Studies on the Calcination arbonation Cycle. <i>Industrial & Engineering Chemistry Research</i> , 2012 , 51, 8652-8660	3.9	18	
105	Hydrothermal Conversion of Neutral Sulfite Semi-Chemical Red Liquor into Hydrochar. <i>Energies</i> , 2016 , 9, 435	3.1	18	
104	An investigation of the heat transfer behavior of longitudinal finned membrane water wall tubes in circulating fluidized bed boilers. <i>Powder Technology</i> , 2009 , 193, 187-194	5.2	17	
103	Biochar-based composites as electrode active materials in hybrid supercapacitors with particular focus on surface topography and morphology. <i>Journal of Energy Storage</i> , 2020 , 29, 101291	7.8	16	
102	Potential value added applications of black liquor generated at paper manufacturing industry using recycled fibers. <i>Journal of Cleaner Production</i> , 2017 , 149, 156-163	10.3	15	
101	Hydrogen-Rich Gas Stream from Steam Gasification of Biomass: Eggshell as a CO2 Sorbent. <i>Energy & Energy Fuels</i> , 2020 , 34, 4828-4836	4.1	15	
100	A review of catalytic partial oxidation of fossil fuels and biofuels: Recent advances in catalyst development and kinetic modelling. <i>Chemical Engineering Research and Design</i> , 2018 , 136, 385-402	5.5	15	
99	Qualitative and kinetic analysis of torrefaction of lignocellulosic biomass using DSC-TGA-FTIR. <i>AIMS Energy</i> , 2015 , 3, 760-773	1.8	14	
98	Integrated hybrid architecture of metal and biochar for high performance asymmetric supercapacitors. <i>Scientific Reports</i> , 2021 , 11, 5387	4.9	14	
97	Catalytic Hydrothermal Carbonization Treatment of Biomass for Enhanced Activated Carbon: A Review. <i>Waste and Biomass Valorization</i> , 2021 , 12, 2171-2186	3.2	14	
96	Hydrothermal Carbonization of Peat Moss and Herbaceous Biomass (Miscanthus): A Potential Route for Bioenergy. <i>Energies</i> , 2018 , 11, 2794	3.1	14	
95	Numerical investigation of CO2 valorization via the steam gasification of biomass for producing syngas with flexible H2 to CO ratio. <i>Journal of CO2 Utilization</i> , 2018 , 27, 32-41	7.6	13	
94	Energy Potential of Plastic Waste Valorization: A Short Comparative Assessment of Pyrolysis versus Gasification. <i>Energy & Energy & Energy</i>	4.1	13	
93	Life cycle assessment of ethanol derived from sawdust. <i>Bioresource Technology</i> , 2013 , 150, 407-11	11	12	
92	Characterization of Torrefied Willow for Combustion Application. <i>Journal of Biobased Materials and Bioenergy</i> , 2013 , 7, 667-674	1.4	12	
91	Eggshell as a potential CO sorbent in the calcium looping gasification of biomass. <i>Waste Management</i> , 2018 , 80, 274-284	8.6	12	

89	Beneficiation of renewable industrial wastes from paper and pulp processing. <i>AIMS Energy</i> , 2018 , 6, 88	0- <u>9</u> . 6 7	11
88	Biocarbon, biomethane and biofertilizer from corn residue: A hybrid thermo-chemical and biochemical approach. <i>Energy</i> , 2018 , 165, 370-384	7.9	11
87	Evaluation of the life cycle of hydrothermally carbonized biomass for energy and horticulture application. <i>Renewable and Sustainable Energy Reviews</i> , 2020 , 132, 110046	16.2	10
86	Steam gasification of hydrochar derived from hydrothermal carbonization of fruit wastes. <i>Renewable Energy</i> , 2021 , 171, 582-591	8.1	10
85	Gasification of Plastic Solid Waste and Competitive Technologies 2019 , 269-293		10
84	Pyrolysis kinetics of Sal (Shorea robusta) seeds. <i>Biomass Conversion and Biorefinery</i> , 2017 , 7, 237-246	2.3	9
83	Gasification of biomass in a circulating fluidized bed based calcium looping gasifier for hydrogen-enriched gas production: experimental studies. <i>Biofuels</i> , 2017 , 8, 643-650	2	9
82	Prediction of the heat flux profile on the furnace wall of circulating fluidized bed boilers. <i>Journal of the Energy Institute</i> , 2014 , 87, 314-320	5.7	9
81	An experimental investigation of the effect of longitudinal fin orientation on heat transfer in membrane water wall tubes in a circulating fluidized bed. <i>International Journal of Heat and Mass Transfer</i> , 2009 , 52, 1552-1560	4.9	9
8o	Product evaluation of hydrothermal carbonization of biomass: semi-continuous vs. batch feeding. <i>Biomass Conversion and Biorefinery</i> , 2020 , 1	2.3	9
79	Ethanol production by syngas fermentation in a continuous stirred tank bioreactor using Clostridium ljungdahlii. <i>Biofuels</i> , 2019 , 10, 221-237	2	9
78	Development of a mathematical model for hydrothermal carbonization of biomass: Comparison of experimental measurements with model predictions. <i>Energy</i> , 2021 , 214, 119020	7.9	9
77	Experimental study on sawdust gasification in a spout f luid bed reactor. <i>International Journal of Energy Research</i> , 2012 , 36, 204-217	4.5	8
76	An Approach to Identify the Suitable Plant Location for Miscanthus-Based Ethanol Industry: A Case Study in Ontario, Canada. <i>Energies</i> , 2015 , 8, 9266-9281	3.1	8
75	An Investigation Into the Operation of the Twin-Exit Loop-Seal of a Circulating Fluidized Bed Boiler in a Thermal Power Plant and Its Design Implication. <i>Journal of Energy Resources Technology, Transactions of the ASME</i> , 2009 , 131,	2.6	8
74	Latest advances on hybrid solarBiomass power plants. <i>Energy Sources, Part A: Recovery, Utilization and Environmental Effects</i> ,1-24	1.6	8
73	Mild Hydrothermal Liquefaction of High Water Content Agricultural Residue for Bio-Crude Oil Production: A Parametric Study. <i>Energies</i> , 2018 , 11, 3129	3.1	8

(2013-2019)

72	Assessment of Greenhouse Gas Emissions from Ontario Solid Waste Landfills: Assessment of Improvement Scenarios. <i>Journal of Environmental Engineering, ASCE</i> , 2019 , 145, 05019004	2	7
71	Techno-economic assessment of corn stover for hybrid bioenergy production: A sustainable approach. <i>Case Studies in Thermal Engineering</i> , 2019 , 13, 100408	5.6	7
70	Development and evaluation of a functional bioreactor for CO fermentation into ethanol. <i>Bioresources and Bioprocessing</i> , 2016 , 3,	5.2	7
69	Fluidization characteristics of rice husk in a bubbling fluidized bed. <i>Canadian Journal of Chemical Engineering</i> , 2010 , 88, 18-22	2.3	7
68	Biohydrogen Production by Catalytic Supercritical Water Gasification: A Comparative Study. <i>ACS Omega</i> , 2020 , 5, 15390-15401	3.9	7
67	Design of a ternary 3D composite from hydrochar, zeolite and magnetite powder for direct conversion of biomass to gasoline. <i>Chemical Engineering Journal</i> , 2021 , 410, 128323	14.7	7
66	Effect of convection heat transfer on thermal energy storage unit. <i>Open Physics</i> , 2018 , 16, 861-867	1.3	7
65	Bioenergy Combined with Carbon Capture Potential by Microalgae at Flue Gas-Based Carbon Sequestration Plant of NALCO as Accelerated Carbon Sink. <i>Green Energy and Technology</i> , 2017 , 231-244	0.6	6
64	Syngas Purification in Cryogenic Packed Beds Using a One-Dimensional Pseudo-homogenous Model. <i>Energy & Documents (Model Service Servi</i>	4.1	6
63	An Improvement of Cluster-Renewal Model for Estimation of Heat Transfer on the Water-Walls of Commercial CFB Boilers 2003 , 235		6
62	An Investigation on Heat Transfer to the Standpipe of a Circulating Fluidized Bed Boiler. <i>Chemical Engineering Research and Design</i> , 2003 , 81, 1003-1014	5.5	6
61	A study on potential recovery of energy and value-added chemicals from in-situ pyrolysis of Bambusa balcooa over basic metal oxides. <i>Journal of Analytical and Applied Pyrolysis</i> , 2020 , 147, 104801	6	6
60	Eggshell as a Carbon Dioxide Sorbent: Kinetics of the Calcination and Carbonation Reactions. <i>Energy & Dioxide Sorbent</i> 833, 4474-4486	4.1	5
59	Effect of thermal conductivity on performance of thermoelectric systems based on Effective Medium Theory. <i>International Journal of Heat and Mass Transfer</i> , 2015 , 91, 190-204	4.9	5
58	Baseline soil characterisation of active landfill sites for future restoration and development in the state of Kuwait. <i>International Journal of Environmental Science and Technology</i> , 2020 , 17, 4407-4418	3.3	5
57	An investigation of raw and torrefied lignocellulosic biomasses with CaO during combustion. <i>Journal of the Energy Institute</i> , 2018 , 91, 584-594	5.7	5
56	Mechanical and Alkaline Hydrothermal Treated Corn Residue Conversion in to Bioenergy and Biofertilizer: A Resource Recovery Concept. <i>Energies</i> , 2018 , 11, 516	3.1	5
55	Energy Streamlines Analyses on Natural Convection Within Porous Square Enclosure With Internal Obstructions. <i>Journal of Thermal Science and Engineering Applications</i> , 2013 , 5,	1.9	5

Experimental investigation into cavity-type inertial separators novel technique for development 54 of subcompact circulating fluidized bed boilers. International Journal of Energy Research, 2005, 29, 1279- $\frac{4}{3}$ 00 $\frac{5}{3}$ Life Cycle Assessment of Ethanol Produced from Wheat Straw. Journal of Biobased Materials and 1.4 53 Bioenergy, **2012**, 6, 276-282 Wax Recovery from the Pyrolysis of Virgin and Waste Plastics. Industrial & Engineering 52 3.9 5 Chemistry Research, **2021**, 60, 8301-8309 Life Cycle Assessment (LCA) of Bioethanol Produced From Different Food Crops: Economic and Environmental Impacts **2019**, 385-399 Hydrothermal carbonization valorization as an alternative application for corn bio-ethanol 6.8 50 5 by-products. Journal of Environmental Chemical Engineering, 2021, 9, 105431 What is the best catalyst for biomass pyrolysis?. Journal of Analytical and Applied Pyrolysis, 2021, 6 49 158, 105280 A Review of Graphene: Material Synthesis from Biomass Sources. Waste and Biomass Valorization, 48 3.2 5 **2021**, 1-45 Application of analytical pyrolysis to gain insights into proteins of condensed corn distillers 4.9 4 solubles from selective milling technology. Food and Bioproducts Processing, 2020, 124, 354-368 Production of bio-syngas and biohydrogen via gasification 2011, 420-459 46 4 Effects of FeCl Catalytic Hydrothermal Carbonization on Chemical Activation of Corn Wet Distillers' 45 3.9 4 Fiber. *ACS Omega*, **2021**, 6, 14875-14886 Study of the fuel properties of extracted oils obtained from low and linear low density 44 7.1 4 polyethylene pyrolysis. Fuel, 2021, 304, 121396 Simulation of biomass-plastic co-gasification in a fluidized bed reactor using Aspen plus. Fuel, 2022, 43 4 319, 123708 Characterization of ultrasonic-treated corn crop biomass using imaging, spectral and thermal 42 2.3 3 techniques: a review. Biomass Conversion and Biorefinery, 2020, 1 Modelling of heat transfer during torrefaction of large lignocellulosic biomass. Heat and Mass 2.2 41 Transfer, **2018**, 54, 1989-1997 Analysis of combined solar photovoltaic-nanostructured thermoelectric generator system. 40 3 3 International Journal of Green Energy, 2016, 13, 1175-1184 Analytical and Numerical Studies of Heat Transfer in Nanocomposite Thermoelectric Coolers. 39 1.9 Journal of Electronic Materials, **2015**, 44, 2915-2929 A Review of Life Cycle of Ethanol Produced from Biosyngas. Bioethanol, 2013, 1, 38 3 Ash Analysis of Poultry Litter, Willow and Oats for Combustion in Boilers 37

(2008-2020)

36	New Insights for the Future Design of Composites Composed of Hydrochar and Zeolite for Developing Advanced Biofuels from Cranberry Pomace. <i>Energies</i> , 2020 , 13, 6600	3.1	3
35	The Valorization of Plastic Via Thermal Means: Industrial Scale Combustion Methods 2019 , 295-312		3
34	Physicochemical characteristics and pyrolysis kinetics of raw and torrefied hybrid poplar wood (NM6 [Populus nigra). <i>Biofuels</i> , 2020 , 11, 329-338	2	3
33	Controlled release fertilizers (CRFs) for climate-smart agriculture practices: a comprehensive review on release mechanism, materials, methods of preparation, and effect on environmental parameters. <i>Environmental Science and Pollution Research</i> ,	5.1	3
32	Heat transfer mechanisms in poplar wood undergoing torrefaction. <i>Heat and Mass Transfer</i> , 2016 , 52, 421-428	2.2	2
31	Optimum conditions for high distillation partition performance: Comparative studies. <i>Applied Thermal Engineering</i> , 2019 , 162, 114279	5.8	2
30	Numerical Investigation of the Effects of Coke on Transport Properties in an Oxidative Fuel Cell Reformer. <i>ACS Omega</i> , 2020 , 5, 28555-28564	3.9	2
29	Two-dimensional modeling of torrefaction of a large biomass particle. <i>International Journal of Green Energy</i> , 2017 , 14, 1119-1129	3	2
28	Heat transfer to the ceiling of the riser of a circulating fluidized bed. <i>Chemical Engineering Science</i> , 2006 , 61, 5907-5911	4.4	2
27	The Current Status and Future Potential of Biogas Production from Canadall Organic Fraction Municipal Solid Waste. <i>Energies</i> , 2022 , 15, 475	3.1	2
26	Evaluation of nitrogenous pyrolysates by Pyth C/MS for impacts of different proteolytic enzymes on corn distillers solubles. <i>Food and Bioproducts Processing</i> , 2021 , 127, 225-243	4.9	2
25	Life Cycle Assessment (LCA) in Municipal Waste Management Decision Making 2019 , 377-402		2
24	A review on co-pyrolysis of biomass with plastics and tires: recent progress, catalyst development, and scaling up potential. <i>Biomass Conversion and Biorefinery</i> ,1	2.3	2
23	Production of antioxidative protein hydrolysates from corn distillers solubles: Process optimization, antioxidant activity evaluation, and peptide analysis. <i>Industrial Crops and Products</i> , 2022 , 184, 115107	5.9	2
22	Revamping of 4 x 58 MWth Pulverized Coal-Fired Boilers With Circulating Fluidized Bed Firing 2003 , 12	5	1
21	A Innovative Solution to the Problem of Mill Rejects in Thermal Power Plants 2005 , 749		1
20	Hydrothermal liquefaction of green macroalgae Cladophora glomerata: Effect of functional groups on the catalytic performance of graphene oxide/polyurethane composite. <i>Catalysis Today</i> , 2022 ,	5.3	1
19	Empirical model for predicting cross-sectional averaged suspension density in commercial circulating fluidised bed boilers. <i>Journal of the Energy Institute</i> , 2008 , 81, 69-75	5.7	1

18	Efficiency Analysis of Crude Versus Pure Cellulase in Industry. <i>Clean Energy Production Technologies</i> , 2020 , 283-298	0.8	1
17	Two-Stage Gasification of Wood with Preheated Air Supply 2000 , 557-561		1
16	Ash removal from various spent liquors by oxidation process for bio-carbon production. <i>Journal of Environmental Chemical Engineering</i> , 2020 , 8, 103520	6.8	1
15	Correlations to Predict Properties of Torrefied Biomass Using Mass Loss Fraction and Experimental Validation. <i>Energy & Energy & </i>	4.1	1
14	Miscanthus to Biocarbon for Canadian Iron and Steel Industries: An Innovative Approach. <i>Energies</i> , 2021 , 14, 4493	3.1	1
13	Valorization and potential of condensed corn distillers solubles fractions from selective milling technology. <i>Biomass Conversion and Biorefinery</i> ,1	2.3	1
12	In vitro plant tissue culture as the fifth generation of bioenergy Scientific Reports, 2022, 12, 5038	4.9	1
11	Technologies for the production of renewable natural gas from organic wastes and their opportunities in existing Canadian pipelines. <i>Fuel Communications</i> , 2022 , 11, 100056	1	1
10	Pyrolysis of High-Density Polyethylene in a Fluidized Bed Reactor: Pyro-Wax and Gas Analysis. <i>Industrial & Engineering Chemistry Research</i> , 2021 , 60, 18283-18292	3.9	1
9	Exploration of corn distillers solubles from selective milling technology as a novel source of plant-based ACE inhibitory protein hydrolysates <i>Food Chemistry</i> , 2022 , 388, 133036	8.5	1
8	Computational Modeling Approaches of Hydrothermal Carbonization: A Critical Review. <i>Energies</i> , 2022 , 15, 2209	3.1	0
7	Hydrothermal Conversion of Waste Biomass from Greenhouses into Hydrochar for Energy, Soil Amendment, and Wastewater Treatment Applications. <i>Energies</i> , 2022 , 15, 3663	3.1	O
6	Heat transfer in standpipe of circulating fluidised bed boiler. <i>Journal of the Energy Institute</i> , 2009 , 82, 87-94	5.7	
5	Low-volatile coal combustion technologies in Vietnam: issues and strategies. <i>World Review of Science, Technology and Sustainable Development</i> , 2007 , 4, 306	1	
4	An Intelligent Tool for Evaluating Bids for Circulating Fluidized Bed Boilers 2003, 113		
3	Miscanthus: a promising feedstock for lignocellulosic ethanol industry in Ontario, Canada. <i>AIMS Energy</i> , 2015 , 3, 562-575	1.8	
2	Effects of Reactor Wall Properties, Operating Conditions and Challenges for SCWG of Real Wet Biomass. <i>Biofuels and Biorefineries</i> , 2014 , 207-228	0.3	
1	Biomass-Based CO2 Adsorbents for Biogas Upgradation with Pressure Swing Adsorption. <i>Green Energy and Technology</i> , 2021 , 231-262	0.6	