Makoto Hirata

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7178784/publications.pdf

Version: 2024-02-01

117453 123241 4,766 63 34 61 citations h-index g-index papers 69 69 69 9014 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Genetic analysis of quantitative traits in the Japanese population links cell types to complex human diseases. Nature Genetics, 2018, 50, 390-400.	9.4	613
2	Overview of the BioBank Japan Project: Study design and profile. Journal of Epidemiology, 2017, 27, S2-S8.	1.1	451
3	Genome-wide association study identifies 112 new loci for body mass index in the Japanese population. Nature Genetics, 2017, 49, 1458-1467.	9.4	380
4	Large-scale genome-wide association study in a Japanese population identifies novel susceptibility loci across different diseases. Nature Genetics, 2020, 52, 669-679.	9.4	304
5	Germline pathogenic variants of 11 breast cancer genes in 7,051 Japanese patients and $11,241$ controls. Nature Communications, $2018, 9, 4083$.	5.8	179
6	Identification of 28 new susceptibility loci for type 2 diabetes in the Japanese population. Nature Genetics, 2019, 51, 379-386.	9.4	164
7	C/EBP \hat{I}^2 and RUNX2 cooperate to degrade cartilage with MMP-13 as the target and HIF-2 $\hat{I}\pm$ as the inducer in chondrocytes. Human Molecular Genetics, 2012, 21, 1111-1123.	1.4	137
8	Cross-sectional analysis of BioBank Japan clinical data: A large cohort of 200,000 patients with 47 common diseases. Journal of Epidemiology, 2017, 27, S9-S21.	1.1	133
9	A Large-Scale Multi-ancestry Genome-wide Study Accounting for Smoking Behavior Identifies Multiple Significant Loci for Blood Pressure. American Journal of Human Genetics, 2018, 102, 375-400.	2.6	123
10	Characterizing rare and low-frequency height-associated variants in the Japanese population. Nature Communications, 2019, 10, 4393.	5.8	123
11	Multi-ancestry genome-wide gene–smoking interaction study of 387,272 individuals identifies new loci associated with serum lipids. Nature Genetics, 2019, 51, 636-648.	9.4	112
12	Genome-wide association study identifies seven novel susceptibility loci for primary open-angle glaucoma. Human Molecular Genetics, 2018, 27, 1486-1496.	1.4	111
13	Novel genetic associations for blood pressure identified via gene-alcohol interaction in up to 570K individuals across multiple ancestries. PLoS ONE, 2018, 13, e0198166.	1.1	94
14	Multiancestry Genome-Wide Association Study of Lipid Levels Incorporating Gene-Alcohol Interactions. American Journal of Epidemiology, 2019, 188, 1033-1054.	1.6	85
15	Associations of autozygosity with a broad range of human phenotypes. Nature Communications, 2019, 10, 4957.	5.8	84
16	C/EBPÎ ² Promotes Transition from Proliferation to Hypertrophic Differentiation of Chondrocytes through Transactivation of p57Kip2. PLoS ONE, 2009, 4, e4543.	1.1	84
17	GWAS of 165,084 Japanese individuals identified nine loci associated with dietary habits. Nature Human Behaviour, 2020, 4, 308-316.	6.2	80
18	Interethnic analyses of blood pressure loci in populations of East Asian and European descent. Nature Communications, 2018, 9, 5052.	5.8	75

#	Article	IF	CITATIONS
19	Genetic and phenotypic landscape of the major histocompatibilty complex region in the Japanese population. Nature Genetics, 2019, 51, 470-480.	9.4	75
20	Trans-biobank analysis with 676,000 individuals elucidates the association of polygenic risk scores of complex traits with human lifespan. Nature Medicine, 2020, 26, 542-548.	15.2	74
21	Biphasic regulation of chondrocytes by Rela through induction of anti-apoptotic and catabolic target genes. Nature Communications, 2016, 7, 13336.	5.8	73
22	Expansion of Cancer Risk Profile for <i>BRCA1</i> and <i>BRCA2</i> Pathogenic Variants. JAMA Oncology, 2022, 8, 871.	3.4	70
23	Germline Pathogenic Variants in 7636 Japanese Patients With Prostate Cancer and 12Â366 Controls. Journal of the National Cancer Institute, 2020, 112, 369-376.	3.0	69
24	Genome-wide meta-analysis identifies multiple novel loci associated with serum uric acid levels in Japanese individuals. Communications Biology, 2019, 2, 115.	2.0	66
25	Moyamoya Disease Susceptibility Variant <i>RNF213</i> p.R4810K Increases the Risk of Ischemic Stroke Attributable to Large-Artery Atherosclerosis. Circulation, 2019, 139, 295-298.	1.6	64
26	Dimensionality reduction reveals fine-scale structure in the Japanese population with consequences for polygenic risk prediction. Nature Communications, 2020, 11, 1569.	5.8	58
27	Identification of a novel p53 target, COL17A1, that inhibits breast cancer cell migration and invasion. Oncotarget, 2017, 8, 55790-55803.	0.8	58
28	GWAS of smoking behaviour in 165,436 Japanese people reveals seven new loci and shared genetic architecture. Nature Human Behaviour, 2019, 3, 471-477.	6.2	54
29	GWAS of mosaic loss of chromosome Y highlights genetic effects on blood cell differentiation. Nature Communications, 2019, 10, 4719.	5.8	50
30	Overview of BioBank Japan follow-up data in 32 diseases. Journal of Epidemiology, 2017, 27, S22-S28.	1.1	47
31	Elucidating the genetic architecture of reproductive ageing in the Japanese population. Nature Communications, 2018, 9, 1977.	5.8	44
32	Integrated exome and RNA sequencing of dedifferentiated liposarcoma. Nature Communications, 2019, 10, 5683.	5.8	41
33	Argininosuccinate synthase 1 is an intrinsic Akt repressor transactivated by p53. Science Advances, 2017, 3, e1603204.	4.7	40
34	Genomeâ€wide association study identifies gastric cancer susceptibility loci at 12q24.11â€12 and 20q11.21. Cancer Science, 2018, 109, 4015-4024.	1.7	39
35	Genetic characterization of pancreatic cancer patients and prediction of carrier status of germline pathogenic variants in cancer-predisposing genes. EBioMedicine, 2020, 60, 103033.	2.7	39
36	Characteristics and prognosis of Japanese colorectal cancer patients: The BioBank Japan Project. Journal of Epidemiology, 2017, 27, S36-S42.	1.1	38

#	Article	IF	Citations
37	Genome-wide association meta-analysis identifies GP2 gene risk variants for pancreatic cancer. Nature Communications, 2020, 11, 3175.	5.8	34
38	Demographic and lifestyle factors and survival among patients with esophageal and gastric cancer: The Biobank Japan Project. Journal of Epidemiology, 2017, 27, S29-S35.	1.1	32
39	GWAS of five gynecologic diseases and cross-trait analysis in Japanese. European Journal of Human Genetics, 2020, 28, 95-107.	1.4	32
40	SOX10 Transactivates S100B to Suppress Schwann Cell Proliferation and to Promote Myelination. PLoS ONE, 2014, 9, e115400.	1.1	30
41	Massively parallel sequencing of tenosynovial giant cell tumors reveals novel CSF1 fusion transcripts and novel somatic CBL mutations. International Journal of Cancer, 2019, 145, 3276-3284.	2.3	28
42	Characteristics and prognosis of Japanese female breast cancer patients: The BioBank Japan project. Journal of Epidemiology, 2017, 27, S58-S64.	1.1	27
43	Statin use and all-cause and cancer mortality: BioBank Japan cohort. Journal of Epidemiology, 2017, 27, S84-S91.	1.1	25
44	Frequent mutations of genes encoding vacuolar H ⁺ â€ATPase components in granular cell tumors. Genes Chromosomes and Cancer, 2019, 58, 373-380.	1.5	21
45	Survival of macrovascular disease, chronic kidney disease, chronic respiratory disease, cancer and smoking in patients with type 2 diabetes: BioBank Japan cohort. Journal of Epidemiology, 2017, 27, S98-S106.	1.1	20
46	Population-based Screening for Hereditary Colorectal Cancer Variants in Japan. Clinical Gastroenterology and Hepatology, 2022, 20, 2132-2141.e9.	2.4	20
47	Characteristics of patients with liver cancer in the BioBank Japan project. Journal of Epidemiology, 2017, 27, S43-S48.	1.1	17
48	Characteristics and prognosis of Japanese male and female lung cancer patients: The BioBank Japan Project. Journal of Epidemiology, 2017, 27, S49-S57.	1.1	17
49	Functional variants in ADH1B and ALDH2 are non-additively associated with all-cause mortality in Japanese population. European Journal of Human Genetics, 2020, 28, 378-382.	1.4	14
50	Identification of a novel uterine leiomyoma GWAS locus in a Japanese population. Scientific Reports, 2020, 10, 1197.	1.6	14
51	Serum glucose, cholesterol and blood pressure levels in Japanese type 1 and 2 diabetic patients: BioBank Japan. Journal of Epidemiology, 2017, 27, S92-S97.	1.1	12
52	Risk prediction models for mortality in patients with cardiovascular disease: The BioBank Japan project. Journal of Epidemiology, 2017, 27, S71-S76.	1.1	11
53	Clinical and histopathological characteristics of patients with prostate cancer in the BioBank Japan project. Journal of Epidemiology, 2017, 27, S65-S70.	1.1	11
54	Feasibility and clinical utility of comprehensive genomic profiling of hematological malignancies. Cancer Science, 2022, 113, 2763-2777.	1.7	11

#	Article	IF	CITATIONS
55	Comprehensive molecular and clinicopathological profiling of desmoid tumours. European Journal of Cancer, 2021, 145, 109-120.	1.3	10
56	Genome-wide association study (GWAS) of ovarian cancer in Japanese predicted regulatory variants in 22q13.1. PLoS ONE, 2018, 13, e0209096.	1.1	8
57	Regulation of tubular recycling endosome biogenesis by the p53-MICALL1 pathway. International Journal of Oncology, 2017, 51, 724-736.	1.4	6
58	Causeâ€specific mortality rates in patients with diabetes according to comorbid macro―and microvascular complications: BioBank Japan Cohort. Endocrinology, Diabetes and Metabolism, 2021, 4, e00181.	1.0	6
59	Cancer-associated IDH mutations induce Glut1 expression and glucose metabolic disorders through a PI3K/Akt/mTORC1-Hif1 \hat{l} ± axis. PLoS ONE, 2021, 16, e0257090.	1.1	5
60	Cholesterol levels of Japanese dyslipidaemic patients with various comorbidities: BioBank Japan. Journal of Epidemiology, 2017, 27, S77-S83.	1.1	3
61	Identification of a p53 target, CD137L, that mediates growth suppression and immune response of osteosarcoma cells. Scientific Reports, 2017, 7, 10739.	1.6	3
62	Imaging characteristics of NTRK-rearranged spindle cell neoplasm of the soft tissue: A case report. Journal of Orthopaedic Science, 2023, 28, 1580-1583.	0.5	3
63	Allâ€cause and cardiovascular disease mortality in underweight patients with diabetic nephropathy: BioBank Japan cohort. Journal of Diabetes Investigation, 2021, 12, 1425-1429.	1.1	2